1
|
He P, Qiao R, Liu C, Zhang W, Li H, He F. Neuroprotective Mechanisms of Baicalin in Ischemia Stroke. ACS Chem Neurosci 2025. [PMID: 40402033 DOI: 10.1021/acschemneuro.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Ischemic stroke (IS) remains one of the leading global causes of mortality and disability, imposing a substantial socioeconomic burden on families and healthcare systems. Despite recognition as a critical global health challenge, therapeutic interventions for cerebral ischemia remain severely limited. The current standard treatment for acute ischemic stroke is intravenous thrombolysis using a tissue plasminogen activator (tPA). However, its narrow therapeutic window and elevated risk of hemorrhagic complications restrict thrombolytic therapy to a minority of eligible patients. Baicalin, a bioactive flavonoid derived from Scutellaria baicalensis roots, exhibits neuroprotective properties across diverse neurological conditions, including ischemic and hemorrhagic brain injury. Its neuroprotective mechanisms are multifactorial, encompassing antioxidant activity, antiapoptotic, and antiinflammatory effects, upregulation of neurotrophic factors, mitochondrial protection, and vasodilation of peripheral vasculature. The breadth of baicalin's neuroprotective actions highlights its potential as a promising therapeutic candidate for ischemic stroke. This review synthesizes current evidence on baicalin's neuroprotective effects and molecular mechanisms in ischemic stroke, emphasizing its potential as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Peng He
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Ru Qiao
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Can Liu
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Weilong Zhang
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Haiying Li
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Fuyuan He
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
2
|
Liu X, Zhou Y, Lu Z, Yang F, Wang Y, Zhang S, Zhang J, Zou H, Lin M. Network Pharmacology and Metabolomics Reveal Anti-Ferroptotic Effects of Curcumin in Acute Kidney Injury. Drug Des Devel Ther 2024; 18:6223-6241. [PMID: 39722679 PMCID: PMC11669278 DOI: 10.2147/dddt.s486286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is linked to high rates of mortality and morbidity worldwide thereby posing a major public health problem. Evidences suggest that ferroptosis is the primary cause of AKI, while inhibition of monoamine oxidase A(MAOA) and 5-hydroxytryptamine were recognized as the defender of ferroptosis. Curcumin (Cur) is a natural polyphenol and the main bioactive compound of Curcuma longa, which has been found nephroprotection in AKI. However, the potential mechanism of Cur in alleviating AKI ferroptosis remains unknown. Objective This study aims to investigate the effects of Cur on AKI ferroptosis. Methods Folic acid (FA)-induced AKI mouse model and erastin/(rsl-3)-induced HK-2 model were constructed to assess the renoprotection of Cur. The nuclear magnetic resonance (NMR)-based metabolomics coupled network pharmacology approach was used to explore the metabolic regulation and potential targets of Cur. Molecular docking and enzyme activity assay was carried out to evaluate the effects of Cur on MAOA. Results Our results showed that in vivo Cur preserved renal functions in AKI mice by lowering levels of serum creatinine, blood urea nitrogen, while in vitro ameliorated the cell viability of HK-2 cells damaged by ferroptosis. Mechanistic studies indicated that Cur protected AKI against ferroptosis via inhibition of MAOA thereby regulating 5-hydroxy-L-tryptophan metabolism. Conclusion Our study for the first time clarified that Cur might acts as a MAOA inhibitor and alleviates ferroptosis in AKI mice, laying a scientific foundation for new insights of clinical therapy on AKI.
Collapse
Affiliation(s)
- Xi Liu
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Yu Zhou
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ziyi Lu
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Fenglin Yang
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Yizhi Wang
- School of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211169, People’s Republic of China
| | - Sijin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People’s Republic of China
| | - Jinwen Zhang
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Hong Zou
- Physical Education Department, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Min Lin
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| |
Collapse
|
3
|
Idrees M, Kujan O. Curcumin is effective in managing oral inflammation: An in vitro study. J Oral Pathol Med 2024; 53:376-385. [PMID: 38772856 DOI: 10.1111/jop.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Oral inflammation is among the most prevalent oral pathologies with systemic health implications, necessitating safe and effective treatments. Given curcumin's documented anti-inflammatory and antioxidant properties, this study focuses on the potential of a curcumin-based oral gel in safely managing oral inflammatory conditions. METHODS This in vitro study utilized four human cell lines: oral keratinocytes (HOKs), immortalized oral keratinocytes (OKF6), periodontal ligament fibroblasts (HPdLF), and dysplastic oral keratinocytes (DOKs). The cells were treated with Lipopolysaccharides (LPS) and curcumin-based oral gel to simulate inflammatory conditions. A panel of cellular assays were performed along with antimicrobial efficacy tests targeting Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis. RESULTS LPS significantly reduced proliferation and wound healing capacities of HOKs, OKF6, and HPdLF, but not DOKs. Treatment with curcumin-based oral gel mitigated inflammatory responses in HOKs and HPdLF by enhancing proliferation, colony formation, and wound healing, along with reducing apoptosis. However, its impact on OKF6 and DOKs was limited in some assays. Curcumin treatment did not affect the invasive capabilities of any cell line but did modulate cell adhesion in a cell line-specific manner. The curcumin-based oral gel showed significant antimicrobial efficacy against C. albicans and S. mutans, but was ineffective against P. gingivalis. CONCLUSION This study demonstrates the potential of the curcumin-based oral gel as a safe and effective alternative to conventional antimicrobial treatments for managing cases of oral inflammation. This was achieved by modulating cellular responses under simulated inflammatory conditions. Future clinical-based studies are recommended to exploit curcumin's therapeutic benefits in oral healthcare.
Collapse
Affiliation(s)
- Majdy Idrees
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
5
|
Aydın B, Nazıroğlu M. Involvement of TRPM7 Channel on the Induction of Diabetic Neuropathic Pain in Mice: Protective Role of Selenium and Curcumin. Biol Trace Elem Res 2023; 201:2377-2395. [PMID: 36567422 DOI: 10.1007/s12011-022-03518-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022]
Abstract
Excessive levels of the mitochondrial reactive oxygen radical (mitSOX) and Ca2+ influx were found to cause neuropathic pain in patients with diabetes mellitus (DM). Naltriben (NLT) and mitSOX activate the transient receptor (TRP) melastatin 7 (TRPM7) channel, but antioxidants and carvacrol inhibit it. Selenium (Se) and curcumin (CRC) have been thoroughly studied for their modulator effects on streptozotocin (STZ)-induced neuropathic pain, apoptosis, and oxidative stress through the blockage of TRP channels in dorsal root ganglion (DRG) neurons. It has not yet been fully understood how Se and CRC protect against STZ-induced neuropathic pain by modulating TRPM7. Here, we assessed how Se and CRC affected the Ca2+ influx, mitSOX-mediated oxidative damage, and apoptosis in the DRGs of mice through modifying TRPM7 activity. Seven groups (control, Se, CRC, STZ, STZ + Se, STZ + CRC, and STZ + Se + CRC) were induced from the 56 male mice. We observed that the STZ-induced stimulation of TRPM7 increased mechanical neuropathic pain (von Frey), thermal neuropathic pain (hot plate), cytosolic Ca2+, TRPM7 current density, TRPM7 expression, lipid peroxidation, mitSOX, cytosolic ROS, apoptosis, caspase-3, caspase-8, and caspase-9 concentrations, whereas Se and CRC therapies diminished the alterations. The STZ-mediated decreases of DRG viability, brain glutathione, glutathione peroxidase, vitamin A, and vitamin E concentrations were also upregulated in the treatment groups by the therapies. These findings collectively imply that an imbalance of neuropathic pain, oxidative neurotoxicity, and apoptosis in the mice is caused by the STZ-mediated activation of TRPM7. However, the downregulation of TRPM7 activity caused by the injections of Se and CRC reduced the neurotoxicity and apoptosis.
Collapse
Affiliation(s)
- Bünyamin Aydın
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kutahya Health Sciences University, Kutahya Evliya Çelebi Training and Research Hospital, TR-64100, Kutahya, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center (NOROBAM), Suleyman Demirel University, TR-32260, Isparta, Turkey.
- Drug Discovery Unit, Analyses, Innov, BSN Health, Org., Agricul., Ltd, Consult, TR-32260, Isparta, Turkey.
| |
Collapse
|
6
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
7
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
8
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
9
|
Siahanidou T, Spiliopoulou C. Pharmacological Neuroprotection of the Preterm Brain: Current Evidence and Perspectives. Am J Perinatol 2022; 39:479-491. [PMID: 32961562 DOI: 10.1055/s-0040-1716710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite improvements in viability, the long-term neurodevelopmental outcomes of preterm babies remain serious concern as a significant percentage of these infants develop neurological and/or intellectual impairment, and they are also at increased risk of psychiatric illnesses later in life. The current challenge is to develop neuroprotective approaches to improve adverse outcomes in preterm survivors. The purpose of this review was to provide an overview of the current evidence on pharmacological agents targeting the neuroprotection of the preterm brain. Among them, magnesium sulfate, given antenatally to pregnant women with imminent preterm birth before 30 to 34 weeks of gestation, as well as caffeine administered to preterm infants after birth, exhibited neuroprotective effects for human preterm brain. Erythropoietin treatment of preterm infants did not result in neuroprotection at 2 years of age in two out of three published large randomized controlled trials; however, long-term follow-up of these infants is needed to come to definite conclusions. Further studies are also required to assess whether melatonin, neurosteroids, inhaled nitric oxide, allopurinol, or dietary supplements (omega-3 fatty acids, choline, curcumin, etc.) could be implemented as neuroprotectants in clinical practice. Furthermore, other pharmacological agents showing promising signs of neuroprotective efficacy in preclinical studies (growth factors, hyaluronidase inhibitors or treatment, antidiabetic drugs, cannabidiol, histamine-H3 receptor antagonists, etc.), as well as stem cell- or exosomal-based therapies and nanomedicine, may prove useful in the future as potential neuroprotective approaches for human preterm brain. KEY POINTS: · Magnesium and caffeine have neuroprotective effects for the preterm brain.. · Follow-up of infants treated with erythropoietin is needed.. · Neuroprotective efficacy of several drugs in animals needs to be shown in humans..
Collapse
Affiliation(s)
- Tania Siahanidou
- Neonatal Unit of the First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
10
|
The Role of Supplementation with Natural Compounds in Post-Stroke Patients. Int J Mol Sci 2021; 22:ijms22157893. [PMID: 34360658 PMCID: PMC8348438 DOI: 10.3390/ijms22157893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.
Collapse
|
11
|
Subedi L, Gaire BP. Neuroprotective Effects of Curcumin in Cerebral Ischemia: Cellular and Molecular Mechanisms. ACS Chem Neurosci 2021; 12:2562-2572. [PMID: 34251185 DOI: 10.1021/acschemneuro.1c00153] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite being a major global health concern, cerebral ischemia/stroke has limited therapeutic options. Tissue plasminogen activator (tPA) is the only available medication to manage acute ischemic stroke, but this medication is associated with adverse effects and has a narrow therapeutic time window. Curcumin, a polyphenol that is abundantly present in the rhizome of the turmeric plant (Curcuma longa), has shown promising neuroprotective effects in animal models of neurodegenerative diseases, including cerebral ischemia. In the central nervous system (CNS), neuroprotective effects of curcumin have been experimentally validated in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and cerebral ischemia. Curcumin can exert pleiotropic effects in the postischemic brain including antioxidant, anti-inflammatory, antiapoptotic, vasculoprotective, and direct neuroprotective efficacies. Importantly, neuroprotective effects of curcumin has been reported in both ischemic and hemorrhagic stroke models. A broad-spectrum neuroprotective efficacy of curcumin suggested that curcumin can be an appealing therapeutic strategy to treat cerebral ischemia. In this review, we aimed to address the pharmacotherapeutic potential of curcumin in cerebral ischemia including its cellular and molecular mechanisms of neuroprotection revealing curcumin as an appealing therapeutic candidate for cerebral ischemia.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
12
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
13
|
Armağan HH, Nazıroğlu M. Curcumin Attenuates Hypoxia-Induced Oxidative Neurotoxicity, Apoptosis, Calcium, and Zinc Ion Influxes in a Neuronal Cell Line: Involvement of TRPM2 Channel. Neurotox Res 2020; 39:618-633. [PMID: 33211286 DOI: 10.1007/s12640-020-00314-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Apoptosis/cell death and reactive oxygen species (ROS) via overload free Ca2+ and Zn2+ uptake into mitochondria are emerging as crucial events in the etiology of hypoxia (HPX)-induced neurodegenerative diseases. The neuroprotective actions of curcumin (CURC) via modulation of oxidative stress and the PARP1-dependent activated TRPM2 cation channel on the ROS generation and cell death in several neurons have been recognized. However, the molecular mechanisms underlying CURC's neuroprotection remain elusive. We investigated the role of CURC via modulation of TRPM2 on cell death and oxidative cytotoxicity in SH-SY5Y neuronal cells. The SH-SY5Y cells were divided into five groups as follows: CURC (10 µM for 24 h), HPX (200 µM CoCl2 for 24 h), CURC + HPX, and HPX + TRPM2 blockers (2-APB-100 µM or ACA-25 µM for 30 min). In some experiments, the cells in the HPX groups were additionally incubated with PARP1 (PJ34) and Zn2+ (TPEN) inhibitors. The exposure of CoCl2 induced increases of TRPM2 current density and Ca2+ fluorescence intensity with an increase of mitochondrial membrane depolarization and ROS generation. When HPX-induced TRPM2 activity was blocked by 2-APB and ACA, or the cells were treated with CURC, the increase of ROS generation, the expression levels of TRPM2 and PARP1 were restored. The levels of apoptosis and cell death in the cells were enriched with increases of caspase-3 and -9 activations, although they were decreased by CURC treatment. HPX-induced increase of cytosolic Zn2+ was attenuated by the TPEN and CURC treatments. In conclusion, CURC attenuates HPX-induced mitochondrial ROS generation, apoptosis, cell death, and TRPM2-mediated Ca2+ signaling and may provide an avenue for treating HPX-induced neurological diseases associated with the ROS, Ca2+, and Zn2+.
Collapse
Affiliation(s)
- Hamit Hakan Armağan
- Department of Emergency Medicine, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Director of Neuroscience Research Center (NOROBAM), Suleyman Demirel University, Isparta, Turkey. .,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc., Teknokent, Isparta, Turkey.
| |
Collapse
|