1
|
Seyedi D, Espandar N, Hojatizadeh M, Mohammadi Y, Sadri F, Rezaei Z. Noncoding RNAs in rheumatoid arthritis: modulators of the NF-κB signaling pathway and therapeutic implications. Front Immunol 2024; 15:1486476. [PMID: 39530095 PMCID: PMC11550995 DOI: 10.3389/fimmu.2024.1486476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint inflammation and gradual tissue destruction. New research has shown how important noncoding RNAs (ncRNAs) are for changing immune and inflammatory pathways, such as the WNT signaling pathway, which is important for activating synovial fibroblasts and osteoblasts to work. This article examines the current understanding of several ncRNAs, such as miRNAs, lncRNAs, and circRNAs, that influence NF-κB signaling in the pathogenesis of RA. We investigate how these ncRNAs impact NF-κB signaling components, altering cell proliferation, differentiation, and death in joint tissues. The paper also looks at how ncRNAs can be used as potential early detection markers and therapeutic targets in RA because they can change important pathogenic pathways. This study highlights the therapeutic potential of targeting ncRNAs in RA therapy techniques, with the goal of reducing inflammation and stopping disease progression. This thorough analysis opens up new possibilities for understanding the molecular foundations of RA and designing novel ncRNA-based treatments.
Collapse
Affiliation(s)
- Dina Seyedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmadin Espandar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Maryam Hojatizadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
2
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
3
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Li W, Guan X, Wang Y, Lv Y, Wu Y, Yu M, Sun Y. Cuproptosis-related gene identification and immune infiltration analysis in systemic lupus erythematosus. Front Immunol 2023; 14:1157196. [PMID: 37313407 PMCID: PMC10258330 DOI: 10.3389/fimmu.2023.1157196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to self-antigen, autoantibody production, and abnormal immune response. Cuproptosis is a recently reported cell death form correlated with the initiation and development of multiple diseases. This study intended to probe cuproptosis-related molecular clusters in SLE and constructed a predictive model. Methods We analyzed the expression profile and immune features of cuproptosis-related genes (CRGs) in SLE based on GSE61635 and GSE50772 datasets and identified core module genes associated with SLE occurrence using the weighted correlation network analysis (WGCNA). We selected the optimal machine-learning model by comparing the random forest (RF) model, support vector machine (SVM) model, generalized linear model (GLM), and the extreme gradient boosting (XGB) model. The predictive performance of the model was validated by nomogram, calibration curve, decision curve analysis (DCA), and external dataset GSE72326. Subsequently, a CeRNA network based on 5 core diagnostic markers was established. Drugs targeting core diagnostic markers were acquired using the CTD database, and Autodock vina software was employed to perform molecular docking. Results Blue module genes identified using WGCNA were highly related to SLE initiation. Among the four machine-learning models, the SVM model presented the best discriminative performance with relatively low residual and root-mean-square error (RMSE) and high area under the curve (AUC = 0.998). An SVM model was constructed based on 5 genes and performed favorably in the GSE72326 dataset for validation (AUC = 0.943). The nomogram, calibration curve, and DCA validated the predictive accuracy of the model for SLE as well. The CeRNA regulatory network includes 166 nodes (5 core diagnostic markers, 61 miRNAs, and 100 lncRNAs) and 175 lines. Drug detection showed that D00156 (Benzo (a) pyrene), D016604 (Aflatoxin B1), D014212 (Tretinoin), and D009532 (Nickel) could simultaneously act on the 5 core diagnostic markers. Conclusion We revealed the correlation between CRGs and immune cell infiltration in SLE patients. The SVM model using 5 genes was selected as the optimal machine learning model to accurately evaluate SLE patients. A CeRNA network based on 5 core diagnostic markers was constructed. Drugs targeting core diagnostic markers were retrieved with molecular docking performed.
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaoran Guan
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yong Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yuyong Wu
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Min Yu
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Miao Y, Wu J, Wu R, Wang E, Wang J. Circ_0040929 Serves as Promising Biomarker and Potential Target for Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:2079-2092. [PMID: 36101791 PMCID: PMC9464637 DOI: 10.2147/copd.s364553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Circular RNAs (circRNAs) can act as essential regulators in many diseases, including chronic obstructive pulmonary disease (COPD). We aimed to explore the role and underlying mechanism of circ_0040929 in COPD. Methods A cellular model of COPD was constructed by treating human bronchial epithelial cells (16HBE) with cigarette smoke extract (CSE). The levels of circ_0040929, microRNA-515-5p (miR-515-5p) and insulin-like growth factor-binding protein 3 (IGFBP3) were measured by quantitative real-time PCR. Cell proliferation was assessed by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell apoptosis was evaluated by flow cytometry. Protein expression was measured using Western blot assay. The levels of inflammatory factors and airway remodeling were assayed via enzyme-linked immunosorbent assay. The interaction between miR-515-5p and circ_0040929/IGFBP3 was confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. Exosomes were detected using transmission electron microscopy. Results Circ_0040929 expression and IGFBP3 expression were upregulated in the serum of smokers (n = 22) compared to non-smokers (n = 22) and more significantly upregulated in the serum of COPD patients (n = 22). However, miR-515-5p expression was decreased in the serum of smokers compared to non-smokers and further reduced in the serum of COPD. Circ_0040929 knockdown attenuated CSE-induced cell injury by increasing proliferation and reducing apoptosis, inflammation, and airway remodeling in 16HBE cells. MiR-515-5p was a direct target of circ_0040929, and miR-515-5p inhibition reversed the effect of circ_0040929 knockdown in CSE-treated 16HBE cells. IGFBP3 was a direct target of miR-515-5p, and miR-515-5p overexpression alleviated CSE-induced cell injury via targeting IGFBP3. Moreover, circ_0040929 regulated IGFBP3 expression by targeting miR-515-5p. Importantly, circ_0040929 was upregulated in serum exosomes from COPD patients. Conclusion Circ_0040929 played a promoting role in CSE-induced COPD by regulating miR-515-5p/IGFBP3 axis, suggesting that it might be a novel potential target for COPD treatment.
Collapse
Affiliation(s)
- Yi Miao
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Junfang Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Runmiao Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Enguang Wang
- Department of Respiratory and Critical Care, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi City, 830000, People's Republic of China
| | - Jing Wang
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| |
Collapse
|
6
|
Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E, Bendifallah S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Plasma Micro-RNA Expression. Diagnostics (Basel) 2022; 12:175. [PMID: 35054341 PMCID: PMC8774370 DOI: 10.3390/diagnostics12010175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/β-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/β-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
7
|
Rapid changes of miRNAs-20, -30, -410, -515, -134, and -183 and telomerase with psychological activity: A one year study on the relaxation response and epistemological considerations. J Tradit Complement Med 2021; 11:409-418. [PMID: 34522635 PMCID: PMC8427477 DOI: 10.1016/j.jtcme.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background and aim Mental stress represents a pivotal factor in cardiovascular diseases. The mechanism by which stress produces its deleterious effects is still under study, but one of the most explored pathways is inflammation-aging and cell senescence. In this scenario, circulating microRNAs appear to be regulatory elements of the telomerase activity and alternative splicing within the nuclear factor kappa-light-chain-enhancer (NF-κB) network. Anti-stress techniques appeared to be able to slow down the inflammatory and aging processes. As we recently verified, the practice of the relaxation response (RR) counteracted psychological stress and determined favorable changes of the NF-κB, p53, and toll-like receptor-4 (TLR-4) gene expression and in neurotransmitters, hormones, cytokines, and inflammatory circulating microRNAs. We aimed to verify a possible change in the serum levels of six other micro-RNAs of cardiovascular interest, involved in cell senescence and in the NF-κB network (miRNAs -20, -30, -410, -515, -134, and -183), and tested the activity of telomerase in peripheral blood mononuclear cells (PBMCs). Experimental procedure We measured the aforementioned molecules in the serum of patients with ischemic heart disease (and healthy controls) immediately before and after a relaxation response session, three times (after the baseline), in one year of follow-up. Results According to our data, the miRNA-20 and -30 levels and PBMCs-telomerase activity increased during the RR while the -410 and -515 levels decreased. During the RR sessions, both miRNA-134 and -183 decreased. Conclusion The mediators considered in this exploratory work appeared to vary rapidly with the psychological activity (in particular when focused on relaxation techniques) showing that psychological activity should be part of the future research on epigenetics. Epistemological perspectives are also discussed.
Collapse
|
8
|
MacDonald IJ, Huang CC, Liu SC, Lin YY, Tang CH. Targeting CCN Proteins in Rheumatoid Arthritis and Osteoarthritis. Int J Mol Sci 2021; 22:ijms22094340. [PMID: 33919365 PMCID: PMC8122640 DOI: 10.3390/ijms22094340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The CCN family of matricellular proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3/CCN4-5-6) are essential players in the key pathophysiological processes of angiogenesis, wound healing and inflammation. These proteins are well recognized for their important roles in many cellular processes, including cell proliferation, adhesion, migration and differentiation, as well as the regulation of extracellular matrix differentiation. Substantial evidence implicates four of the proteins (CCN1, CCN2, CCN3 and CCN4) in the inflammatory pathologies of rheumatoid arthritis (RA) and osteoarthritis (OA). A smaller evidence base supports the involvement of CCN5 and CCN6 in the development of these diseases. This review focuses on evidence providing insights into the involvement of the CCN family in RA and OA, as well as the potential of the CCN proteins as therapeutic targets in these diseases.
Collapse
Affiliation(s)
- Iona J. MacDonald
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
| | - Chien-Chung Huang
- School of Medicine, Collage of Medicine, China Medical University, Taichung 406040, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan;
| | - Yen-You Lin
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
- School of Medicine, Collage of Medicine, China Medical University, Taichung 406040, Taiwan;
- Graduate Institute of Biomedical Sciences, Collage of Medicine, China Medical University, Taichung 406040, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413305, Taiwan
- Correspondence:
| |
Collapse
|