1
|
Fan H, Sun M, Zhu JH. S-nitrosoglutathione inhibits pyroptosis of kidney tubular epithelial cells in sepsis via the SIRT3/SOD2/mtROS signaling pathway. Ren Fail 2025; 47:2472987. [PMID: 40050253 PMCID: PMC11892043 DOI: 10.1080/0886022x.2025.2472987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 03/12/2025] Open
Abstract
OBJECTIVES Pyroptosis is considered to play an important role in the occurrence, development and prognosis of septic acute kidney injury (SAKI). We aimed to explore the specific molecular mechanism of S-nitrosoglutathione (SNG) regulating pyroptosis of kidney tubular epithelial cells (KTECs). METHODS By constructing a mice model of sepsis, we pretreated them with SNG and used biochemical methods to detect the levels of serum inflammatory factors and mitochondrial reactive oxygen species (mtROS), assessed the severity of kidney injury and KTECs mitochondrial damage, and detected the expression of KTECs pyroptosis-related proteins and sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) pathway proteins. RESULTS The kidney injury caused by sepsis was significantly aggravated, and the levels of IL-1β, IL-6, IL-18, TNF-α, malondialdehyde (MDA) and mtROS were all increased, accompanied by the decrease of SIRT3 and SOD2 proteins, while NOD-like receptor with pyrin domain 3 (NLRP3), gasdermin D (GSDMD), Caspase-1 proteins expression and the number of KTECs apoptotic cells were all increased. However, after SNG pretreatment, the levels of IL-1β, IL-6, IL-18, TNF-α, MDA and mtROS were all significantly decreased, the expression of SIRT3 and SOD2 proteins were increased, NLRP3, GSDMD, Caspase-1 proteins expression and the number of KTECs apoptotic cells were decreased. CONCLUSIONS SNG protects SAKI by regulating the SIRT3/SOD2/mtROS signaling pathway to inhibit the pyroptosis of KTECs.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Min Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Jian-hua Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| |
Collapse
|
2
|
Castro I, Carvajal P, Aguilera S, Barrera MJ, Matus S, González S, Molina C, González MJ. Integrated stress response inhibition restores hsa-miR-145-5p levels after IFN-β stimulation in salivary gland epithelial cells. Association between cellular stress and miRNA biogenesis in Sjögren's disease. J Autoimmun 2025; 153:103412. [PMID: 40174282 DOI: 10.1016/j.jaut.2025.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Labial salivary glands (LSG) from Sjögren's disease (SjD) patients are characterized by increased levels of pro-inflammatory cytokines, such as type I interferons (IFN-I). These LSG also show activation of the integrated stress response (ISR) with overexpression of protein kinase R (PKR), a known IFN-stimulated gene. In vitro, IFN-I stimulation reproduces the downregulation of hsa-miR-145-5p, which is associated with TLR4 overexpression observed in LSG of SjD patients. MicroRNA levels depend on its biogenesis, which is a multi-step process involving several protein complexes. It is not known whether altered miRNA biogenesis is associated with the activation of the ISR induced by IFN-I in LSG from SjD. The aim of this study was to characterize the expression and localization of components of the miRNA biogenesis machinery in LSG of SjD patients, to assess the effect of pro-inflammatory cytokines on these components, and to test whether inhibition of the IFN-β-induced ISR restores the levels of hsa-miR-145-5p. In LSG from 12 SjD patients and 11 non-SjD sicca controls, we determined mRNA fold changes, relative protein levels, and the localization of the ISR and miRNA biogenesis machinery components by RT-qPCR, Western blot, and immunofluorescence, respectively. Pro-inflammatory cytokines, the ISR inhibitor ISRIB, and the PKR inhibitor C16 were used for in vitro assays. In LSG from SjD patients, PKR and its activator PACT colocalized in the cytoplasm, whereas the PKR inhibitor TRBP was observed in the nuclei. IFN-β activates PKR, increases p-eIF2α and ATF4 levels, and increases PACT and AGO2 detection in stress granules. C16 inhibits PKR phosphorylation but increases ATF4 by activating GCN2. ISRIB restores levels of hsa-miR-145-5p and its target TLR4 mRNA upon IFN-β stimulation. These findings suggest an association between inflammation, cellular stress, and miRNA biogenesis, where modulation of the ISR emerges as a potential strategy to restore cellular homeostasis in LSG from SjD patients.
Collapse
Affiliation(s)
- Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Sergio Aguilera
- Clínica INDISA, Av. Sta. María 1810, 7520440, Providencia, Santiago, Chile.
| | - María-José Barrera
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista 7, 8420524, Recoleta, Santiago, Chile.
| | - Soledad Matus
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Sergio González
- Escuela de Odontología, Facultad de Medicina y Ciencias de la salud, Universidad Mayor, Alameda Libertador Bernardo O'Higgins N° 2027 (ex 2013), 8340585, Santiago, Chile.
| | - Claudio Molina
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista 7, 8420524, Recoleta, Santiago, Chile.
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| |
Collapse
|
3
|
Li J, Dong Z, Tang L, Liu L, Su C, Yu S. LncRNA OIP5-AS1/miR-186-5p/NLRP3 Axis Contributes to Sepsis-Induced Kidney Injury Through Enhancing NLRP3 Inflammasome Activation. J Biochem Mol Toxicol 2025; 39:e70305. [PMID: 40371556 DOI: 10.1002/jbt.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Today, acute kidney injury (AKI) caused by sepsis, with its high incidence and rising mortality, is becoming a global problem. Many previous studies have proved that NLRP3 is a critical role in NLRP3 inflammasome activation to regulate inflammatory responses in a variety of diseases including AKI. Our study is aimed to explore the role and upstream regulatory mechanism of NLRP3 in AKI. In this study, we demonstrated that LPS treatment induced the upregulation of NLRP3 in HK-2 cells. Functionally, NLRP3 knockdown inhibited cell apoptosis, inflammatory response and NLRP3 inflammasome activation. Mechanistically, OIP5-AS1 competitively bound with miR-186-5p to promote NLRP3 level, and further activate TLR4/NF-κB signaling. Additionally, OIP5-AS1 was negatively associated with miR-186-5p but positively correlated with NLRP3 in rat renal tissues. The rescue assays suggested that NLRP3 reversed the effects of silencing OIP5-AS1 on cell apoptosis and inflammatory response. At last, OIP5-AS1 aggravated renal injury and inflammation in vivo. All findings indicated that the OIP5-AS1 contributed to sepsis-induced AKI by promoting NLRP3 inflammasome activation via miR-186-5p/NLRP3 axis. OIP5-AS1 could serve as a potential diagnostic and therapeutic marker in sepsis-induced AKI.
Collapse
Affiliation(s)
- Jingdong Li
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital Sun Yat-sen University, Guangdong, China
| | - Zhe Dong
- Department of Critical Care Medicine, Shenyang Fourth People's Hospital, Shenyang, China
| | - Liting Tang
- Department of Emergency Medicine, Shenyang Fourth People's Hospital, Shenyang, China
| | - Lu Liu
- Department of Critical Care Medicine, Shenyang Fourth People's Hospital, Shenyang, China
| | - Cuijing Su
- Emergency Department, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Shan Yu
- Geriatrics Center, Shenyang Fourth People's Hospital, Shenyang, China
| |
Collapse
|
4
|
Wu W, Lan W, Jiao X, Wang K, Deng Y, Chen R, Zeng R, Li J. Pyroptosis in sepsis-associated acute kidney injury: mechanisms and therapeutic perspectives. Crit Care 2025; 29:168. [PMID: 40270016 PMCID: PMC12020238 DOI: 10.1186/s13054-025-05329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025] Open
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a severe complication characterized by high morbidity and mortality, driven by multi-organ dysfunction. Recent evidence suggests that pyroptosis, a form of programmed cell death distinct from apoptosis and necrosis, plays a critical role in the pathophysiology of S-AKI. This review examines the mechanisms of pyroptosis, focusing on inflammasome activation (e.g., NLRP3), caspase-mediated processes, and the role of Gasdermin D in renal tubular damage. We also discuss the contributions of inflammatory mediators, oxidative stress, and potential therapeutic strategies targeting pyroptosis, including inflammasome inhibitors, caspase inhibitors, and anti-inflammatory therapies. Lastly, we highlight the clinical implications and challenges in translating these findings into effective treatments, underscoring the need for personalized medicine approaches in managing S-AKI.
Collapse
Affiliation(s)
- Wenyu Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China
| | - Wanning Lan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Jiao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kai Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yawen Deng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Rui Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| | - Ruifeng Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| | - Jun Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
5
|
Zhang J, Dong X, Pang Q, Zhang A. Irisin Alleviates Cognitive Impairment by Inhibiting AhR/NF- κB-NLRP3-Mediated Pyroptosis of Hippocampal Neurons in Chronic Kidney Disease. Mediators Inflamm 2024; 2024:2662362. [PMID: 39698584 PMCID: PMC11655147 DOI: 10.1155/mi/2662362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction: Cognitive impairment is a vital complication of chronic kidney disease (CKD). The effect of irisin on CKD-induced cognitive impairment remains unclear. In the present study, we aimed to investigate the role of Irisin in mitigating cognitive impairment and explore the underlying mechanisms in CKD. Methods: A CKD mice model was established by adenine. Cognitive function was assessed via the novel object recognition (NOR). Interleukin-1β (IL-1β) levels were measured by enzyme-linked immunosorbent assay (ELISA), while pyroptosis-related protein expression was analyzed using western blotting. Results: Our data showed an upregulation of cell pyroptosis in hippocampus tissues of CKD mice, accompanied by significant cognitive impairment. Pyroptosis and cognitive impairment was both improved by Irisin treatment in vivo. Additionally, irisin markedly downregulated pyroptosis levels through aryl hydrocarbon receptor (AhR)/NF-κB p65 signaling in HT-22 cells pretreated with indoxyl sulfate (IS). In vitro experiments further confirmed that pyroptosis was inhibited by AhR and NF-κB p65 inhibitors. Conclusions: We first demonstrated that irisin alleviated cognitive impairment by inhibiting AhR/NF-κB-NLRP3-mediated pyroptosis of hippocampal neurons in CKD. Overall, irisin may have the potential to serve as a critical antipyroptotic agent for improving CKD-induced cognitive impairment.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Liu AB, Tan B, Yang P, Tian N, Li JK, Wang SC, Yang LS, Ma L, Zhang JF. The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential. Front Immunol 2024; 15:1487576. [PMID: 39544947 PMCID: PMC11560457 DOI: 10.3389/fimmu.2024.1487576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Tan
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si-Cong Wang
- Department of Emergency Medical, Yanchi County People’s Hospital, Wuzhong, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Liu MW, Zhang CH, Ma SH, Zhang DQ, Jiang LQ, Tan Y. Protective Effects of Baicalein on Lipopolysaccharide-Induced AR42J PACs through Attenuation of Both Inflammation and Pyroptosis via Downregulation of miR-224-5p/PARP1. Mediators Inflamm 2024; 2024:6618927. [PMID: 39421730 PMCID: PMC11486537 DOI: 10.1155/2024/6618927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/22/2024] [Accepted: 08/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background Baicalein has been used to treat inflammation-related diseases; nevertheless, its specific mechanism of action is unclear. Therefore, we examined the protective effects of baicalein on lipopolysaccharide-induced damage to AR42J pancreatic acinar cells (PACs) and determined its mechanism of action for protection. Methods An in vitro cell model of acute pancreatitis (AP) was established using lipopolysaccharide (LPS) (1 mg/L)-induced PACs (AR42J), and the relative survival rate was determined using the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) technique. Flow cytometry was applied to evaluate the apoptotic rates of AR42J PACs. The RNA and protein expression of miR-224-5p, poly ADP-ribose polymerase-1 (PARP1), nuclear transcription factor-κB65 (NF-κB65), phospho-kappa B alpha(p-IκB-α), interleukin(IL)-18R, NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), gasdermin D (GSDMD), apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1 was detected based on the WB and RT-PCR assays. IL-1β, IL-6, IL-18, and TNF-α expression levels in AR42J cells were measured via ELISA method. The cell morphology was examined using the AO/EB method. Results The experiment confirmed a significant increase in the activity of AR42J cells treated with various doses of baicalein. Moreover, IL-1β, IL-6, TNF-α, and IL-18 expression levels in AR42J cells were dramatically reduced (P < 0.05), while miR-224-5p level was obviously enhanced. The protein and gene expression of PARP1, NF-κB65, p-IκB-α, IL-18R, GSDMD, ASC, NLRP3, and caspase-1 was obviously decreased (P < 0.05). Apoptosis in AR42J cells was significantly reduced with significant improvement in cell morphology. Conclusion Baicalein may significantly alleviate LPS-induced AR42J PAC damage by inhibiting the inflammatory response and pyroptosis. Its mode of action might be linked to higher miR-224-5p expression, which inhibits the PARP1/NF-κB and NLPR3/ASC/caspase-1/GSDMD pathways.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali 671000, China
| | - Chun-Hai Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shou-Hong Ma
- Department of Medical Affairs, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi 653100, China
| | - De-Qiong Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li-Qiong Jiang
- Physical Examination Center, Yunnan Fuwai Cardiovascular Hospital, Kunming 650032, China
| | - Yang Tan
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
8
|
Yalala S, Gondane A, Poulose N, Liang J, Mills IG, Itkonen HM. CDK9 inhibition activates innate immune response through viral mimicry. FASEB J 2024; 38:e23628. [PMID: 38661032 DOI: 10.1096/fj.202302375r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Cancer cells frequently exhibit hyperactivation of transcription, which can lead to increased sensitivity to compounds targeting the transcriptional kinases, in particular CDK9. However, mechanistic details of CDK9 inhibition-induced cancer cell-selective anti-proliferative effects remain largely unknown. Here, we discover that CDK9 inhibition activates the innate immune response through viral mimicry in cancer cells. In MYC over-expressing prostate cancer cells, CDK9 inhibition leads to the gross accumulation of mis-spliced RNA. Double-stranded RNA (dsRNA)-activated kinase can recognize these mis-spliced RNAs, and we show that the activity of this kinase is required for the CDK9 inhibitor-induced anti-proliferative effects. Using time-resolved transcriptional profiling (SLAM-seq), targeted proteomics, and ChIP-seq, we show that, similar to viral infection, CDK9 inhibition significantly suppresses transcription of most genes but allows selective transcription and translation of cytokines related to the innate immune response. In particular, CDK9 inhibition activates NFκB-driven cytokine signaling at the transcriptional and secretome levels. The transcriptional signature induced by CDK9 inhibition identifies prostate cancers with a high level of genome instability. We propose that it is possible to induce similar effects in patients using CDK9 inhibition, which, we show, causes DNA damage in vitro. In the future, it is important to establish whether CDK9 inhibitors can potentiate the effects of immunotherapy against late-stage prostate cancer, a currently lethal disease.
Collapse
Affiliation(s)
- Shivani Yalala
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aishwarya Gondane
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ninu Poulose
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jing Liang
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Harri M Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Xiong J, Zhao J. Pyroptosis: The Determinator of Cell Death and Fate in Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:118-131. [PMID: 38751798 PMCID: PMC11095617 DOI: 10.1159/000535894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024]
Abstract
Background Acute kidney injury (AKI) is kidney damage that leads to a rapid decline in function. AKI primarily occurs when the tubular epithelium is damaged, causing swelling, loss of brush margin, and eventual apoptosis. Research has shown that tubular epithelial cell damage in AKI is linked to cell cycle arrest, autophagy, and regulation of cell death. Summary Pyroptosis, a type of programmed cell death triggered by inflammation, is believed to play a role in the pathophysiology of AKI. Cumulative evidence has shown that pyroptosis is the main cause of tubular cell death in AKI. Thus, targeted intervention of pyroptosis may be a promising therapeutic approach for AKI. This review delves deep into the cutting-edge research surrounding pyroptosis in the context of AKI, shedding light on its intricate mechanisms and potential implications for clinical practice. Additionally, we explore the exciting realm of potential preclinical treatment options for AKI, aiming to pave the way for future therapeutic advancements. Key Messages Pyroptosis, a highly regulated form of cell death, plays a crucial role in determining the fate of cells during the development of AKI. This intricate process involves the activation of inflammasomes, which are multi-protein complexes that initiate pyroptotic cell death. By understanding the mechanisms underlying pyroptosis, researchers aim to gain insights into the pathogenesis of AKI and potentially identify new therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
10
|
Wan P, Tan X, Sheng M, Xiang Y, Wang P, Yu M. Platelet Exosome-Derived miR-223-3p Regulates Pyroptosis in the Cell Model of Sepsis-Induced Acute Renal Injury by Targeting Mediates NLRP3. Crit Rev Immunol 2024; 44:53-65. [PMID: 38421705 DOI: 10.1615/critrevimmunol.2023051651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND The present study investigated the roles and mechanisms of platelet-derived exosomes in sepsis-induced acute renal injury. METHODS The blood samples of septic patients and healthy controls were collected for clinical examination. The plasma levels of miR-223-3p and NLRP3 mRNA were analyzed by qRT-PCR and the serum IL-1β and creatinine levels were quantified by enzyme-linked immunosorbent assay (ELISA). C57BL/6 mice injected with LPS (lipopolysaccharide) were employed as the animal model for sepsis-induced acute renal injury. Human coronary artery endothelial cells (HCAECs) were treated with TNF-α as a cellular model for sepsis-induced endothelial damages. RESULTS The number of PMP (platelet-derived microparticles) in patients with sepsis was increased. The level of miR-223-3p in the platelet exosomes isolated from the serum sample in patients with sepsis was significantly lower than that of the healthy controls. The level of miR-223-3p was also decreased in the platelet exosomes of mouse model with sepsis-induced acute renal injury. Downregulating miR-223-3p promoted sepsis-induced acute renal injury in mice model, while the administration of miR-223-3p reduced the inflammation in endothelial cells of sepsis-induced acute renal injury. NLRP3 (NLR Family Pyrin Domain Containing 3) was identified as one target of miR-223-3p in the platelet exosomes of sepsis-induced acute kidney injury. miR-223-3p attenuated NLRP3-induced pyroptosis in endothelial cell model of sepsis-induced acute kidney injury. CONCLUSION Our data suggest that platelet exosome-derived miR-223-3p negatively regulates NLRP3-dependent inflammasome to suppress pyroptosis in endothelial cells. Decreased miR-223-3p expression promotes the inflammation in sepsis-induced acute renal injury. Targeting miR-223-3p may be developed into a therapeutic approach for sepsis-induced acute renal injury.
Collapse
Affiliation(s)
- Peng Wan
- Department of Critical Care Medicine, The First Clinical Medical College of Three Gorges University,Yichang Central People's Hospital, Yichang City, Hubei, 443000, China
| | - Xiang Tan
- Department of Critical Care Medicine, The First Clinical Medical College of Three Gorges University,Yichang Central People's Hospital, Yichang City, Hubei, 443000, China
| | - Mengting Sheng
- Department of Critical Care Medicine, The First Clinical Medical College of Three Gorges University,Yichang Central People's Hospital, Yichang City, Hubei, 443000, China
| | - Yan Xiang
- Department of Critical Care Medicine, The First Clinical Medical College of Three Gorges University,Yichang Central People's Hospital, Yichang City, Hubei, 443000, China
| | - Peng Wang
- Department of Critical Care Medicine, The First Clinical Medical College of Three Gorges University,Yichang Central People's Hospital, Yichang City, Hubei, 443000, China
| | - Min Yu
- The people's hospital of China Three Gorges University
| |
Collapse
|
11
|
Zhou Z, Li Q. The Role of Pyroptosis in the Pathogenesis of Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:443-458. [PMID: 38089443 PMCID: PMC10712988 DOI: 10.1159/000531642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/12/2023] [Indexed: 01/21/2025]
Abstract
BACKGROUND Recently, in addition to apoptosis and necrosis, several other forms of cell death have been discovered, such as necroptosis, autophagy, pyroptosis, and ferroptosis. These cell death modalities play diverse roles in kidney diseases. Pyroptosis is a newly described type of proinflammatory programmed necrosis. Further exploring pyroptosis is helpful to slow the progression of kidney diseases and reduce their complications. SUMMARY Pyroptosis is mainly mediated by the cleavage of gasdermin D (GSDMD) along with downstream inflammasome activation. Activated caspase-1 induces the release of cytokines by cleaving GSDMD. Inflammation is a major pathogenic mechanism for kidney diseases. Increasing evidence corroborated that pyroptosis was closely related to the progression of renal diseases, including acute kidney injury, renal fibrosis, diabetic nephropathy, and kidney cancer. In this paper, we reviewed the role and the therapeutic treatment of pyroptosis in renal diseases. KEY MESSAGES The better understanding of the progress and new intervention approaches of pyroptosis in kidney diseases may pave the way for new therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Zhuanli Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhang H, Deng Z, Wang Y, Zheng X, Zhou L, Yan S, Wang Y, Dai Y, Kanwar Y, Deng F. CHIP protects against septic acute kidney injury by inhibiting NLRP3-mediated pyroptosis. iScience 2023; 26:107762. [PMID: 37692286 PMCID: PMC10492219 DOI: 10.1016/j.isci.2023.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Septic acute kidney injury (S-AKI), the most common type of acute kidney injury (AKI), is intimately related to pyroptosis and oxidative stress in its pathogenesis. Carboxy-terminus of Hsc70-interacting protein (CHIP), a U-box E3 ligase, modulates oxidative stress by degrading its targeted proteins. The role of CHIP in S-AKI and its relevance with pyroptosis have not been investigated. In this study, we showed that CHIP was downregulated in renal proximal tubular cells in lipopolysaccharide (LPS)-induced S-AKI. Besides, the extent of redox injuries in S-AKI was attenuated by CHIP overexpression or activation but accentuated by CHIP gene disruption. Mechanistically, our work demonstrated that CHIP interacted with and ubiquitinated NLRP3 to promote its proteasomal degradation, leading to the inhibition of NLRP3/ACS inflammasome-mediated pyroptosis. In summary, this study revealed that CHIP ubiquitinated NLRP3 to alleviate pyroptosis in septic renal injuries, suggesting that CHIP might be a potential therapeutic target for S-AKI.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Lizhi Zhou
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yashpal.S. Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, IL, USA
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
13
|
Chai R, Ye Z, Xue W, Shi S, Wei Y, Hu Y, Wu H. Tanshinone IIA inhibits cardiomyocyte pyroptosis through TLR4/NF-κB p65 pathway after acute myocardial infarction. Front Cell Dev Biol 2023; 11:1252942. [PMID: 37766966 PMCID: PMC10520722 DOI: 10.3389/fcell.2023.1252942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Tanshinone IIA, derived from Radix Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge), constitutes a significant component of this traditional Chinese medicine. Numerous studies have reported positive outcomes regarding its influence on cardiac function. However, a comprehensive comprehension of the intricate mechanisms responsible for its cardioprotective effects is still lacking. Methods: A rat model of heart failure (HF) induced by acute myocardial infarction (AMI) was established via ligation of the left anterior descending coronary artery. Rats received oral administration of tanshinone IIA (1.5 mg/kg) and captopril (10 mg/kg) for 8 weeks. Cardiac function was assessed through various evaluations. Histological changes in myocardial tissue were observed using staining techniques, including Hematoxylin and Eosin (HE), Masson, and transmission electron microscopy. Tunel staining was used to detect cell apoptosis. Serum levels of NT-pro-BNP, IL-1β, and IL-18 were quantified using enzyme-linked immunosorbent assay (ELISA). Expression levels of TLR4, NF-κB p65, and pyroptosis-related proteins were determined via western blotting (WB). H9C2 cardiomyocytes underwent hypoxia-reoxygenation (H/R) to simulate ischemia-reperfusion (I/R) injury, and cell viability and apoptosis were assessed post treatment with different tanshinone IIA concentrations (0.05 μg/ml, 0.1 μg/ml). ELISA measured IL-1β, IL-18, and LDH expression in the cell supernatant, while WB analysis evaluated TLR4, NF-κB p65, and pyroptosis-related protein levels. NF-κB p65 protein nuclear translocation was observed using laser confocal microscopy. Results: Tanshinone IIA treatment exhibited enhanced cardiac function, mitigated histological cardiac tissue damage, lowered serum levels of NT-pro-BNP, IL-1β, and IL-18, and suppressed myocardial cell apoptosis. Moreover, tanshinone IIA downregulated the expression of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in myocardial tissue. Additionally, it bolstered H/R H9C2 cardiomyocyte viability, curbed cardiomyocyte apoptosis, and reduced the levels of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in H/R H9C2 cells. Furthermore, it hindered NF-κB p65 protein nuclear translocation. Conclusion: These findings indicate that tanshinone IIA enhances cardiac function and alleviates myocardial injury in HF rats following AMI. Moreover, tanshinone IIA demonstrates potential suppression of cardiomyocyte pyroptosis. These effects likely arise from the inhibition of the TLR4/NF-κB p65 signaling pathway, presenting a promising therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wei
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
15
|
Wen X, Xie B, Yuan S, Zhang J. The "Self-Sacrifice" of ImmuneCells in Sepsis. Front Immunol 2022; 13:833479. [PMID: 35572571 PMCID: PMC9099213 DOI: 10.3389/fimmu.2022.833479] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host’s malfunctioning response to infection. Due to its high mortality rate and medical cost, sepsis remains one of the world’s most intractable diseases. In the early stage of sepsis, the over-activated immune system and a cascade of inflammation are usually accompanied by immunosuppression. The core pathogenesis of sepsis is the maladjustment of the host’s innate and adaptive immune response. Many immune cells are involved in this process, including neutrophils, mononuclear/macrophages and lymphocytes. The immune cells recognize pathogens, devour pathogens and release cytokines to recruit or activate other cells in direct or indirect manner. Pyroptosis, immune cell-extracellular traps formation and autophagy are several novel forms of cell death that are different from apoptosis, which play essential roles in the progress of sepsis. Immune cells can initiate “self-sacrifice” through the above three forms of cell death to protect or kill pathogens. However, the exact roles and mechanisms of the self-sacrifice in the immune cells in sepsis are not fully elucidated. This paper mainly analyzes the self-sacrifice of several representative immune cells in the forms of pyroptosis, immune cell-extracellular traps formation and autophagy to reveal the specific roles they play in the occurrence and progression of sepsis, also to provide inspiration and references for further investigation of the roles and mechanisms of self-sacrifice of immune cells in the sepsis in the future, meanwhile, through this work, we hope to bring inspiration to clinical work.
Collapse
Affiliation(s)
- Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Templeton EM, Lassé M, Kleffmann T, Ellmers LJ, Palmer SC, Davidson T, Scott NJA, Pickering JW, Charles CJ, Endre ZH, Cameron VA, Richards AM, Rademaker MT, Pilbrow AP. Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure. Int J Mol Sci 2022; 23:ijms23021009. [PMID: 35055195 PMCID: PMC8778509 DOI: 10.3390/ijms23021009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)—an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra–mass spectrometry (SWATH–MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2–2.6-fold, adjusted p < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted p < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.
Collapse
Affiliation(s)
- Evelyn M. Templeton
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
- Correspondence: ; Tel.: +64-03-364-12-53
| | - Moritz Lassé
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Torsten Kleffmann
- Research Infrastructure Centre, Division of Health Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Leigh J. Ellmers
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Suetonia C. Palmer
- Department of Medicine, University of Otago, Christchurch 8014, New Zealand;
| | - Trent Davidson
- Department of Anatomical Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia;
| | - Nicola J. A. Scott
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - John W. Pickering
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Christopher J. Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Zoltan H. Endre
- Department of Nephrology, Prince of Wales Hospital, Sydney, NSW 2031, Australia;
| | - Vicky A. Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - A. Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
- Cardiovascular Research Institute, Department of Cardiology, National University of Singapore, Singapore 119077, Singapore
| | - Miriam T. Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Anna P. Pilbrow
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| |
Collapse
|
17
|
Li C, Wang W, Xie SS, Ma WX, Fan QW, Chen Y, He Y, Wang JN, Yang Q, Li HD, Jin J, Liu MM, Meng XM, Wen JG. The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Front Med (Lausanne) 2021; 8:796724. [PMID: 34926535 PMCID: PMC8674574 DOI: 10.3389/fmed.2021.796724] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, following with acute injury to multiple organs. Sepsis-induced acute kidney injury (AKI) is currently recognized as one of the most severe complications related to sepsis. The pathophysiology of sepsis-AKI involves multiple cell types, including macrophages, vascular endothelial cells (ECs) and renal tubular epithelial cells (TECs), etc. More significantly, programmed cell death including apoptosis, necroptosis and pyroptosis could be triggered by sepsis in these types of cells, which enhances AKI progress. Moreover, the cross-talk and connections between these cells and cell death are critical for better understanding the pathophysiological basis of sepsis-AKI. Mitochondria dysfunction and oxidative stress are traditionally considered as the leading triggers of programmed cell death. Recent findings also highlight that autophagy, mitochondria quality control and epigenetic modification, which interact with programmed cell death, participate in the damage process in sepsis-AKI. The insightful understanding of the programmed cell death in sepsis-AKI could facilitate the development of effective treatment, as well as preventive methods.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology and Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qian-Wen Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Key Laboratory of Anti-inflammatory and Immunopharmacology (Ministry of Education), Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Deng J, Tan W, Luo Q, Lin L, Zheng L, Yang J. Long Non-coding RNA MEG3 Promotes Renal Tubular Epithelial Cell Pyroptosis by Regulating the miR-18a-3p/GSDMD Pathway in Lipopolysaccharide-Induced Acute Kidney Injury. Front Physiol 2021; 12:663216. [PMID: 34012408 PMCID: PMC8128073 DOI: 10.3389/fphys.2021.663216] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Objective: Acute kidney injury (AKI) is a complication of sepsis. Pyroptosis of gasdermin D (GSDMD)-mediated tubular epithelial cells (TECs) play important roles in pathogenesis of sepsis-associated AKI. Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3), an imprinted gene involved in tumorigenesis, is implicated in pyroptosis occurring in multiple organs. Herein, we investigated the role and mechanisms of MEG3 in regulation of TEC pyroptosis in lipopolysaccharide (LPS)-induced AKI. Materials and Methods: Male C57BL/6 mice and primary human TECs were treated with LPS for 24 h to establish the animal and cell models, respectively, of sepsis-induced AKI. Renal function was assessed by evaluation of serum creatinine and urea levels. Renal tubule injury score was assessed by Periodic acid-Schiff staining. Renal pyroptosis was assessed by evaluating expression of caspase-1, GSDMD, and inflammatory factors IL-1β and IL-18. Cellular pyroptosis was assessed by analyzing the release rate of LDH, expression of IL-1β, IL-18, caspase-1, and GSDMD, and using EtBr and EthD2 staining. MEG3 expression in renal tissues and cells was detected using RT-qPCR. The molecular mechanisms of MEG3 in LPS-induced AKI were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation, dual luciferase reporter gene assays, and a rescue experiment. Results: Pyroptosis was detected in both LPS-induced animal and cell models, and the expression of MEG3 in these models was significantly up-regulated. MEG3-knockdown TECs treated with LPS showed a decreased number of pyroptotic cells, down-regulated secretion of LDH, IL-1β, and IL-18, and decreased expression of GSDMD, compared with those of controls; however, there was no difference in the expression of caspase-1 between MEG3 knockdown cells and controls. Bioinformatics analysis screened out miR-18a-3P, and further experiments demonstrated that MEG3 controls GSDMD expression by acting as a ceRNA for miR-18a-3P to promote TECs pyroptosis. Conclusion: Our study demonstrates that lncRNA MEG3 promoted renal tubular epithelial pyroptosis by regulating the miR-18a-3p/GSDMD pathway in LPS-induced AKI.
Collapse
Affiliation(s)
- Junhui Deng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglin Luo
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lirong Lin
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Luquan Zheng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Zhu Y, Xu D, Deng F, Yan Y, Li J, Zhang C, Chu J. Angiotensin (1-7) Attenuates Sepsis-Induced Acute Kidney Injury by Regulating the NF-κB Pathway. Front Pharmacol 2021; 12:601909. [PMID: 33746749 PMCID: PMC7970314 DOI: 10.3389/fphar.2021.601909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
This study explores the protective mechanism of angiotensin (1-7) [Ang-(1-7)] on kidneys by examining its effects on renal histomorphology, inflammatory response, oxidative stress, and NF-κB signaling in mice suffering from sepsis-induced acute kidney injury. A sepsis-induced acute kidney injury mouse model was established by intracervically injecting lipopolysaccharides (LPS group), followed by the administration of Ang-(1-7) [LPS + Ang-(1-7) group]. The serum levels of urea nitrogen, creatinine and cystatin. c were measured with an automatic biochemical analyzer, and changes in proinflammatory cytokines and angiotensin II (Ang II) in the serum and kidneys were quantified by enzyme-linked immunosorbent assays. Changes in oxidative stress indices in the renal cortex were detected by colorimetry. The localization of Ang II in kidneys was examined by immunohistochemistry. Western blotting was used to examine phosphorylated NF-κB-p65 and IκBα levels in kidneys. Compared with the control group, the serum levels of urea nitrogen, creatinine and cystatin. c were increased, whereas the levels of Ang II, TNFα, IL-1β, IL-6, and malondialdehyde (mda) were increased significantly. The levels of Ang II and phosphorylated NF-κB-p65 were elevated in kidneys, whereas the levels of superoxide dismutase (sod), Total antioxidative capacity (TAOC), and inhibitor of NF-κB (IκBα) were reduced in the LPS group (p < 0.05). Pathological damage was also observed in kidneys of LPS-group mice. In Pearson correlation analysis, there was a positive correlation between Ang II and phosphorylated NF-κB-p65 levels, and a negative correlation between Ang II and IκBα levels (p < 0.05). After the application of Ang-(1-7), the levels of urea nitrogen, creatinine, cystatin. c, Ang II, TNFα, IL-1β, IL-6, and mda, as well as the expression of Ang II and phosphorylated NF-κB-p65 in kidneys of LPS + Ang-(1-7)-group mice, were lower than those in kidneys of LPS-group mice, but the levels of sod, TAOC, and IκBα were higher than those of LPS-group mice (p < 0.05). Pathological changes were less severe in mice of the LPS + Ang-(1-7) group. Overall, Ang-(1-7) can decrease the Ang II level, inhibit NF-κB signaling, reduce the inflammatory response, decrease oxidative stress, and mitigate sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Daliang Xu
- Department of Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Fang Deng
- Department of Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Yonglin Yan
- Department of Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Jian Li
- Department of Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chenyu Zhang
- Department of Clinical Laboratory, Anhui Provincial Children's Hospital, Hefei, China
| | - Jing Chu
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei, China
| |
Collapse
|