1
|
Strømland PP, Bertelsen BE, Viste K, Chatziioannou AC, Bellerba F, Robinot N, Trolat A, Flågeng MH, Scalbert A, Keski-Rahkonen P, Sears DD, Bonanni B, Gandini S, Johansson H, Mellgren G. Effects of metformin on transcriptomic and metabolomic profiles in breast cancer survivors enrolled in the randomized placebo-controlled MetBreCS trial. Sci Rep 2025; 15:16897. [PMID: 40374694 DOI: 10.1038/s41598-025-01705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 05/07/2025] [Indexed: 05/17/2025] Open
Abstract
Metformin reduces the incidence of breast cancer in patients with obesity and type 2 diabetes. However, our knowledge of the effects of metformin on breast cancer recurrence is limited. Within the randomized double-blind placebo-controlled phase II trial MetBreCS, we examined changes in breast tissue from breast cancer survivors with BMI > 25 kg/m2 after treatment with metformin. To identify metformin-regulated signaling pathways, we integrated the transcriptomic, metabolomic and steroid hormone profiles using bivariate and functional analyses. We identified MS4A1, HBA2, MT-RNR1, MT-RNR2, EGFL6 and FDCSP expression to be differentially expressed in breast tissues from metformin-treated postmenopausal women. The integration of transcriptomic and metabolomic profiles revealed down-regulation of immune response genes associated with reduced levels of arginine and citrulline in the metformin-treated group. The integration of transcriptomic and steroid hormone profiles showed an enrichment of steroid hormone biosynthesis and metabolism pathways with highly negatively correlated CYP11A1 and CYP1B1 expression in breast tissue from postmenopausal metformin-treated women. Our results indicate that postmenopausal breast cancer survivors treated with metformin have specific changes in breast tissue gene expression that may prevent the development of new tumors.Trial registration: MetBreCs trial is registered at European Union Clinical Trials Register (EudraCT Protocol # 2015-001001-14) on 07/10/2015.
Collapse
Affiliation(s)
- Pouda Panahandeh Strømland
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørn-Erik Bertelsen
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Kristin Viste
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - Federica Bellerba
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Nivonirina Robinot
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Amarine Trolat
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Marianne Hauglid Flågeng
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Zhang J, Chen T, Wu W, Hu C, Wang B, Jia X, Ye M. Carbonyl reductase 4 suppresses colorectal cancer progression through the DNMT3B/CBR4/FASN/mTOR axis. Cancer Cell Int 2025; 25:146. [PMID: 40234909 PMCID: PMC11998200 DOI: 10.1186/s12935-025-03776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Lipid metabolism is implicated in the initiation and progression of human colorectal cancer (CRC). Carbonyl reductase 4 (CBR4), a member of the carbonyl reductase family, plays a role in the biosynthesis of fatty acids. However, its involvement in CRC remains poorly understood. In this study, we aim to explore the function of CBR4 in CRC. Our findings indicated that the expression of CBR4 was significantly reduced in CRC tissues. Functional analyses revealed that CBR4 functions to inhibit cell proliferation, colony formation, migration, invasion, and tumor growth in vivo. Mechanistically, CBR4 interacts with fatty acid synthase (FASN), activating the ubiquitin-proteasome pathway, which leads to a reduction in FASN expression, thereby inhibiting the mTOR pathway and curtailing CRC development. Orlistat, a known FASN inhibitor, demonstrated anti-cancer properties both in vitro and in vivo. Additionally, DNMT3B, a DNA methyltransferase, contributed to the down-regulation of CBR4 by inducing methylation in the promoter region. In summary, our findings suggest that the DNMT3B/CBR4/FASN/mTOR signaling pathway is crucial in the advancement of CRC, and elucidate the potential mechanism by which enzymatic carbonyl reduction and lipid metabolism may be connected to CRC progression, offering a novel therapeutic strategy for its clinical management.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Medical Image, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, NO.157 Daming Road, Nanjing, 210022, China
| | - Tiaotiao Chen
- Department of Geriatrics, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Wencheng Wu
- Department of Pathology, Changzhou First People's Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Chunhua Hu
- Neuroendocrine Tumor Diagnosis and Treatment Center of Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University; Neuroendocrine Tumor Diagnosis and Treatment Center of Jiangsu Province; Institute of Neuroendocrine Tumor of Collaborative Innovation Center for Cancer Personalized Medicine of Jiangsu Province; Institute of Neuroendocrine Tumor of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Bangting Wang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Jia
- Department of Medical Image, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, NO.157 Daming Road, Nanjing, 210022, China.
| | - Mujie Ye
- Neuroendocrine Tumor Diagnosis and Treatment Center of Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University; Neuroendocrine Tumor Diagnosis and Treatment Center of Jiangsu Province; Institute of Neuroendocrine Tumor of Collaborative Innovation Center for Cancer Personalized Medicine of Jiangsu Province; Institute of Neuroendocrine Tumor of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
3
|
Luo X, Luo B, Fei L, Zhang Q, Liang X, Chen Y, Zhou X. MS4A superfamily molecules in tumors, Alzheimer's and autoimmune diseases. Front Immunol 2024; 15:1481494. [PMID: 39717774 PMCID: PMC11663944 DOI: 10.3389/fimmu.2024.1481494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized into tetraspanins, which possess four-transmembrane structures. To date, eighteen MS4A members have been identified in humans, whereas twenty-three different molecules have been identified in mice. MS4A proteins are selectively expressed on the surfaces of various immune cells, such as B cells (MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3+CD4+ regulatory T cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B). Early research confirmed that most MS4A molecules function as ion channels that regulate the transport of calcium ions. Recent studies have revealed that some MS4A proteins also function as chaperones that interact with various immune molecules, such as pattern recognition receptors and/or immunoglobulin receptors, to form immune complexes and transmit downstream signals, leading to cell activation, growth, and development. Evidence from preclinical animal models and human genetic studies suggests that the MS4A superfamily plays critical roles in the pathogenesis of various diseases, including cancer, infection, allergies, neurodegenerative diseases and autoimmune diseases. We review recent progress in this field and focus on elucidating the molecular mechanisms by which different MS4A molecules regulate the progression of tumors, Alzheimer's disease, and autoimmune diseases. Therefore, in-depth research into MS4A superfamily members may clarify their ability to act as candidate biomarkers and therapeutic targets for these diseases. Eighteen distinct members of the MS4A (membrane-spanning four-domain subfamily A) superfamily of four-transmembrane proteins have been identified in humans, whereas the MS4A genes are translated into twenty-three different molecules in mice. These proteins are selectively expressed on the surface of various immune cells, such as B cells (MS4A1), macrophages (MS4A4A), mast cells (MS4A2), Foxp3+CD4+ regulatory T cells (MS4A4B), type 3 innate lymphoid cells (TMEM176A and TMEM176B) and colonic epithelial cells (MS4A12). Functionally, most MS4A molecules function as ion channels that regulate the flow of calcium ions [Ca2+] across cell membranes. Recent studies have revealed that some MS4A proteins also act as molecular chaperones and interact with various types of immune receptors, including pattern recognition receptors (PRRs) and immunoglobulin receptors (IgRs), to form signaling complexes, thereby modulating intracellular signaling and cellular activity. Evidence from preclinical animal models and human genetic studies suggests that MS4A proteins play critical roles in various diseases (2). Therefore, we reviewed the recent progress in understanding the role of the MS4A superfamily in diseases, particularly in elucidating its function as a candidate biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xuejiao Luo
- Department of Dermatology, The Affiliated Hospital of the Non-Commissioned Officer (NCO) School, The Army Medical University, Shijiazhuang, Hebei, China
| | - Bin Luo
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Lei Fei
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xinyu Liang
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xueqin Zhou
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| |
Collapse
|
4
|
Gao Q, Wang X, Zhang Y, Wen J, Wang F, Lin Z, Feng Y, Huang J, Li Q, Luo H, Liu X, Zhai X, Li L, He S, Mi Z, Zhang L, Niu T, Xu C, Zheng Y. Ferroptosis-related prognostic model of mantle cell lymphoma. Open Med (Wars) 2024; 19:20241090. [PMID: 39588389 PMCID: PMC11587922 DOI: 10.1515/med-2024-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Background Mantle cell lymphoma (MCL) is a B-cell non-Hodgkin's lymphoma. Ferroptosis, an iron-dependent programmed cell death, is closely related to cancer prognosis. In this study, we established a model of ferroptosis related genes for prognostic evaluation of patients with MCL. Methods Using the single-cell RNA sequencing datasets GSE184031 and mRNA sequencing data GSE32018 from the Gene Expression Omnibus, we identified 139 ferroptosis-related genes in MCL. Next a prognostic model was constructed by Cox regression and Least absolute selection and shrinkage Operator regression analysis. Finally, we used CIBERSORT to analyze the immune microenvironment and the "oncoPredict" package to predict potential drugs. Results In our model, the prognosis of MCL patients was assessed by risk scoring using 7 genes ANXA1, IL1B, YBX1, CCND1, MS4A1, MFHAS1, and RILPL2. The patients were divided into high-risk and low-risk groups based on our model, and the high-risk patients had inferior overall survival. Finally, according to our model and computational drug sensitivity analysis, four small molecule compounds, BMS-754807, SB216763, Doramapimod, and Trametinib, were identified as potential therapeutic agents for patients with MCL. Conclusion In summary, we provide a prognostic model with ferroptosis-related gene signature for MCL. This study provides a prognostic model with ferroptosis-related gene signature for MCL. The results show that the model helps predict prognosis in MCL.
Collapse
Affiliation(s)
- Qianwen Gao
- Department of Biology, School of Life Science, Sichuan University, Chengdu, China
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology, Mian-yang Central Hospital, Mianyang, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology, The Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Siyao He
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyue Mi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| |
Collapse
|
5
|
Zhao F, Su L, Wang X, Luan J, Zhang X, Li Y, Li S, Hu L. Molecular map of disulfidptosis-related genes in lung adenocarcinoma: the perspective toward immune microenvironment and prognosis. Clin Epigenetics 2024; 16:26. [PMID: 38342890 PMCID: PMC10860275 DOI: 10.1186/s13148-024-01632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/18/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Disulfidptosis is a recently discovered form of programmed cell death that could impact cancer development. Nevertheless, the prognostic significance of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD) requires further clarification. METHODS This study systematically explores the genetic and transcriptional variability, prognostic relevance, and expression profiles of DRGs. Clusters related to disulfidptosis were identified through consensus clustering. We used single-sample gene set enrichment analysis and ESTIMATE to assess the tumor microenvironment (TME) in different subgroups. We conducted a functional analysis of differentially expressed genes between subgroups, which involved gene ontology, the Kyoto encyclopedia of genes and genomes, and gene set variation analysis, in order to elucidate their functional status. Prognostic risk models were developed using univariate Cox regression and the least absolute shrinkage and selection operator regression. Additionally, single-cell clustering and cell communication analysis were conducted to enhance the understanding of the importance of signature genes. Lastly, qRT-PCR was employed to validate the prognostic model. RESULTS Two clearly defined DRG clusters were identified through a consensus-based, unsupervised clustering analysis. Observations were made concerning the correlation between changes in multilayer DRG and various clinical characteristics, prognosis, and the infiltration of TME cells. A well-executed risk assessment model, known as the DRG score, was developed to predict the prognosis of LUAD patients. A high DRG score indicates increased TME cell infiltration, a higher mutation burden, elevated TME scores, and a poorer prognosis. Additionally, the DRG score showed a significant correlation with the tumor mutation burden score and the tumor immune dysfunction and exclusion score. Subsequently, a nomogram was established for facilitating the clinical application of the DRG score, showing good predictive ability and calibration. Additionally, crucial DRGs were further validated by single-cell sequencing data. Finally, crucial DRGs were further validated by qRT-PCR and immunohistochemistry. CONCLUSION Our new DRG signature risk score can predict the immune landscape and prognosis of LUAD. It also serves as a reference for LUAD's immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Lei Su
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Jiusong Luan
- Pulmonary and Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Xin Zhang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Ling Hu
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Long Y, Shi H, He Y, Qi X. Analyzing the impact of metabolism on immune cells in tumor microenvironment to promote the development of immunotherapy. Front Immunol 2024; 14:1307228. [PMID: 38264667 PMCID: PMC10804850 DOI: 10.3389/fimmu.2023.1307228] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tumor metabolism and tumor immunity are inextricably linked. Targeting the metabolism of tumors is a point worth studying in tumor immunotherapy. Recently, the influence of the metabolism of tumors and immune cells on the occurrence, proliferation, metastasis, and prognosis of tumors has attracted more attention. Tumor tissue forms a specific tumor microenvironment (TME). In addition to tumor cells, there are also immune cells, stromal cells, and other cells in TME. To adapt to the environment, tumor cells go through the metabolism reprogramming of various substances. The metabolism reprogramming of tumor cells may further affect the formation of the tumor microenvironment and the function of a variety of cells, especially immune cells, eventually promoting tumor development. Therefore, it is necessary to study the metabolism of tumor cells and its effects on immune cells to guide tumor immunotherapy. Inhibiting tumor metabolism may restore immune balance and promote the immune response in tumors. This article will describe glucose metabolism, lipid metabolism, amino acid metabolism, and immune cells in tumors. Besides, the impact of metabolism on the immune cells in TME is also discussed for analyzing and exploring tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Ye M, Hu C, Chen T, Yu P, Chen J, Lu F, Xu L, Zhong Y, Yan L, Kan J, Bai J, Li X, Tian Y, Tang Q. FABP5 suppresses colorectal cancer progression via mTOR-mediated autophagy by decreasing FASN expression. Int J Biol Sci 2023; 19:3115-3127. [PMID: 37416772 PMCID: PMC10321282 DOI: 10.7150/ijbs.85285] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid metabolism plays an important role in the occurrence and development of cancer, in particular, digestive system tumors such as colon cancer. Here, we investigated the role of the fatty acid-binding protein 5 (FABP5) in colorectal cancer (CRC). We observed marked down-regulation of FABP5 in CRC. Data from functional assays revealed inhibitory effects of FABP5 on cell proliferation, colony formation, migration, invasion as well as tumor growth in vivo. In terms of mechanistic insights, FABP5 interacted with fatty acid synthase (FASN) and activated the ubiquitin proteasome pathway, leading to a decrease in FASN expression and lipid accumulation, moreover, suppressing mTOR signaling and facilitating cell autophagy. Orlistat, a FASN inhibitor, exerted anti-cancer effects both in vivo and in vitro. Furthermore, the upstream RNA demethylase ALKBH5 positively regulated FABP5 expression via an m6A-independent mechanism. Overall, our collective findings offer valuable insights into the critical role of the ALKBH5/FABP5/FASN/mTOR axis in tumor progression and uncover a potential mechanism linking lipid metabolism to development of CRC, providing novel therapeutic targets for future interventions.
Collapse
Affiliation(s)
- Mujie Ye
- ✉ Corresponding authors: Qiyun Tang, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China. . Ye Tian, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China. . Mujie Ye, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | | | | - Ye Tian
- ✉ Corresponding authors: Qiyun Tang, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China. . Ye Tian, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China. . Mujie Ye, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China.
| | - Qiyun Tang
- ✉ Corresponding authors: Qiyun Tang, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China. . Ye Tian, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China. . Mujie Ye, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
8
|
Kaya IH, Al-Harazi O, Colak D. Transcriptomic data analysis coupled with copy number aberrations reveals a blood-based 17-gene signature for diagnosis and prognosis of patients with colorectal cancer. Front Genet 2023; 13:1031086. [PMID: 36685857 PMCID: PMC9854115 DOI: 10.3389/fgene.2022.1031086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Colorectal cancer (CRC) is the third most common cancer and third leading cause of cancer-associated deaths worldwide. Diagnosing CRC patients reliably at an early and curable stage is of utmost importance to reduce the risk of mortality. Methods: We identified global differentially expressed genes with copy number alterations in patients with CRC. We then identified genes that are also expressed in blood, which resulted in a blood-based gene signature. We validated the gene signature's diagnostic and prognostic potential using independent datasets of gene expression profiling from over 800 CRC patients with detailed clinical data. Functional enrichment, gene interaction networks and pathway analyses were also performed. Results: The analysis revealed a 17-gene signature that is expressed in blood and demonstrated that it has diagnostic potential. The 17-gene SVM classifier displayed 99 percent accuracy in predicting the patients with CRC. Moreover, we developed a prognostic model and defined a risk-score using 17-gene and validated that high risk score is strongly associated with poor disease outcome. The 17-gene signature predicted disease outcome independent of other clinical factors in the multivariate analysis (HR = 2.7, 95% CI = 1.3-5.3, p = 0.005). In addition, our gene network and pathway analyses revealed alterations in oxidative stress, STAT3, ERK/MAPK, interleukin and cytokine signaling pathways as well as potentially important hub genes, including BCL2, MS4A1, SLC7A11, AURKA, IL6R, TP53, NUPR1, DICER1, DUSP5, SMAD3, and CCND1. Conclusion: Our results revealed alterations in various genes and cancer-related pathways that may be essential for CRC transformation. Moreover, our study highlights diagnostic and prognostic value of our gene signature as well as its potential use as a blood biomarker as a non-invasive diagnostic method. Integrated analysis transcriptomic data coupled with copy number aberrations may provide a reliable method to identify key biological programs associated with CRC and lead to improved diagnosis and therapeutic options.
Collapse
Affiliation(s)
- Ibrahim H. Kaya
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia,*Correspondence: Dilek Colak,
| |
Collapse
|
9
|
Song Y, Zhang Z, Zhang B, Zhang W. CD8+ T cell-associated genes MS4A1 and TNFRSF17 are prognostic markers and inhibit the progression of colon cancer. Front Oncol 2022; 12:941208. [PMID: 36203424 PMCID: PMC9530608 DOI: 10.3389/fonc.2022.941208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundColon cancer (CC) is among the top three diseases with the highest morbidity and mortality rates worldwide. Its increasing incidence imposes a major global health burden. Immune checkpoint inhibitors, such as anti-PD-1 and anti-PD-L1, can be used for the treatment of CC; however, most patients with CC are resistant to immunotherapy. Therefore, identification of biomarkers that can predict immunotherapy sensitivity is necessary for selecting patients with CC who are eligible for immunotherapy.MethodsDifferentially expressed genes associated with the high infiltration of CD8+ T cells were identified in CC and para-cancerous samples via bioinformatic analysis. Kaplan–Meier survival analysis revealed that MS4A1 and TNFRSF17 were associated with the overall survival of patients with CC. Cellular experiments were performed for verification, and the protein expression of target genes was determined via immunohistochemical staining of CC and the adjacent healthy tissues. The proliferation, migration and invasion abilities of CC cells with high expression of target genes were determined via in vitro experiments.ResultsDifferential gene expression, weighted gene co-expression and survival analyses revealed that patients with CC with high expression of MS4A1 and TNFRSF17 had longer overall survival. The expression of these two genes was lower in CC tissues than in healthy colon tissues and was remarkably associated with the infiltration of various immune cells, including CD8+ T cells, in the tumour microenvironment (TME) of CC. Patients with CC with high expression of MS4A1 and TNFRSF17 were more sensitive to immunotherapy. Quantitative reverse transcription-polymerase chain reaction, western blotting and immunohistochemical staining validated the differential expression of MS4A1 and TNFRSF17. In addition, Cell Counting Kit-8, wound healing and transwell assays revealed that the proliferation, migration and invasion abilities of CC cells were weakened after overexpression of MS4A1 and TNFRSF17.ConclusionsThe core genes MS4A1 and TNFRSF17 can be used as markers to predict the sensitivity of patients with CC to immunotherapy and have potential applications in gene therapy to inhibit CC progression.
Collapse
Affiliation(s)
- Ye Song
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weihui Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Weihui Zhang,
| |
Collapse
|