1
|
Yamoto K, Yamada K, Shimizu K, Miyamoto S, Nakashima M, Saitsu H. Homozygous Microdeletion Involving Exon 1 of ERCC8 and NDUFAF2 With Uniparental Isodisomy of Chromosome 5. Mol Genet Genomic Med 2024; 12:e70037. [PMID: 39621529 PMCID: PMC11610623 DOI: 10.1002/mgg3.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 04/06/2025] Open
Abstract
BACKGROUND Uniparental isodisomy (UPiD) refers to a condition, in which both homologous chromosomes are inherited from only one parental homolog, which can result in either imprinting disorders or autosomal recessive conditions. METHODS We performed chromosomal microarray analysis, exome sequencing (ES), and RNA sequencing (RNA-seq) using the patient's urine-derived cells on a patient with growth retardation and multiple congenital anomalies. RESULTS We identified a homozygous ~0.53 kb microdeletion at 5q12.1, which was transmitted from the father with paternal UPiD(5). The deletion encompassed the first exon of both the ERCC8 and NDUFAF2 genes, which are responsible for Cockayne syndrome (CS) and mitochondrial complex I deficiency, respectively. Furthermore, RNA-seq confirmed the reduced expression of both genes. Indeed, in addition to clinical features common to both syndromes, such as growth retardation, developmental delay, and feeding difficulties, the patient exhibited blended phenotypes: the characteristic features of CS, including arthrogryposis, microcephaly, and facial dysmorphisms, and those of mitochondrial complex I deficiency, including high serum lactate levels and lethal apnea resulting in a severe clinical course. CONCLUSION The results imply that ES in combination with RNA-seq could be a powerful method for the detection of underlying factors responsible for rare genetic conditions, such as UPD.
Collapse
Affiliation(s)
- Kaori Yamoto
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Kosuke Yamada
- Division of Clinical Genetics and CytogeneticsShizuoka Children's HospitalShizuokaJapan
| | - Kenji Shimizu
- Division of Clinical Genetics and CytogeneticsShizuoka Children's HospitalShizuokaJapan
| | - Sachiko Miyamoto
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Mitsuko Nakashima
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
2
|
Matsuoka T, Yoshida T, Kora K, Yano N, Taura Y, Nakamura T, Tozawa T, Mori J, Chiyonobu T. A mild case of Cockayne syndrome with a novel start-loss variant of ERCC8. Hum Genome Var 2024; 11:39. [PMID: 39511141 PMCID: PMC11544238 DOI: 10.1038/s41439-024-00297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Cockayne syndrome (CS) is a progressive multisystem disorder characterized by growth failure, microcephaly, developmental delay, and photosensitivity. The characteristic symptoms appear during early childhood in most patients with CS. Herein, we report a mild case of CS with a novel start-loss variant in ERCC8 that did not show the characteristic symptoms of CS during early childhood and exhibited sudden growth failure after the age of 10 years.
Collapse
Affiliation(s)
- Taro Matsuoka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Takeshi Yoshida
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kengo Kora
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoko Yano
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Taura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Division of Pediatric Endocrinology, Metabolism and Nephrology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Watanabe D, Okamoto N, Kobayashi Y, Suzuki H, Kato M, Saitoh S, Kanemura Y, Takenouchi T, Yamada M, Nakato D, Sato M, Tsunoda T, Kosaki K, Miya F. Biallelic structural variants in three patients with ERCC8-related Cockayne syndrome and a potential pitfall of copy number variation analysis. Sci Rep 2024; 14:19741. [PMID: 39187681 PMCID: PMC11347644 DOI: 10.1038/s41598-024-70831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive disorder caused by mutations in ERCC8 or ERCC6. Most pathogenic variants in ERCC8 are single nucleotide substitutions. Structural variants (SVs) have been reported in patients with ERCC8-related CS. However, comprehensive molecular detection, including SVs of ERCC8, in CS patients remains problematic. Herein, we present three Japanese patients with ERCC8-related CS in whom causative SVs were identified using whole-exome-based copy number variation (CNV) detection tools. One patient showed compound heterozygosity for a 259-kb deletion and a deletion of exon 4 which has previously been reported as an Asia-specific variant. The other two patients were homozygous for the same exon 4 deletion. The exon 4 deletion was detected only by the ExomeDepth software. Intrigued by the discrepancy in the detection capability of various tools for the SVs, we evaluated the analytic performance of four whole-exome-based CNV detection tools using an exome data set from 337 healthy individuals. A total of 1,278,141 exons were predicted as being affected by the 4 CNV tools. Interestingly 95.1% of these affected exons were detected by one tool alone. Thus, we expect that the use of multiple tools may improve the detection rate of SVs from aligned exome data.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Department of Pediatrics, Yamanashi University, Yamanashi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuichi Kobayashi
- Professional Development Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
- Epilepsy Medical Center, Showa University Hospital, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka, Japan
- Department of Neurosurgery, NHO Osaka National Hospital, Osaka, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Daisuke Nakato
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Masayuki Sato
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
- Innovative Human Resource Development Division, Institute of Education, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
4
|
Yoshioka A, Nakaoka H, Fukumoto T, Inoue I, Nishigori C, Kunisada M. The landscape of genetic alterations of UVB-induced skin tumors in DNA repair-deficient mice. Exp Dermatol 2022; 31:1607-1617. [PMID: 35751582 DOI: 10.1111/exd.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
Non-melanoma skin cancer (NMSC) is mainly caused by ultraviolet (UV)-induced somatic mutations and is characterized by UV signature modifications. Xeroderma pigmentosum group A (Xpa) knockout mice exhibit extreme UV-induced photo-skin carcinogenesis, along with a photosensitive phenotype. We performed whole-exome sequencing (WES) of squamous cell carcinoma (SCC) samples after repetitive ultraviolet B (UVB) exposure to investigate the differences in the landscape of somatic mutations between Xpa knockout and wild-type mice. Although the tumors that developed in mice harbored UV signature mutations in a similar set of cancer-related genes, the pattern of transcriptional strand asymmetry was largely different; UV signature mutations in Xpa knockout and wild-type mice preferentially occurred in transcribed and non-transcribed strands, respectively, reflecting a deficiency in transcription-coupled nucleotide excision repair in Xpa knockout mice. Serial time point analyses of WES for a tumor induced by only a single UVB exposure showed pathogenic mutations in Kras, Fat1, and Kmt2c, which may be driver genes for the initiation and promotion of SCC in Xpa knockout mice. Furthermore, the inhibitory effects on tumor production in Xpa knockout mice by the anti-inflammatory CXCL1 monoclonal antibody affected the pattern of somatic mutations, wherein the transcriptional strand asymmetry was attenuated and the activated signal transduction was shifted from the RAS/RAF/MAPK to the PIK3CA pathway.
Collapse
Affiliation(s)
- Ai Yoshioka
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Tokyo, Japan.,Human Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Chikako Nishigori
- Division of Research on Intractable Dermatological Disease, Department of iPS cell Applications, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Kunisada
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
5
|
Yousefipour F, Mahjoobi F. Identification of two novel homozygous mutations in ERCC8 gene in two unrelated consanguineous families with Cockayne syndrome from Iran. Clin Chim Acta 2021; 523:65-71. [PMID: 34461059 DOI: 10.1016/j.cca.2021.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cockayne syndrome (CS) is a rare autosomal recessive disorder with characteristic multisystem involvement including pre- or post-natal growth failure, progressive neurological dysfunction, psychomotor retardation, cerebral atrophy, microcephaly and mental retardation, due to mutations in either the ERCC8/CSA or ERCC6/CSB gene. METHOD We present two Iranian patients with remarkable growth failure, developmental delay, microcephaly, severe speech delay, vision problem, sun sensitivity, hearing loss, dental anomalies, unstable gait, mild contractures in knees, kyphosis and spasticity in lower limbs, balance disorders and typical dysmorphic features including long nose, aged face, large ears and sunken eyes. Clinical evaluation, magnetic resonance imaging, Peripheral blood karyotype, Multiplex ligation-dependent probe amplification (MLPA), and whole-exome sequencing were used to characterize etiology in two patients from two unrelated consanguineous families of Iranian descent with Cockayne syndrome. RESULTS We detected two novel pathogenic mutations in two unrelated families, a homozygous duplication mutation (c.317_320dupAGTG, p.Trp107Ter) and a splicing variant (c.481 + 1G > A) in ERCC8 gene. CONCLUSION WES results together with the characteristic clinical manifestations of Cockayne syndrome, provided an accurate diagnosis for two patients. Also, our study identified two novel variants in Iranian families.
Collapse
|
6
|
Ghit A. Immunofluorescence studies to dissect the impact of Cockayne syndrome A alterations on the protein interaction and cellular localization. J Genet Eng Biotechnol 2021; 19:88. [PMID: 34132928 PMCID: PMC8208330 DOI: 10.1186/s43141-021-00190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
Background Cockayne syndrome (CS), which was discovered by Alfred Cockayne nearly 75 years ago, is a rare autosomal recessive disorder characterized by growth failure, neurological dysfunction, premature aging, and other clinical features including microcephaly, ophthalmologic abnormalities, dental caries, and cutaneous photosensitivity. These alterations are caused by mutations in the CSA or CSB genes, both of which are involved in transcription-coupled nucleotide excision repair (TC-NER), the sub-pathway of NER that rapidly removes UV-induced DNA lesions which block the progression of the transcription machinery in the transcribed strand of active genes. Several studies assumed that CSA and CSB genes can play additional roles outside TC-NER, due to the wide variations in type and severity of the CS phenotype and the lack of a clear relationship between genotype and phenotype. To address this issue, our lab generated isogenic cell lines expressing wild type as well as different versions of mutated CSA proteins, fused at the C-terminus with the Flag and HA epitope tags (CSAFlag-HA). In unpublished data, the identity of the CSA-interacting proteins was determined by mass spectrometry. Among which three subunits (namely, CCT3, CCT8, and TCP1) of the TRiC/CCT complex appeared as novel interactors. TRiC is a chaperonin involved in the folding of newly synthesized or unfolded proteins. The aim of this study is directed to investigate by immunofluorescence analysis the impact of the selected CSA mutations on the subcellular localization of the CSA protein itself as well as on its novel interactors CCT3, CCT8, and TCP1. Results We showed that specific CSA mutations impair the proper cellular localization of the protein, but have no impact on the cellular distribution of the TRiC subunits or CSA/TRiC co-localization. Conclusion We suggested that the activity of the TRiC complex does not rely on the functionality of CSA. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00190-7.
Collapse
Affiliation(s)
- Amr Ghit
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy. .,Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Calmels N, Botta E, Jia N, Fawcett H, Nardo T, Nakazawa Y, Lanzafame M, Moriwaki S, Sugita K, Kubota M, Obringer C, Spitz MA, Stefanini M, Laugel V, Orioli D, Ogi T, Lehmann AR. Functional and clinical relevance of novel mutations in a large cohort of patients with Cockayne syndrome. J Med Genet 2018; 55:329-343. [PMID: 29572252 DOI: 10.1136/jmedgenet-2017-104877] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/26/2017] [Accepted: 11/19/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Cockayne syndrome (CS) is a rare, autosomal recessive multisystem disorder characterised by prenatal or postnatal growth failure, progressive neurological dysfunction, ocular and skeletal abnormalities and premature ageing. About half of the patients with symptoms diagnostic for CS show cutaneous photosensitivity and an abnormal cellular response to UV light due to mutations in either the ERCC8/CSA or ERCC6/CSB gene. Studies performed thus far have failed to delineate clear genotype-phenotype relationships. We have carried out a four-centre clinical, molecular and cellular analysis of 124 patients with CS. METHODS AND RESULTS We assigned 39 patients to the ERCC8/CSA and 85 to the ERCC6/CSB genes. Most of the genetic variants were truncations. The missense variants were distributed non-randomly with concentrations in relatively short regions of the respective proteins. Our analyses revealed several hotspots and founder mutations in ERCC6/CSB. Although no unequivocal genotype-phenotype relationships could be made, patients were more likely to have severe clinical features if the mutation was downstream of the PiggyBac insertion in intron 5 of ERCC6/CSB than if it was upstream. Also a higher proportion of severely affected patients was found with mutations in ERCC6/CSB than in ERCC8/CSA. CONCLUSION By identifying >70 novel homozygous or compound heterozygous genetic variants in 124 patients with CS with different disease severity and ethnic backgrounds, we considerably broaden the CSA and CSB mutation spectrum responsible for CS. Besides providing information relevant for diagnosis of and genetic counselling for this devastating disorder, this study improves the definition of the puzzling genotype-phenotype relationships in patients with CS.
Collapse
Affiliation(s)
- Nadege Calmels
- Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Strasbourg, France
| | - Elena Botta
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Nan Jia
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tiziana Nardo
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan.,Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Manuela Lanzafame
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | | - Katsuo Sugita
- Division of Child Health, Faculty of Education, Chiba University, Chiba, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, France
| | - Cathy Obringer
- Faculté de Médecine, Laboratoire de Génétique Médicale, Strasbourg, France
| | - Marie-Aude Spitz
- Départementde Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Miria Stefanini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Vincent Laugel
- Faculté de Médecine, Laboratoire de Génétique Médicale, Strasbourg, France.,Départementde Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Donata Orioli
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan.,Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | | |
Collapse
|
8
|
Molecular spectrum of excision repair cross-complementation group 8 gene defects in Chinese patients with Cockayne syndrome type A. Sci Rep 2017; 7:13686. [PMID: 29057985 PMCID: PMC5651726 DOI: 10.1038/s41598-017-14034-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
There are two genetics complementary groups Cockayne syndrome type A and B (CS-A and CS-B OMIM 216400, 133540), which is a rare autosomal recessive segmental progeroid syndrome. Homozygous or compound heterozygous mutations in the excision repair cross-complementation group 8 gene (ERCC8) result in CS-A, and mutations in ERCC6 result in CS-B. Homozygous ERCC6/ERCC8 mutations also result in UV-sensitive syndrome. In this study, twenty-one Han Chinese patients with CS were investigated to identify mutations in ERCC8/ERCC6, of which thirteen cases with CS-A were identified with the mutations of ERCC8. There are five types mutations of ERCC8 in our study, such as exon 4 rearrangement, c.394_398delTTACA, c.299insA, c.843 + 2 T > C, and c.2 T > A. An estimated frequency of exon 4 rearrangement accounts for 69.23% and c.394_398delTTACA accounts for 11.53% in our cohort. Haplotype analysis revealed that the exon 4 rearrangement and c.394_398delTTACA mutations originated from a common founder in the Chinese population respectively. With the identification of three novel ERCC8 mutations, this study expanded the molecular spectrum of known ERCC8 defects, and furthermore, suggests that the exon 4 rearrangement and c.394_398delTTACA mutations may be a common underlying cause of CS-A in the Chinese population, which is different from that in other populations.
Collapse
|
9
|
A complex intragenic rearrangement of ERCC8 in Chinese siblings with Cockayne syndrome. Sci Rep 2017; 7:44271. [PMID: 28333167 PMCID: PMC5363064 DOI: 10.1038/srep44271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/07/2017] [Indexed: 01/06/2023] Open
Abstract
Cockayne syndrome is an autosomal recessive disorder principally characterized by postnatal growth failure and progressive neurological dysfunction, due primarily to mutations in ERCC6 and ERCC8. Here, we report our diagnostic experience for two patients in a Chinese family suspected on clinical grounds to have Cockayne syndrome. Using multiple molecular techniques, including whole exome sequencing, array comparative genomic hybridization and quantitative polymerase chain reaction, we identified compound heterozygosity for a maternal splicing variant (chr5:60195556, NM_000082:c.618-2A > G) and a paternal complex deletion/inversion/deletion rearrangement removing exon 4 of ERCC8, confirming the suspected pathogenesis in these two subjects. Microhomology (TAA and AGCT) at the breakpoints indicated that microhomology-mediated FoSTeS events were involved in this complex ERCC8 rearrangement. This diagnostic experience illustrates the value of high-throughput genomic technologies combined with detailed phenotypic assessment in clinical genetic diagnosis.
Collapse
|
10
|
Ting T, Brett M, Tan E, Shen Y, Lee S, Lim E, Vasanwala R, Lek N, Thomas T, Lim K, Tan E. Cockayne Syndrome due to a maternally-inherited whole gene deletion of ERCC8 and a paternally-inherited ERCC8 exon 4 deletion. Gene 2015. [DOI: 10.1016/j.gene.2015.07.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Jia N, Nakazawa Y, Guo C, Shimada M, Sethi M, Takahashi Y, Ueda H, Nagayama Y, Ogi T. A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents. Nat Protoc 2014; 10:12-24. [PMID: 25474029 DOI: 10.1038/nprot.2014.194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA repair systems protect cells from genomic instability and carcinogenesis. Therefore, assays for measuring DNA repair activity are valuable, not only for clinical diagnoses of DNA repair deficiency disorders but also for basic research and anticancer drug development. Two commonly used assays are UDS (unscheduled DNA synthesis, requiring a precise measurement of an extremely small amount of repair DNA synthesis) and RRS (recovery of RNA synthesis after DNA damage). Both UDS and RRS are major endpoints for assessing the activity of nucleotide excision repair (NER), the most versatile DNA repair process. Conventional UDS and RRS assays are laborious and time-consuming, as they measure the incorporation of radiolabeled nucleosides associated with NER. Here we describe a comprehensive protocol for monitoring nonradioactive UDS and RRS by studying the incorporation of alkyne-conjugated nucleoside analogs followed by a fluorescent azide-coupling click-chemistry reaction. The system is also suitable for quick measurement of cell sensitivity to DNA-damaging reagents and for lentivirus-based complementation assays, which can be used to systematically determine the pathogenic genes associated with DNA repair deficiency disorders. A typical UDS or RRS assay using primary fibroblasts, including a virus complementation test, takes 1 week to complete.
Collapse
Affiliation(s)
- Nan Jia
- 1] Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan. [2] Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki University, Nagasaki, Japan. [3] Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuka Nakazawa
- 1] Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki University, Nagasaki, Japan. [2] Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Chaowan Guo
- 1] Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki University, Nagasaki, Japan. [2] Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mayuko Shimada
- 1] Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki University, Nagasaki, Japan. [2] Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mieran Sethi
- St. John's Institute of Dermatology, Guy's and St. Thomas' Hospital, London, UK
| | - Yoshito Takahashi
- Innovative Beauty Science Laboratory, Kanebo Cosmetics Inc., Odawara, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tomoo Ogi
- 1] Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki University, Nagasaki, Japan. [2] Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan. [3] Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
12
|
Kamenisch Y, Berneburg M. Mitochondrial CSA and CSB: Protein interactions and protection from ageing associated DNA mutations. Mech Ageing Dev 2013; 134:270-4. [DOI: 10.1016/j.mad.2013.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/31/2022]
|
13
|
Horibata K, Saijo M, Bay MN, Lan L, Kuraoka I, Brooks PJ, Honma M, Nohmi T, Yasui A, Tanaka K. Mutant Cockayne syndrome group B protein inhibits repair of DNA topoisomerase I-DNA covalent complex. Genes Cells 2010; 16:101-14. [PMID: 21143350 DOI: 10.1111/j.1365-2443.2010.01467.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two UV-sensitive syndrome patients who have mild photosensitivity without detectable somatic abnormalities lack detectable Cockayne syndrome group B (CSB) protein because of a homozygous null mutation in the CSB gene. In contrast, mutant CSB proteins are produced in CS-B patients with the severe somatic abnormalities of Cockayne syndrome and photosensitivity. It is known that the piggyBac transposable element derived 3 is integrated within the CSB intron 5, and that CSB-piggyBac transposable element derived 3 fusion (CPFP) mRNA is produced by alternative splicing. We found that CPFP or truncated CSB protein derived from CPFP mRNA was stably produced in CS-B patients, and that wild-type CSB, CPFP, and truncated CSB protein interacted with DNA topoisomerase I. We also found that CPFP inhibited repair of a camptothecin-induced topoisomerase I-DNA covalent complex. The inhibition was suppressed by the presence of wild-type CSB, consistent with the autosomal recessive inheritance of Cockayne syndrome. These results suggested that reduced repair of a DNA topoisomerase I-DNA covalent complex because of truncated CSB proteins is involved in the pathogenesis of CS-B.
Collapse
Affiliation(s)
- Katsuyoshi Horibata
- Human Cell Biology Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Laugel V, Dalloz C, Durand M, Sauvanaud F, Kristensen U, Vincent MC, Pasquier L, Odent S, Cormier-Daire V, Gener B, Tobias ES, Tolmie JL, Martin-Coignard D, Drouin-Garraud V, Heron D, Journel H, Raffo E, Vigneron J, Lyonnet S, Murday V, Gubser-Mercati D, Funalot B, Brueton L, Sanchez Del Pozo J, Muñoz E, Gennery AR, Salih M, Noruzinia M, Prescott K, Ramos L, Stark Z, Fieggen K, Chabrol B, Sarda P, Edery P, Bloch-Zupan A, Fawcett H, Pham D, Egly JM, Lehmann AR, Sarasin A, Dollfus H. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat 2010; 31:113-26. [PMID: 19894250 DOI: 10.1002/humu.21154] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/).
Collapse
Affiliation(s)
- V Laugel
- Laboratory of Medical Genetics, University of Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Friedman J, Adam S, Arbour L, Armstrong L, Baross A, Birch P, Boerkoel C, Chan S, Chai D, Delaney AD, Flibotte S, Gibson WT, Langlois S, Lemyre E, Li HI, MacLeod P, Mathers J, Michaud JL, McGillivray BC, Patel MS, Qian H, Rouleau GA, Van Allen MI, Yong SL, Zahir FR, Eydoux P, Marra MA. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization. BMC Genomics 2009; 10:526. [PMID: 19917086 PMCID: PMC2781027 DOI: 10.1186/1471-2164-10-526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 11/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Array genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use. RESULTS We performed 500 K Affymetrix GeneChip array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied. CONCLUSION Affymetrix GeneChip 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires considerable skill and experience.
Collapse
Affiliation(s)
- Jm Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Conte C, D'Apice MR, Botta A, Sangiuolo F, Novelli G. Prenatal diagnosis of Cockayne syndrome type A based on the identification of two novel mutations in the ERCC8 gene. Genet Test Mol Biomarkers 2009; 13:127-31. [PMID: 19309286 DOI: 10.1089/gtmb.2008.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Back Cockayne syndrome (CS; MIM 133540-216400) is a rare autosomal recessive neurodegenerative disorder characterized by progressive growth failure, microcephaly, mental retardation, retinal pigmentary degeneration, deafness, photosensitivity, accelerated systemic degeneration of somatic tissue, and premature death. Complementation assays have defined Cockayne syndrome group A (CSA) and Cockayne syndrome group B (CSB), caused by mutations in ERCC8 and ERCC6. The aim of this work was to perform a molecular analysis in a family with an affected son, who died at the age of 12, presenting clinical features typical of CSA. Molecular analysis of ERCC8 allowed us to characterize two novel mutations: a maternally inherited deletion encompassing exons 5 and 6, and a nonsense mutation located in exon 4, segregating from the father. Based on this molecular characterization, we successively performed a prenatal diagnosis on chorionic villus sampling, at 11th week of pregnancy. Molecular prenatal analysis of the ERCC8 was done by analyzing fetal DNA and RNA, looking for both mutations identified in the proband. A linkage analysis was performed using microsatellite markers located on chromosome 5q11 with the purpose to follow the segregation of the mutated alleles within the family. The fetal genotype at CSA locus resulted wild type and was confirmed at birth on biological material isolated from placenta. This study documents for the first time a molecular prenatal diagnosis of CSA, which results in the preferred approach if the mutation within the family is identified in a timely manner.
Collapse
Affiliation(s)
- Chiara Conte
- Fondazione Policlinico Tor Vergata, Rome, Italy.
| | | | | | | | | |
Collapse
|
17
|
A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci U S A 2009; 106:6209-14. [PMID: 19329487 DOI: 10.1073/pnas.0902113106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV-sensitive syndrome (UV(S)S) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA. Cockayne syndrome (CS) is another genetic disorder with sun sensitivity and defective TC-NER, caused by mutations in the CSA or CSB genes. The clinical hallmarks of CS include neurological/developmental abnormalities and premature aging. UV(S)S is genetically heterogeneous, in that it appears in individuals with mutations in CSB or in a still-unidentified gene. We report the identification of a UV(S)S patient (UV(S)S1VI) with a novel mutation in the CSA gene (p.trp361cys) that confers hypersensitivity to UV light, but not to inducers of oxidative damage that are notably cytotoxic in cells from CS patients. The defect in UV(S)S1VI cells is corrected by expression of the WT CSA gene. Expression of the p.trp361cys-mutated CSA cDNA increases the resistance of cells from a CS-A patient to oxidative stress, but does not correct their UV hypersensitivity. These findings imply that some mutations in the CSA gene may interfere with the TC-NER-dependent removal of UV-induced damage without affecting its role in the oxidative stress response. The differential sensitivity toward oxidative stress might explain the difference between the range and severity of symptoms in CS and the mild manifestations in UV(s)S patients that are limited to skin photosensitivity without precocious aging or neurodegeneration.
Collapse
|
18
|
Frosina G. The current evidence for defective repair of oxidatively damaged DNA in Cockayne syndrome. Free Radic Biol Med 2007; 43:165-77. [PMID: 17603927 DOI: 10.1016/j.freeradbiomed.2007.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/31/2007] [Accepted: 04/02/2007] [Indexed: 12/21/2022]
Abstract
Cockayne syndrome (CS) is a rare recessive disorder characterized by a number of developmental abnormalities and premature aging. Two complementation groups (A and B) have been identified so far in CS cases. Defective transcription-coupled nucleotide excision repair is the hallmark of these patients, but in recent years evidence has been presented for a possible defect in the base excision repair pathway that removes oxidized bases. Recent results indicate that both A and B complementation groups are involved but the phenotypical consequences of this flaw remain undetermined.
Collapse
Affiliation(s)
- Guido Frosina
- Department of Translational Oncology, Experimental Oncology "B" Laboratory, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|
19
|
Kleppa L, Kanavin ØJ, Klungland A, Strømme P. A novel splice site mutation in the Cockayne syndrome group A gene in two siblings with Cockayne syndrome. Neuroscience 2007; 145:1397-406. [PMID: 17084038 DOI: 10.1016/j.neuroscience.2006.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 01/26/2023]
Abstract
Cockayne syndrome (CS) is mainly caused by mutations in the Cockayne syndrome group A or B (CSA or CSB) genes which are required for a sub-pathway of nucleotide excision repair entitled transcription coupled repair. Approximately 20% of the CS patients have mutations in CSA, which encodes a 44 kDa tryptophane (Trp, W) and aspartic acid (Asp, D) amino acids (WD) repeat protein. Up to now, nine different CSA mutations have been identified. We examined two Somali siblings 9 and 12 years old with clinical features typical of CS including skin photosensitivity, progressive ataxia, spasticity, hearing loss, central and peripheral demyelination and intracranial calcifications. Molecular analysis showed a novel splice acceptor site mutation, a G to A transition in the -1 position of intervening sequence 6 (g.IVS6-1G>A), in the CSA (excision repair cross-complementing 8 (ERCC8)) gene. IVS6-1G>A results in a new 28 amino acid C-terminus and premature termination of the CSA protein (G184DFs28X). A review of the CSA protein and the 10 known CSA mutations is also presented.
Collapse
Affiliation(s)
- L Kleppa
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet HF, University of Oslo, N-0027 Oslo, Norway.
| | | | | | | |
Collapse
|
20
|
Saijo M, Hirai T, Ogawa A, Kobayashi A, Kamiuchi S, Tanaka K. Functional TFIIH is required for UV-induced translocation of CSA to the nuclear matrix. Mol Cell Biol 2007; 27:2538-47. [PMID: 17242193 PMCID: PMC1899911 DOI: 10.1128/mcb.01288-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. Mutations in Cockayne syndrome group A and B genes (CSA and CSB) result in defective TCR, but the molecular mechanism of TCR in mammalian cells is not clear. We have found that CSA protein is translocated to the nuclear matrix after UV irradiation and colocalized with the hyperphosphorylated form of RNA polymerase II and that the translocation is dependent on CSB. We developed a cell-free system for the UV-induced translocation of CSA. A cytoskeleton (CSK) buffer-soluble fraction containing CSA and a CSK buffer-insoluble fraction prepared from UV-irradiated CS-A cells were mixed. After incubation, the insoluble fraction was treated with DNase I. CSA protein was detected in the DNase I-insoluble fraction, indicating that it was translocated to the nuclear matrix. In this cell-free system, the translocation was dependent on UV irradiation, CSB function, and TCR-competent CSA. Moreover, the translocation was dependent on functional TFIIH, as well as chromatin structure and transcription elongation. These results suggest that alterations of chromatin at the RNA polymerase II stall site, which depend on CSB and TFIIH at least, are necessary for the UV-induced translocation of CSA to the nuclear matrix.
Collapse
Affiliation(s)
- Masafumi Saijo
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Rapin I, Weidenheim K, Lindenbaum Y, Rosenbaum P, Merchant SN, Krishna S, Dickson DW. Cockayne syndrome in adults: review with clinical and pathologic study of a new case. J Child Neurol 2006; 21:991-1006. [PMID: 17092472 PMCID: PMC2772653 DOI: 10.1177/08830738060210110101] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cockayne syndrome and xeroderma pigmentosum-Cockayne syndrome complex are rare autosomal recessive disorders with poorly understood biology. They are characterized by profound postnatal brain and somatic growth failure and by degeneration of multiple tissues resulting in cachexia, dementia, and premature aging. They result in premature death, usually in childhood, exceptionally in adults. This study compares the clinical course and pathology of a man with Cockayne syndrome group A who died at age 31(1/2) years with 15 adequately documented other adults with Cockayne syndrome and 5 with xeroderma pigmentosum-Cockayne syndrome complex. Slowing of head and somatic growth was apparent before age 2 years, mental retardation and slowly progressive spasticity at 4 years, ataxia and hearing loss at 9 years, visual impairment at 14 years, typical Cockayne facies at 17 years, and cachexia and dementia in his twenties, with a retained outgoing personality. He experienced several transient right and left hemipareses and two episodes of status epilepticus following falls. Neuropathology disclosed profound microencephaly, bilateral old subdural hematomas, white-matter atrophy, tigroid leukodystrophy with string vessels, oligodendrocyte proliferation, bizarre reactive astrocytes, multifocal dystrophic calcification that was most marked in the basal ganglia, advanced atherosclerosis, mixed demyelinating and axonal neuropathy, and neurogenic muscular atrophy. Cellular degeneration of the organ of Corti, spiral and vestibular ganglia, and all chambers of the eye was severe. Rarely, and for unexplained reasons, in some patients with Cockayne syndrome the course is slower than usual, resulting in survival into adulthood. The profound dwarfing, failure of brain growth, cachexia, selectivity of tissue degeneration, and poor correlation between genotypes and phenotypes are not understood. Deficient repair of DNA can increase vulnerability to oxidative stress and play a role in the premature aging, but why patients with mutations in xeroderma pigmentosum genes present with the Cockayne syndrome phenotype is still not known.
Collapse
Affiliation(s)
- Isabelle Rapin
- Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Friedman JM, Baross A, Delaney AD, Ally A, Arbour L, Armstrong L, Asano J, Bailey DK, Barber S, Birch P, Brown-John M, Cao M, Chan S, Charest DL, Farnoud N, Fernandes N, Flibotte S, Go A, Gibson WT, Holt RA, Jones SJM, Kennedy GC, Krzywinski M, Langlois S, Li HI, McGillivray BC, Nayar T, Pugh TJ, Rajcan-Separovic E, Schein JE, Schnerch A, Siddiqui A, Van Allen MI, Wilson G, Yong SL, Zahir F, Eydoux P, Marra MA. Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet 2006; 79:500-13. [PMID: 16909388 PMCID: PMC1559542 DOI: 10.1086/507471] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/06/2006] [Indexed: 11/03/2022] Open
Abstract
The cause of mental retardation in one-third to one-half of all affected individuals is unknown. Microscopically detectable chromosomal abnormalities are the most frequently recognized cause, but gain or loss of chromosomal segments that are too small to be seen by conventional cytogenetic analysis has been found to be another important cause. Array-based methods offer a practical means of performing a high-resolution survey of the entire genome for submicroscopic copy-number variants. We studied 100 children with idiopathic mental retardation and normal results of standard chromosomal analysis, by use of whole-genome sampling analysis with Affymetrix GeneChip Human Mapping 100K arrays. We found de novo deletions as small as 178 kb in eight cases, de novo duplications as small as 1.1 Mb in two cases, and unsuspected mosaic trisomy 9 in another case. This technology can detect at least twice as many potentially pathogenic de novo copy-number variants as conventional cytogenetic analysis can in people with mental retardation.
Collapse
Affiliation(s)
- J M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bertola DR, Cao H, Albano LMJ, Oliveira DP, Kok F, Marques-Dias MJ, Kim CA, Hegele RA. Cockayne syndrome type A: novel mutations in eight typical patients. J Hum Genet 2006; 51:701-705. [PMID: 16865293 DOI: 10.1007/s10038-006-0011-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/07/2006] [Indexed: 10/24/2022]
Abstract
Cockayne syndrome is a rare autosomal recessive neurodegenerative disorder. It is considered to be a heterogeneous condition based on complementation in cell fusion studies, with two major forms, namely CS-A and CS-B. CKN1 is the gene responsible for CS-A, whose mutations disrupt the transcription-coupled repair system of the actively transcribed DNA. Mutation analysis of the CKN1 gene in eight typical CS-A Brazilian patients from six families showed a gene alteration in all of them. We found a total of five novel mutations that were absent from healthy control subjects. Six affected subjects were simple homozygotes and two affected siblings were each compound heterozygotes. While the findings extend the range of mutations in CS-A, there is no obvious genotype-phenotype correlation across the mutational spectrum.
Collapse
Affiliation(s)
- Debora R Bertola
- Genetics Clinic Unit, Instituto da Criança do Hospital das Clínicas, University of São Paulo, Sao Paulo, Brazil.
- , Av. Dr. Enéas Carvalho de Aguiar, 647, Sao Paulo, 05403-900, Brazil.
| | - Henian Cao
- Robarts Research Institute, 406-100 Perth Drive, London, ON, Canada, N6A 5K8
| | - Lilian M J Albano
- Genetics Clinic Unit, Instituto da Criança do Hospital das Clínicas, University of São Paulo, Sao Paulo, Brazil
| | | | - Fernando Kok
- Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Chong A Kim
- Genetics Clinic Unit, Instituto da Criança do Hospital das Clínicas, University of São Paulo, Sao Paulo, Brazil
| | - Robert A Hegele
- Robarts Research Institute, 406-100 Perth Drive, London, ON, Canada, N6A 5K8
| |
Collapse
|
24
|
Parisi MA, Doherty D, Eckert ML, Shaw DWW, Ozyurek H, Aysun S, Giray O, Al Swaid A, Al Shahwan S, Dohayan N, Bakhsh E, Indridason OS, Dobyns WB, Bennett CL, Chance PF, Glass IA. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet 2006; 43:334-9. [PMID: 16155189 PMCID: PMC2563230 DOI: 10.1136/jmg.2005.036608] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 11/03/2022]
Abstract
BACKGROUND Joubert syndrome (JS) is an autosomal recessive disorder characterised by hypotonia, ataxia, mental retardation, altered respiratory pattern, abnormal eye movements, and a brain malformation known as the molar tooth sign (MTS) on cranial MRI. Four genetic loci have been mapped, with two genes identified (AHI1 and NPHP1). METHODS We screened a cohort of 117 JS subjects for AHI1 mutations by a combination of haplotype analysis and sequencing of the gene, and for the homozygous NPHP1 deletion by sequencing and marker analysis. RESULTS We identified a total of 15 novel AHI1 mutations in 13 families, including nonsense, missense, splice site, and insertion mutations, with some clustering in the WD40 domains. Eight families were consanguineous, but no single founder mutation was apparent. In addition to the MTS, retinal dystrophy was present in 11 of 12 informative families; however, no subjects exhibited variable features of JS such as polydactyly, encephalocele, colobomas, or liver fibrosis. In contrast to previous reports, we identified two families with affected siblings who developed renal disease consistent with nephronophthisis (NPH) in their 20s. In addition, two individuals with classic NPH were found to have homozygous NPHP1 deletions. CONCLUSIONS Overall, 11% of subjects had AHI1 mutations, while approximately 2% had the NPHP1 deletion, representing a total of less than 15% in a large JS cohort. Some preliminary genotype-phenotype correlations are possible, notably the association of renal impairment, specifically NPH, in those with NPHP1 deletions. Subjects with AHI1 mutations may be at risk of developing both retinal dystrophy and progressive kidney disease.
Collapse
Affiliation(s)
- M A Parisi
- Department of Pediatrics, Children's Hospital and Regional Medical Center and the University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Adachi M, Kawanami T, Ohshima F, Hosoya T. MR Findings of Cerebral White Matter in Cockayne Syndrome. Magn Reson Med Sci 2006; 5:41-5. [PMID: 16785726 DOI: 10.2463/mrms.5.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The characteristic magnetic resonance (MR) findings of Cockayne syndrome have been reported; however, the corresponding characteristics on diffusion-weighted and fluid-attenuated inversion recovery (FLAIR) imaging are yet to be documented. In this adult case with Cockayne syndrome, we identified small patchy subcortical lesions visualized as areas of high intensity on diffusion-weighted images and low intensity on FLAIR images. It is possible that these findings reflect active demyelinating lesions.
Collapse
Affiliation(s)
- Michito Adachi
- Department of Radiology, Ohshima Clinic, Sakurada Nishi, Yamagata, Japan.
| | | | | | | |
Collapse
|
26
|
Abstract
Whilst in part I of this diptych on aging the question why aging exists at all is discussed; this part deals with the question which mechanisms underly aging and, ultimately, dying. It appears that aging is not just an active process as such--although all kinds of internal (e.g., oxigen-free radicals) and external (e.g., UV radiation; disease) actively damage the organism--but more a passive one: it is mainly the result of a diminishing capacity to resist damaging internal and external influences, notably the capacity to repair the ensuing damage of DNA, until, indeed, the genome is entirely beyond repair and all kinds of vital functions detoriate with as a result that, in the end, the body collapses due to some final internal (e.g., a neoplasm or a CVA) or external (e.g., some infection, accident or attack) push. The time-course with which the capacity to repair DNA diminishes, however, is genetically fixed, and is associated with (even determined by) the reproductive strategy of the species in question: once the phase of reproduction is over, the reins are loosened and all kinds of genetic and physiological errors accumulate, giving rise to a large variety of pathology which ultimately carries the pertinent individual to the grave.
Collapse
Affiliation(s)
- Gerard A Schuiling
- Division of Human Biology, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
27
|
Puzianowska-Kuznicka M, Kuznicki J. Genetic alterations in accelerated ageing syndromes. Int J Biochem Cell Biol 2005; 37:947-60. [PMID: 15743670 DOI: 10.1016/j.biocel.2004.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/25/2004] [Accepted: 10/26/2004] [Indexed: 02/04/2023]
Abstract
The molecular mechanisms leading to human senescence are still not known mostly because of the complexity of the process. Different research approaches are used to study ageing including studies of monogenic segmental progeroid syndromes. None of the known progerias represents true precocious ageing. Some of them, including Werner (WS), Bloom (BS), and Rothmund-Thomson syndromes (RTS) as well as combined xeroderma pigmentosa-Cockayne syndrome (XP-CS) are characterised by features resembling precocious ageing and the increased risk of malignant disease. Such phenotypes result from the mutations of the genes encoding proteins involved in the maintenance of genomic integrity, in most cases DNA helicases. Defective functioning of these proteins affects DNA repair, recombination, replication and transcription. Other segmental progeroid syndromes, such as Hutchinson-Gilford progeria (HGPS) and Cockayne syndrome are not associated with an increased risk of cancer. In this paper we present the clinical and molecular features of selected progeroid syndromes and describe the potential implications of these data for studies of ageing and cancer development.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Endocrinology, Medical Research Center, Polish Academy of Sciences, 1a Banacha Street, 02-097 Warsaw, Poland.
| | | |
Collapse
|
28
|
Ridley AJ, Colley J, Wynford-Thomas D, Jones CJ. Characterisation of novel mutations in Cockayne syndrome type A and xeroderma pigmentosum group C subjects. J Hum Genet 2005; 50:151-154. [PMID: 15744458 DOI: 10.1007/s10038-004-0228-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 12/19/2004] [Indexed: 10/25/2022]
Abstract
We report that a subject with Cockayne syndrome type A (CS3BE) was a compound heterozygote for mutations in CKN1, the gene encoding the CSA protein (MIM 216400). CS3BE displayed a novel missense mutation (A160V) and a previously described nonsense mutation (E13X). Although residing between the second and third WD-40 repeats characteristic of the CSA protein, A160 is completely conserved in all species that possess a CKN1 homologue. We also describe a mutation in a previously uncharacterised xeroderma pigmentosum group C subject (XP8CA) in the XPC gene (MIM 278720). XP8CA was homozygous for a 2 bp TG deletion in codon 547 resulting in premature termination at codon 572. Immunoblotting of XP8CA extracts confirmed the absence of full-length XPC protein that was present in unaffected cell lines.
Collapse
Affiliation(s)
- Andrew J Ridley
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - James Colley
- Wales Gene Park, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - David Wynford-Thomas
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Christopher J Jones
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
29
|
Komatsu A, Suzuki S, Inagaki T, Yamashita K, Hashizume K. A kindred with Cockayne syndrome caused by multiple splicing variants of the CSA gene. Am J Med Genet A 2004; 128A:67-71. [PMID: 15211661 DOI: 10.1002/ajmg.a.30087] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cockayne syndrome (CS) is an autosomal recessive disorder, which is associated with abnormal UV hypersensitivity, growth retardation, and psycho-neural abnormalities. Recently, CSA protein was found to be associated with CS. We obtained mRNAs from immortal lymphoblasts derived from members of the kindred, and sequenced the CSA gene of all family members after reverse transcription (RT) of the coding region. The intact length of the CSA transcript was found in all family members except the proband with CS. Multiple abnormal splicing variant forms were revealed in all cases. No mutation was found in the sequences of the splice donor and acceptor sites of each exon in the CSA gene. UVA irradiation suppressed cell growth in the proband. There was no significant alteration of UVA sensitivity among the normal control and the family members except for the proband. These data suggest that multiple splicing variant forms of CSA mRNA, in the absence of the full-length form of the mRNA, are associated with CS.
Collapse
Affiliation(s)
- Ai Komatsu
- Department of Aging Medicine and Geriatrics, Institute on Aging and Adaptation, Division of Medicine, Shinshu University Graduate School, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- R Siddiqi
- Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
31
|
Cao H, Williams C, Carter M, Hegele RA. CKN1 (MIM 216400): mutations in Cockayne syndrome type A and a new common polymorphism. J Hum Genet 2003; 49:61-63. [PMID: 14661080 DOI: 10.1007/s10038-003-0107-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
We found that a subject with Cockayne syndrome type A was a compound heterozygote for two new mutations in CKN1 (MIM 216400): a missense mutation (A205P) and a nonsense (E13X) mutation. We also identified and characterized a new common single nucleotide polymorphism in CKN1 in five groups.
Collapse
Affiliation(s)
- Henian Cao
- Robarts Research Institute, London, Ontario, N6A 5K8, Canada
| | | | - Monica Carter
- Robarts Research Institute, London, Ontario, N6A 5K8, Canada
| | - Robert A Hegele
- Robarts Research Institute, London, Ontario, N6A 5K8, Canada.
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 406-100 Perth Drive, London, Ontario, N6A 5K8, Canada.
| |
Collapse
|