1
|
Agoni L. Alternative and aberrant splicing of human endogenous retroviruses in cancer. What about head and neck? —A mini review. Front Oncol 2022; 12:1019085. [PMID: 36338752 PMCID: PMC9631305 DOI: 10.3389/fonc.2022.1019085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are transcribed in many cancer types, including head and neck cancer. Because of accumulating mutations at proviral loci over evolutionary time, HERVs are functionally defective and cannot complete their viral life cycle. Despite that, HERV transcripts, including full-length viral RNAs and viral RNAs spliced as expected at the conventional viral splice sites, can be detected in particular conditions, such as cancer. Interestingly, non-viral–related transcription, including aberrant, non-conventionally spliced RNAs, has been reported as well. The role of HERV transcription in cancer and its contribution to oncogenesis or progression are still debated. Nonetheless, HERVs may constitute a suitable cancer biomarker or a target for therapy. Thus, ongoing research aims both to clarify the basic mechanisms underlying HERV transcription in cancer and to exploit its potential toward clinical application. In this mini-review, we summarize the current knowledge, the most recent findings, and the future perspectives of research on HERV transcription and splicing, with particular focus on head and neck cancer.
Collapse
|
2
|
Lee DH, Bae WH, Ha H, Park EG, Lee YJ, Kim WR, Kim HS. Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes. Mol Cells 2022; 45:522-530. [PMID: 35950452 PMCID: PMC9385571 DOI: 10.14348/molcells.2022.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46231, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
3
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
4
|
Engel K, Wieland L, Krüger A, Volkmer I, Cynis H, Emmer A, Staege MS. Identification of Differentially Expressed Human Endogenous Retrovirus Families in Human Leukemia and Lymphoma Cell Lines and Stem Cells. Front Oncol 2021; 11:637981. [PMID: 33996550 PMCID: PMC8117144 DOI: 10.3389/fonc.2021.637981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/13/2021] [Indexed: 12/29/2022] Open
Abstract
Endogenous retroviruses (ERVs) are becoming more and more relevant in cancer research and might be potential targets. The oncogenic potential of human ERVs (HERVs) has been recognized and includes immunosuppression, cell fusion, antigenicity of viral proteins, and regulation of neighboring genes. To decipher the role of HERVs in human cancers, we used a bioinformatics approach and analyzed RNA sequencing data from the LL-100 panel, covering 22 entities of hematopoietic neoplasias including T cell, B cell and myeloid malignancies. We compared HERV expression in this panel with hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and normal blood cells. RNA sequencing data were mapped against a comprehensive synthetic viral metagenome with 116 HERV sequences from 14 different HERV families. Of these, 13 HERV families and elements were differently expressed in malignant hematopoietic cells and stem cells. We found transcriptional upregulation of HERVE family in acute megakaryocytic and erythroid leukemia and of HERVFc family in multiple myeloma/plasma cell leukemia (PCL). The HERVFc member HERVFc-1 was found transcriptionally active in the multiple myeloma cell line OPM-2 and also in the Hodgkin lymphoma cell line L-428. The expression of HERVFc-1 in L-428 cells was validated by qRT-PCR. We also confirm transcriptional downregulation of ERV3 in acute megakaryocytic and erythroid leukemia, and HERVK in acute monocytic and myelocytic leukemia and a depression of HERVF in all malignant entities. Most of the higher expressed HERV families could be detected in stem cells including HERVK (HML-2), HERV-like, HERVV, HERVT, ERV9, HERVW, HERVF, HERVMER, ERV3, HERVH and HERVPABLB.
Collapse
Affiliation(s)
- Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lisa Wieland
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Talotta R, Atzeni F, Laska MJ. The contribution of HERV-E clone 4-1 and other HERV-E members to the pathogenesis of rheumatic autoimmune diseases. APMIS 2020; 128:367-377. [PMID: 32202683 DOI: 10.1111/apm.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Human endogenous retroviruses (HERV)-E consist of a family of more than 1300 elements, stably integrated in the human genome. Some of them are full-length proviruses able to synthesize the viral proteins gag, pol and env. The reactivation of HERV-E elements has been associated to placentation, cancer and autoimmunity. In this narrative review, we aimed to report the status of the art concerning the involvement of HERV-E in rheumatic autoimmune diseases. Following a research on PubMed database, a total of 87 articles were selected. The highest amount of evidence derives from studies on systemic lupus erythematosus (SLE), whereas a few to no data are available on other immune-mediated diseases. In SLE, the hyper-expression of HERV-E clone 4-1 in peripheral blood mononuclear cells or differentiated lymphocytes has been associated with disease activity and autoantibody production. It is likely that HERV-E take part to the pathogenesis of rheumatic autoimmune diseases but additional research is needed.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Messina, Azienda Ospedaliera "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Messina, Azienda Ospedaliera "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
6
|
Moon JM, Capra JA, Abbot P, Rokas A. Immune Regulation in Eutherian Pregnancy: Live Birth Coevolved with Novel Immune Genes and Gene Regulation. Bioessays 2019; 41:e1900072. [PMID: 31373044 DOI: 10.1002/bies.201900072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Indexed: 11/05/2022]
Abstract
Novel regulatory elements that enabled expression of pre-existing immune genes in reproductive tissues and novel immune genes with pregnancy-specific roles in eutherians have shaped the evolution of mammalian pregnancy by facilitating the emergence of novel mechanisms for immune regulation over its course. Trade-offs arising from conflicting fitness effects on reproduction and host defenses have further influenced the patterns of genetic variation of these genes. These three mechanisms (novel regulatory elements, novel immune genes, and trade-offs) played a pivotal role in refining the regulation of maternal immune systems during pregnancy in eutherians, likely facilitating the establishment of prolonged direct maternal-fetal contact in eutherians without causing immunological rejection of the genetically distinct fetus.
Collapse
Affiliation(s)
- Jiyun M Moon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
7
|
Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL. Endogenous Retroviruses: With Us and against Us. Front Chem 2017; 5:23. [PMID: 28439515 PMCID: PMC5384584 DOI: 10.3389/fchem.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian genomes are scattered with thousands of copies of endogenous retroviruses (ERVs), mobile genetic elements that are relics of ancient retroviral infections. After inserting copies into the germ line of a host, most ERVs accumulate mutations that prevent the normal assembly of infectious viral particles, becoming trapped in host genomes and unable to leave to infect other cells. While most copies of ERVs are inactive, some are transcribed and encode the proteins needed to generate new insertions at novel loci. In some cases, old copies are removed via recombination and other mechanisms. This creates a shifting landscape of ERV copies within host genomes. New insertions can disrupt normal expression of nearby genes via directly inserting into key regulatory elements or by containing regulatory motifs within their sequences. Further, the transcriptional silencing of ERVs via epigenetic modification may result in changes to the epigenetic regulation of adjacent genes. In these ways, ERVs can be potent sources of regulatory disruption as well as genetic innovation. Here, we provide a brief review of the association between ERVs and gene expression, especially as observed in pre-implantation development and placentation. Moreover, we will describe how disruption of the regulated mechanisms of ERVs may impact somatic tissues, mostly in the context of human disease, including cancer, neurodegenerative disorders, and schizophrenia. Lastly, we discuss the recent discovery that some ERVs may have been pressed into the service of their host genomes to aid in the innate immune response to exogenous viral infections.
Collapse
Affiliation(s)
- Thomas J Meyer
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science UniversityPortland, OR, USA
| | - Jimi L Rosenkrantz
- Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortland, OR, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research CenterPortland, OR, USA
| | - Lucia Carbone
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science UniversityPortland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortland, OR, USA.,Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research CenterPortland, OR, USA.,Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Oregon Health & Science University School of MedicinePortland, OR, USA
| |
Collapse
|
8
|
Denner J. Expression and function of endogenous retroviruses in the placenta. APMIS 2016; 124:31-43. [DOI: 10.1111/apm.12474] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022]
|
9
|
Gim JA, Han K, Kim HS. Identification and expression analysis of human endogenous retrovirus Y (HERV-Y) in various human tissues. Arch Virol 2015; 160:2161-8. [PMID: 26088444 DOI: 10.1007/s00705-015-2486-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/07/2015] [Indexed: 11/29/2022]
Abstract
Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome. To date, several HERV families have been identified in the human genome, with some being valid biomarkers for specific disease states. In this study, we have identified three HERV-Y elements in the human genome and characterized their structure and expression in various human tissues. New HERV-Y elements (HERV-Y101, HERV-Y102, and HERV-Y103) were detected on human chromosomes 8 and 13. In a pol-based phylogenetic tree, HERV-Y elements were closely grouped with HERV-I, -T, -E, and -R. The HERV-Y pol gene was expressed ubiquitously in all examined tissues, and it was dominantly expressed in the pons among the 12 different brain regions investigated. These results will allow future studies to elucidate the potential functional roles of HERVs in the brain and other tissues.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | | | | |
Collapse
|
10
|
Naveira H, Bello X, Abal-Fabeiro JL, Maside X. Evidence for the persistence of an active endogenous retrovirus (ERVE) in humans. Genetica 2014; 142:451-60. [PMID: 25192754 DOI: 10.1007/s10709-014-9789-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
Transposable elements (TEs) account for nearly half (44 %) of the human genome. However, their overall activity has been steadily declining over the past 35-50 million years, so that <0.05 % of TEs are presumably still "alive" (potentially transposable) in human populations. All the active elements are retrotransposons, either autonomous (LINE-1 and possibly the endogenous retrovirus ERVK), or non-autonomous (Alu and SVA, whose transposition is dependent on the LINE-1 enzymatic machinery). Here we show that a lineage of the endogenous retrovirus ERVE was recently engaged in ectopic recombination events and may have at least one potentially fully functional representative, initially reported as a novel retrovirus isolated from blood cells of a Chinese patient with chronic myeloid leukemia, which bears signals of positive selection on its envelope region. Altogether, there is strong evidence that ERVE should be included in the short list of potentially active TEs, and we give clues on how to identify human specific insertions of this element that are likely to be segregating in some of our populations.
Collapse
MESH Headings
- Animals
- Base Sequence
- Endogenous Retroviruses/classification
- Endogenous Retroviruses/genetics
- Evolution, Molecular
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Genome, Human/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- Retroelements/genetics
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Horacio Naveira
- Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Celular e Molecular, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071, A Coruña, Spain,
| | | | | | | |
Collapse
|
11
|
Strissel PL, Ruebner M, Thiel F, Wachter D, Ekici AB, Wolf F, Thieme F, Ruprecht K, Beckmann MW, Strick R. Reactivation of codogenic endogenous retroviral (ERV) envelope genes in human endometrial carcinoma and prestages: Emergence of new molecular targets. Oncotarget 2013; 3:1204-19. [PMID: 23085571 PMCID: PMC3717959 DOI: 10.18632/oncotarget.679] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endometrial carcinoma (EnCa) is the most common invasive gynaecologic carcinoma. Over 85% of EnCa are classified as endometrioid, expressing steroid hormone receptors and mostly involving pathological prestages. Human endogenous retroviruses (ERV) are chromosomally integrated genes, account for about 8% of the human genome and are implicated in the etiology of carcinomas. The majority of ERV envelope (env) coding genes are either not present or not consistently represented between common gene expression microarrays. The aim of this study was to analyse the absolute gene expression of all known 21 ERV env genes including 19 codogenic and two env genes with premature stop codons in EnCa, endometrium as well as in hyperplasia and polyps. For EnCa seven env genes had high expression with >200 mol/ng cDNA (e.g. envH1-3, Syncytin-1, envT), two middle >50 mol/ng cDNA (envFc2, erv-3) and 12 low <50 mol/ng cDNA (e.g. Syncytin-2, envV2). Regarding tumor parameters, Syncytin-1 and Syncytin-2 were significantly over-expressed in advanced stage pT2 compared to pT1b. In less differentiated EnCa Syncytin-1, erv-3, envT and envFc2 were significantly over-expressed. Syncytin-1, Syncytin-2 and erv-3 were specific to glandular epithelial cells of polyps, hyperplasia and EnCa using immunohistochemistry. An analysis of 10 patient-matched EnCa with endometrium revealed that the ERV-W 5' long terminal repeat regulating Syncytin-1 was hypomethylated, including the ERE and CRE overlapping MeCP2 sites. Functional analyses showed that 10 env genes were regulated by methylation in EnCa using the RL95-2 cell line. In conclusion, over-expressed env genes could serve as indicators for pathological pre-stages and EnCa.
Collapse
Affiliation(s)
- Pamela L Strissel
- University-Clinic Erlangen, Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
HERV-E-mediated modulation of PLA2G4A transcription in urothelial carcinoma. PLoS One 2012; 7:e49341. [PMID: 23145155 PMCID: PMC3492278 DOI: 10.1371/journal.pone.0049341] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Human endogenous retroviruses (HERV) and related elements account for more than 8% of the human genome and significantly contribute to the human transcriptome by long terminal repeat (LTR) promoter activity. In this context, HERVs are thought to intervene in the expression of adjacent genes by providing regulatory sequences (cis-effect) or via noncoding RNA including natural antisense transcripts. To address the potential impact of HERV activity in urothelial carcinoma, we comparatively analyzed the HERV transcription profiles in paired samples of non-malignant urothelium and urothelial carcinoma derived from 13 patients with bladder cancer by means of a retrovirus-specific microarray (RetroArray). We established a characteristic HERV signature consisting of six ubiquitously active HERV subgroups (E4-1, HERV-Rb, ERV9, HERV-K-T47D, NMWV3, HERV-KC4). The transcription pattern is largely identical in human urothelial carcinoma, non-malignant urothelial tissue, four tumor-derived cell lines and in a non-malignant urothelial cell line (UROtsa). Quantitative reverse transcriptase PCR (qRT-PCR) of HERV-E4-1, HERV-K(HML-6) and HERV-T(S71-TK1) revealed a bias to lower HERV activity in carcinoma samples compared to non-malignant tissue. Determination of active HERV-E4-1 loci by cloning and sequencing revealed six HERV-E4-1 proviral loci that are differentially regulated in urothelial carcinoma cells and normal tissue. Two full-length HERV-E4-1 proviruses, HERV-Ec1 and HERV-Ec6, are located in antisense orientation in introns of the genes PLA2G4A and RNGTT, respectively. PLA2G4A encodes a cytosolic phospholipase A2 (cPLA2) that is dysregulated in many human tumors. PLA2G4A and HERV-Ec1 displayed reciprocal transcript levels in 7 of 11 urothelial carcinoma patients. Moreover, reciprocal shifts were observed after treatment of UROtsa cells with HERV-Ec1 and PLA2G4A-directed siRNAs or 5-aza-2′-deoxycytidine (aza-dC) pointing to an antagonistic regulation of PLA2G4A and HERV-Ec1 transcription in human urothelial cells. We suggest that transcription of HERV-Ec1 contributes to fine tuning of cPLA2 expression, thereby facilitating tumorigenesis.
Collapse
|
13
|
Brodziak A, Ziółko E, Muc-Wierzgoń M, Nowakowska-Zajdel E, Kokot T, Klakla K. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases. Med Sci Monit 2012; 18:RA80-8. [PMID: 22648263 PMCID: PMC3560723 DOI: 10.12659/msm.882892] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This paper presents a new, recently formulated theory, which concerns the etiopathological process of autoimmune diseases. This theory takes into account the existence in the human genome, since approximately 40 million years, of so-called human endogenous retroviruses (HERVs), which are transmitted to descendants “vertically” by the germ cells. It was recently established that these generally silent sequences perform some physiological roles, but occasionally become active and influence the development of some chronic diseases like diabetes, some neoplasms, chronic diseases of the nervous system (eg, sclerosis multiplex), schizophrenia and autoimmune diseases. We present a short synopsis of immunological processes involved in the pathogenesis of autoimmune diseases, such as molecular mimicry, epitope spreading and activation of the superantigen. We then focus on experimental findings related to systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome and some diseases of hepar and otorhinal tissues. We conclude the outline of this new model of the development of chronic diseases and indicate the conclusions important for the teaching of the basis of pathology.
Collapse
Affiliation(s)
- Andrzej Brodziak
- Department of Internal Diseases, Faculty of Public Health, Medical University of Silesia, Bytom, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Schrump DS. Targeting epigenetic mediators of gene expression in thoracic malignancies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:836-45. [PMID: 22507242 DOI: 10.1016/j.bbagrm.2012.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/20/2012] [Accepted: 03/28/2012] [Indexed: 12/14/2022]
Abstract
Lung and esophageal cancers and malignant pleural mesotheliomas are highly lethal neoplasms that are leading causes of cancer-related deaths worldwide. Presently, limited information is available pertaining to epigenetic mechanisms mediating initiation and progression of these neoplasms. The following presentation will focus on the potential clinical relevance of epigenomic alterations in thoracic malignancies mediated by DNA methylation, perturbations in the histone code, and polycomb group proteins, as well as ongoing translational efforts to target epigenetic regulators of gene expression for treatment of these neoplasms. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- David S Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Rm. 4-3940, 10 Center Drive, MSC 1201, Bethesda, MD 20892-1201, USA.
| |
Collapse
|
15
|
Kämmerer U, Germeyer A, Stengel S, Kapp M, Denner J. Human endogenous retrovirus K (HERV-K) is expressed in villous and extravillous cytotrophoblast cells of the human placenta. J Reprod Immunol 2011; 91:1-8. [PMID: 21840605 DOI: 10.1016/j.jri.2011.06.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/17/2011] [Accepted: 06/25/2011] [Indexed: 12/11/2022]
Abstract
Human endogenous retroviruses (HERVs) have been shown to be important in physiological and pathophysiological processes in humans. Several HERVs have been found to be expressed in the placenta-a tissue with special immunomodulatory functions that is responsible for nutrition of the embryo and the ability of the semiallogenic trophoblast to invade. The envelope proteins of HERV-W (also known as syncytin 1) and HERV-FRD (syncytin 2) were shown to be involved in cell fusion leading to the generation of the syncytiotrophoblast. Syncytin 2 was further shown to have immunosuppressive properties. Herein we analyse the expression of another HERV, HERV-K, which is characterised by open reading frames for all viral genes. Using immunohistochemistry and Western blot analysis, expression of the transmembrane envelope (TM) protein of HERV-K was studied in normal placental and decidual tissues obtained at different gestational ages. The TM protein was expressed exclusively in villous (VT) and extravillous cytotrophoblast (EVT) cells, but not in the syncytiotrophoblast or other cells. The expression of the TM protein of HERV-K in EVT cells was confirmed by Western blot analysis of isolated c-erbB2-expressing cytotrophoblast cells. Thus, this is the first report showing expression of the TM protein of HERV-K in normal human placental tissue with an exclusive expression in cytotrophoblast cells, suggesting a potential involvement of HERV-K in placentogenesis and pregnancy. Since retroviral TM proteins including the TM protein of HERV-K have immunosuppressive properties, expression of the TM protein of HERV-K may contribute to immune protection of the fetus.
Collapse
Affiliation(s)
- U Kämmerer
- Women's Hospital, University of Würzburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Goering W, Ribarska T, Schulz WA. Selective changes of retroelement expression in human prostate cancer. Carcinogenesis 2011; 32:1484-92. [PMID: 21828060 DOI: 10.1093/carcin/bgr181] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retroelements constitute a large part of the human genome. These sequences are mostly silenced in normal cells, but genome-wide DNA hypomethylation in cancers might lead to their re-expression. Whether this re-expression really occurs in human cancers is largely unkown. We therefore investigated expression and DNA methylation of several classes of retroelements in human prostate cancer tissues and cell lines by quantitative reverse transcription-polymerase chain reaction and pyrosequencing, respectively. The most striking finding was strong and generalized increased expression of the HERV-K_22q11.23 provirus in cancers, including de novo expression of a spliced accessory Np9 transcript in some tumors. In parallel, DNA methylation in the long terminal repeat (LTR) decreased. Conversely, HERVK17 expression was significantly diminished in cancer tissues, but this decrease was unrelated to LTR methylation. Expression of both proviruses was restricted to androgen-responsive prostate cancer cell lines and LTRs sequences containing steroid hormone-responsive elements bound the androgen receptor and conferred androgen responsiveness to reporter constructs. Expression of LINE-1 5'-untranslated region (UTR) and 3'-UTR sequences in prostate cancers rather decreased, despite significant hypomethylation of the internal LINE-1 promoter. Increased expression of the young AluYa5 and AluYb8 families was restricted to individual tumors. Our findings demonstrate a surprising specificity of changes in expression and DNA methylation of retroelements in prostate cancer. In particular, LINE-1 hypomethylation does not lead to generalized overexpression, but specific human endogenous retrovirus-K proviruses display conspicuous changes in their expression hinting at significant functions during prostate carcinogenesis.
Collapse
Affiliation(s)
- Wolfgang Goering
- Department of Urology, Heinrich Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
17
|
Romanish MT, Cohen CJ, Mager DL. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol 2010; 20:246-53. [PMID: 20685251 DOI: 10.1016/j.semcancer.2010.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 01/13/2023]
Abstract
Malignancy results from a complex combination of genetic and epigenetic changes, the full effects of which are still largely unknown. Here we summarize current knowledge of the origin, retrotranspositional activity, epigenetic state, and transcription of human endogenous retroviruses (HERVs), and then discuss the potential effects of their deregulation in cancer. Evidence suggests that cancer-associated epigenetic changes most likely underlie potential HERV-mediated effects on genome and transcriptome instability and may play a role in malignancy. Despite our currently limited understanding of the importance of HERVs or other transposable elements in cancer development, we believe that the emerging era of high-throughput sequencing of cancer genomes, epigenomes, and transcriptomes will provide unprecedented opportunities to investigate these roles in the future.
Collapse
Affiliation(s)
- M T Romanish
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | |
Collapse
|
18
|
Jintaridth P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics 2010; 41:194-200. [PMID: 20145203 DOI: 10.1152/physiolgenomics.00146.2009] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interspersed repetitive sequences (IRSs) are a major contributor to genome size and may contribute to cellular functions. IRSs are subdivided according to size and functionally related structures into short interspersed elements, long interspersed elements (LINEs), DNA transposons, and LTR-retrotransposons. Many IRSs may produce RNA and regulate genes by a variety of mechanisms. The majority of DNA methylation occurs in IRSs and is believed to suppress IRS activities. Global hypomethylation, or the loss of genome-wide methylation, is a common epigenetic event not only in senescent cells but also in cancer cells. Loss of LINE-1 methylation has been characterized in many cancers. Here, we evaluated the methylation levels of peripheral blood mononuclear cells of LINE-1, Alu, and human endogenous retrovirus K (HERV-K) in 177 samples obtained from volunteers between 20 and 88 yr of age. Age was negatively associated with methylation levels of Alu (r = -0.452, P < 10(-3)) and HERV-K (r = -0.326, P < 10(-3)) but not LINE-1 (r = 0.145, P = 0.055). Loss of methylation of Alu occurred during ages 34-68 yr, and loss of methylation of HERV-K occurred during ages 40-63 yr and again during ages 64-83 yr. Interestingly, methylation of Alu and LINE-1 are directly associated, particularly at ages 49 yr and older (r = 0.49, P < 10(-3)). Therefore, only some types of IRSs lose methylation at certain ages. Moreover, Alu and HERV-K become hypomethylated differently. Finally, there may be several mechanisms of global methylation. However, not all of these mechanisms are age-dependent. This finding may lead to a better understanding of not only the biological causes and consequences of genome-wide hypomethylation but also the role of IRSs in the aging process.
Collapse
Affiliation(s)
- Pornrutsami Jintaridth
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University
| | | |
Collapse
|
19
|
Ahn K, Kim HS. Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 2009; 28:99-103. [PMID: 19669627 DOI: 10.1007/s10059-009-0107-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 7/genetics
- Colon/virology
- Endogenous Retroviruses/classification
- Endogenous Retroviruses/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Viral
- Genome, Human/genetics
- Genome, Viral/genetics
- Humans
- Liver/virology
- Lung/virology
- Male
- Neoplasms/genetics
- Neoplasms/pathology
- Neoplasms/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Species Specificity
- Testis/virology
- Uterus/virology
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- Kung Ahn
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Korea
| | | |
Collapse
|