1
|
Legen J, Lenzen B, Kachariya N, Feltgen S, Gao Y, Mergenthal S, Weber W, Klotzsch E, Zoschke R, Sattler M, Schmitz-Linneweber C. A prion-like domain is required for phase separation and chloroplast RNA processing during cold acclimation in Arabidopsis. THE PLANT CELL 2024; 36:2851-2872. [PMID: 38723165 PMCID: PMC11289645 DOI: 10.1093/plcell/koae145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/06/2024] [Indexed: 08/02/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) plants can produce photosynthetic tissue with active chloroplasts at temperatures as low as 4°C, and this process depends on the presence of the nuclear-encoded, chloroplast-localized RNA-binding protein CP29A. In this study, we demonstrate that CP29A undergoes phase separation in vitro and in vivo in a temperature-dependent manner, which is mediated by a prion-like domain (PLD) located between the two RNA recognition motif domains of CP29A. The resulting droplets display liquid-like properties and are found near chloroplast nucleoids. The PLD is required to support chloroplast RNA splicing and translation in cold-treated tissue. Together, our findings suggest that plant chloroplast gene expression is compartmentalized by inducible condensation of CP29A at low temperatures, a mechanism that could play a crucial role in plant cold resistance.
Collapse
Affiliation(s)
- Julia Legen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Nitin Kachariya
- Helmholtz Munich, Institute of Structural Biology, Ingolstädter Landstrasse 1, Munich 85764, Germany
- Department of Bioscience, Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Stephanie Feltgen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Simon Mergenthal
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Michael Sattler
- Helmholtz Munich, Institute of Structural Biology, Ingolstädter Landstrasse 1, Munich 85764, Germany
- Department of Bioscience, Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | | |
Collapse
|
2
|
Zhu J, Huang Y, Chai W, Xia P. Decoding the Chloroplast Genome of Tetrastigma (Vitaceae): Variations and Phylogenetic Selection Insights. Int J Mol Sci 2024; 25:8290. [PMID: 39125860 PMCID: PMC11312916 DOI: 10.3390/ijms25158290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Tetrastigma (Vitaceae) is known for its ornamental, medicinal, and ecological significance. However, the structural and variational characteristics of the Tetrastigma chloroplast genome and their impact on phylogenetic relationships remain underexplored. This study utilized bioinformatics methods to assemble and annotate the chloroplast genomes of 10 Tetrastigma species and compare them with five previously sequenced species. This study analyzed gene composition, simple sequence repeats, and codon usage patterns, revealing a high A/T content, uniquely identified pentanucleotide repeats in five species and several preferred codons. In addition, comparative analyses were conducted of the chloroplast genomes of 15 Tetrastigma species, examining their structural differences and identifying polymorphic hotspots (rps16, rps16-trnQ, trnS, trnD, psbC-trnS-psbZ, accD-psaI, psbE-petL-petG, etc.) suitable for DNA marker development. Furthermore, phylogenetic and selective pressure analyses were performed based on the chloroplast genomes of these 15 Tetrastigma species, validating and elucidating intra-genus relationships within Tetrastigma. Futhermore, several genes under positive selection, such as atpF and accD, were identified, shedding light on the adaptive evolution of Tetrastigma. Utilizing 40 Vitaceae species, the divergence time of Tetrastigma was estimated, clarifying the evolutionary relationships within Tetrastigma relative to other genera. The analysis revealed diverse divergences of Tetrastigma in the Miocene and Pliocene, with possible ancient divergence events before the Eocene. Furthermore, family-level selective pressure analysis identified key features distinguishing Tetrastigma from other genera, showing a higher degree of purifying selection. This research enriches the chloroplast genome data for Tetrastigma and offers new insights into species identification, phylogenetic analysis, and adaptive evolution, enhancing our understanding of the genetic diversity and evolutionary history of these species.
Collapse
Affiliation(s)
- Junqiao Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weiguo Chai
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China;
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
van Wijk KJ, Bentolila S, Leppert T, Sun Q, Sun Z, Mendoza L, Li M, Deutsch EW. Detection and editing of the updated Arabidopsis plastid- and mitochondrial-encoded proteomes through PeptideAtlas. PLANT PHYSIOLOGY 2024; 194:1411-1430. [PMID: 37879112 DOI: 10.1093/plphys/kiad572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) ecotype Col-0 has plastid and mitochondrial genomes encoding over 100 proteins. Public databases (e.g. Araport11) have redundancy and discrepancies in gene identifiers for these organelle-encoded proteins. RNA editing results in changes to specific amino acid residues or creation of start and stop codons for many of these proteins, but the impact of RNA editing at the protein level is largely unexplored due to the complexities of detection. Here, we assembled the nonredundant set of identifiers, their correct protein sequences, and 452 predicted nonsynonymous editing sites of which 56 are edited at lower frequency. We then determined accumulation of edited and/or unedited proteoforms by searching ∼259 million raw tandem MS spectra from ProteomeXchange, which is part of PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/). We identified all mitochondrial proteins and all except 3 plastid-encoded proteins (NdhG/Ndh6, PsbM, and Rps16), but no proteins predicted from the 4 ORFs were identified. We suggest that Rps16 and 3 of the ORFs are pseudogenes. Detection frequencies for each edit site and type of edit (e.g. S to L/F) were determined at the protein level, cross-referenced against the metadata (e.g. tissue), and evaluated for technical detection challenges. We detected 167 predicted edit sites at the proteome level. Minor frequency sites were edited at low frequency at the protein level except for cytochrome C biogenesis 382 at residue 124 (Ccb382-124). Major frequency sites (>50% editing of RNA) only accumulated in edited form (>98% to 100% edited) at the protein level, with the exception of Rpl5-22. We conclude that RNA editing for major editing sites is required for stable protein accumulation.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Margaret Li
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| |
Collapse
|
4
|
Gaikwad AB, Kaila T, Maurya A, Kumari R, Rangan P, Wankhede DP, Bhat KV. The chloroplast genome of black pepper ( Piper nigrum L.) and its comparative analysis with related Piper species. FRONTIERS IN PLANT SCIENCE 2023; 13:1095781. [PMID: 36714762 PMCID: PMC9878596 DOI: 10.3389/fpls.2022.1095781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Piper nigrum, also known as black pepper, is an economically and ecologically important crop of the genus Piper. It has been titled as the king of spices due to its wide consumption throughout the world. In the present investigation, the chloroplast genome of P. nigrum has been assembled from a whole genome sequence by integrating the short and long reads generated through Illumina and PacBio platforms, respectively. The chloroplast genome was observed to be 161,522 bp in size, having a quadripartite structure with a large single copy (LSC) region of 89,153 bp and a small single copy (SSC) region of 18,255 bp separated by a copy of inverted repeats (IRs), each 27,057 bp in length. Taking into consideration all the duplicated genes, a total of 131 genes were observed, which included 81 protein-coding genes, 37 tRNAs, 4 rRNAs, and 1 pseudogene. Individually, the LSC region consisted of 83 genes, the SSC region had 13 genes, and 18 genes were present in each IR region. Additionally, 216 SSRs were detected and 11 of these were validated through amplification in 12 species of Piper. The features of the chloroplast genome have been compared with those of the genus Piper. Our results provide useful insights into evolutionary and molecular studies of black pepper which will contribute to its further genetic improvement and breeding.
Collapse
Affiliation(s)
- Ambika Baldev Gaikwad
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Tanvi Kaila
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ratna Kumari
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Parimalan Rangan
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - K. V. Bhat
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
5
|
Cao Q, Gao Q, Ma X, Zhang F, Xing R, Chi X, Chen S. Plastome structure, phylogenomics and evolution of plastid genes in Swertia (Gentianaceae) in the Qing-Tibetan Plateau. BMC PLANT BIOLOGY 2022; 22:195. [PMID: 35413790 PMCID: PMC9004202 DOI: 10.1186/s12870-022-03577-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/28/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND The genus Swertia is of great medicinal importance and one of the most taxonomically challenging taxa within Gentianaceae, largely due to the morphological similarities of species within this genus and with its closely related genera. Previous molecular studies confirmed its polyphyly but suffered from low phylogenetic resolutions because only limited sequence loci were used. Thus, we conducted the structural, gene evolutionary, and phylogenetic analyses of 11 newly obtained plastomes of Swertia. Our result greatly improved the phylogenetic resolutions in Swertia, shed new light on the plastome evolution and phylogenetic relationships of this genus. RESULTS The 11 Swertia plastomes together with the published seven species proved highly similar in overall size, structure, gene order, and content, but revealed some structural variations caused by the expansion and contraction of the IRb region into the LSC region, due to the heterogeneous length of the ψycf1. The gene rps16 was found to be in a state flux with pseudogenes or completely lost. Similar situation was also documented in other genera of Gentianaceae. This might imply loss of the gene in the common ancestor of Gentianaceae. The distribution plot of ENC vs. GC3 showed all these plastomes arranging very close in the Wright line with an expected ENC value (49-52%), suggesting the codon usage of Swertia was mainly constrained by a GC mutation bias. Most of the genes remained under the purifying selection, however, the cemA was identified under positive selection, possibly reflecting an adaptive response to low CO2 atmospheric conditions during the Late Miocene. Our phylogenomic analyses, based on 74 protein-coding genes (CDS), supported the polyphyly of Swertia with its close allies in the subtribe Swertiinae, presumably due to recent rapid radiation. The topology inferred from our phylogenetic analyses partly supported the current taxonomic treatment. Finally, several highly variable loci were identified, which can be used in future phylogenetic studies and accurate identification of medicinal genuineness of Swertia. CONCLUSIONS Our study confirmed the polyphyly of Swertia and demonstrated the power of plastome phylogenomics in improvement of phylogenetic resolution, thus contributing to a better understanding of the evolutionary history of Swertia.
Collapse
Affiliation(s)
- Qian Cao
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingbo Gao
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaolei Ma
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Faqi Zhang
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Rui Xing
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaofeng Chi
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shilong Chen
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
6
|
Feng L, Lin H, Kang M, Ren Y, Yu X, Xu Z, Wang S, Li T, Yang W, Hu Q. A chromosome-level genome assembly of an alpine plant Crucihimalaya lasiocarpa provides insights into high-altitude adaptation. DNA Res 2022; 29:dsac004. [PMID: 35094078 PMCID: PMC8801980 DOI: 10.1093/dnares/dsac004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
It remains largely unknown how plants adapt to high-altitude habitats. Crucihimalaya (Brassicaceae) is an alpine genus occurring in the Qinghai-Tibet Plateau characterized by cold temperatures and strong ultraviolet radiation. Here, we generated a chromosome-level genome for C. lasiocarpa with a total size of 255.8 Mb and a scaffold N50 size of 31.9 Mb. We first examined the karyotype origin of this species and found that the karyotype of five chromosomes resembled the ancestral karyotype of the Brassicaceae family, while the other three showed strong chromosomal structural variations. In combination with the rough genome sequence of another congener (C. himalaica), we found that the significantly expanded gene families and positively selected genes involved in alpine adaptation have occurred since the origin of this genus. Our new findings provide valuable information for the chromosomal karyotype evolution of Brassicaceae and investigations of high-altitude environment adaptation of the genus.
Collapse
Affiliation(s)
- Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minghui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yumeng Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xi Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhanpeng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shuo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Zhang Y, Yu J, Xia M, Chi X, Khan G, Chen S, Zhang F. Plastome sequencing reveals phylogenetic relationships among Comastoma and related taxa (Gentianaceae) from the Qinghai-Tibetan Plateau. Ecol Evol 2021; 11:16034-16046. [PMID: 34824809 PMCID: PMC8601884 DOI: 10.1002/ece3.8274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/07/2022] Open
Abstract
Genus Comastoma (subt. Swertiinae, Gentianaceae) contains species, such as "Zangyinchen," that are important herbs in Tibetan medicine. The phylogenetic relationship of this within Gentianaceae and the circumscriptions of its species have long been controversial with conflicting morphological and molecular data reported. Here, we used whole chloroplast genome sequences for Comastoma species and related taxa to reconstruct their phylogeny and clarify their taxonomic relationships. The results revealed that the length of all plastome sequenced varied from 149 to 151 kb and have high similarity in structure and gene content. Phylogenomic analysis showed that Comastoma is a monophyletic group, closely related to the genus Lomatogonium. The divergence time estimation showed that Gentianaceae diverged at about 21.81 Ma, while the split of Comastoma occurred at 7.70 Ma. However, the results suggested the crown age of species formation in this genus is after 4.19 Ma. Our results suggest that QTP uplift, the alternation of Quaternary glaciation and interglaciation, and monsoon changes might have acted as drivers of speciation in Comastoma.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology & Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology & Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingze Xia
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology & Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaofeng Chi
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology & Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
| | - Gulzar Khan
- Institute for Biology and Environmental SciencesCarl von Ossietzky‐University OldenburgOldenburgGermany
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology & Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology & Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| |
Collapse
|
8
|
Zhang L, Chen J, Zhang L, Wei Y, Li Y, Xu X, Wu H, Yang ZN, Huang J, Hu F, Huang W, Cui YL. The pentatricopeptide repeat protein EMB1270 interacts with CFM2 to splice specific group II introns in Arabidopsis chloroplasts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1952-1966. [PMID: 34427970 DOI: 10.1111/jipb.13165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Chloroplast biogenesis requires the coordinated expression of chloroplast and nuclear genes. Here, we show that EMB1270, a plastid-localized pentatricopeptide repeat (PPR) protein, is required for chloroplast biogenesis in Arabidopsis thaliana. Knockout of EMB1270 led to embryo arrest, whereas a mild knockdown mutant of EMB1270 displayed a virescent phenotype. Almost no photosynthetic proteins accumulated in the albino emb1270 knockout mutant. By contrast, in the emb1270 knockdown mutant, the levels of ClpP1 and photosystem I (PSI) subunits were significantly reduced, whereas the levels of photosystem II (PSII) subunits were normal. Furthermore, the splicing efficiencies of the clpP1.2, ycf3.1, ndhA, and ndhB plastid introns were dramatically reduced in both emb1270 mutants. RNA immunoprecipitation revealed that EMB1270 associated with these introns in vivo. In an RNA electrophoretic mobility shift assay (REMSA), a truncated EMB1270 protein containing the 11 N-terminal PPR motifs bound to the predicted sequences of the clpP1.2, ycf3.1, and ndhA introns. In addition, EMB1270 specifically interacted with CRM Family Member 2 (CFM2). Given that CFM2 is known to be required for splicing the same plastid RNAs, our results suggest that EMB1270 associates with CFM2 to facilitate the splicing of specific group II introns in Arabidopsis.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yajuan Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyun Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenhong Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yong-Lan Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
9
|
Liu Y, Watanabe M, Yasukawa S, Kawamura Y, Aneklaphakij C, Fernie AR, Tohge T. Cross-Species Metabolic Profiling of Floral Specialized Metabolism Facilitates Understanding of Evolutional Aspects of Metabolism Among Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:640141. [PMID: 33868339 PMCID: PMC8045754 DOI: 10.3389/fpls.2021.640141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 05/24/2023]
Abstract
Plants produce a variety of floral specialized (secondary) metabolites with roles in several physiological functions, including light-protection, attraction of pollinators, and protection against herbivores. Pigments and volatiles synthesized in the petal have been focused on and characterized as major chemical factors influencing pollination. Recent advances in plant metabolomics have revealed that the major floral specialized metabolites found in land plant species are hydroxycinnamates, phenolamides, and flavonoids albeit these are present in various quantities and encompass diverse chemical structures in different species. Here, we analyzed numerous floral specialized metabolites in 20 different Brassicaceae genotypes encompassing both different species and in the case of crop species different cultivars including self-compatible (SC) and self-incompatible (SI) species by liquid chromatography-mass spectrometry (LC-MS). Of the 228 metabolites detected in flowers among 20 Brassicaceae species, 15 metabolite peaks including one phenylacyl-flavonoids and five phenolamides were detected and annotated as key metabolites to distinguish SC and SI plant species, respectively. Our results provide a family-wide metabolic framework and delineate signatures for compatible and incompatible genotypes thereby providing insight into evolutionary aspects of floral metabolism in Brassicaceae species.
Collapse
Affiliation(s)
- Yuting Liu
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Sayuri Yasukawa
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Yuriko Kawamura
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Chaiwat Aneklaphakij
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
10
|
Gawroński P, Enroth C, Kindgren P, Marquardt S, Karpiński S, Leister D, Jensen PE, Vinther J, Scharff LB. Light-Dependent Translation Change of Arabidopsis psbA Correlates with RNA Structure Alterations at the Translation Initiation Region. Cells 2021; 10:322. [PMID: 33557293 PMCID: PMC7914831 DOI: 10.3390/cells10020322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023] Open
Abstract
mRNA secondary structure influences translation. Proteins that modulate the mRNA secondary structure around the translation initiation region may regulate translation in plastids. To test this hypothesis, we exposed Arabidopsis thaliana to high light, which induces translation of psbA mRNA encoding the D1 subunit of photosystem II. We assayed translation by ribosome profiling and applied two complementary methods to analyze in vivo RNA secondary structure: DMS-MaPseq and SHAPE-seq. We detected increased accessibility of the translation initiation region of psbA after high light treatment, likely contributing to the observed increase in translation by facilitating translation initiation. Furthermore, we identified the footprint of a putative regulatory protein in the 5' UTR of psbA at a position where occlusion of the nucleotide sequence would cause the structure of the translation initiation region to open up, thereby facilitating ribosome access. Moreover, we show that other plastid genes with weak Shine-Dalgarno sequences (SD) are likely to exhibit psbA-like regulation, while those with strong SDs do not. This supports the idea that changes in mRNA secondary structure might represent a general mechanism for translational regulation of psbA and other plastid genes.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (P.G.); (S.K.)
| | - Christel Enroth
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (C.E.); (J.V.)
| | - Peter Kindgren
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (P.G.); (S.K.)
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany;
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - Jeppe Vinther
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (C.E.); (J.V.)
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| |
Collapse
|
11
|
Park KT, Park S. Phylogenomic Analyses of Hepatica Species and Comparative Analyses Within Tribe Anemoneae (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:638580. [PMID: 34149746 PMCID: PMC8211876 DOI: 10.3389/fpls.2021.638580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 05/15/2023]
Abstract
Hepatica is a small genus of Ranunculaceae with medicinal and horticultural value. We characterized nine complete chloroplast (cp) genomes of Hepatica, which ranged from 159,549 to 161,081 bp in length and had a typical quadripartite structure with a large single-copy region (LSC; 80,270-81,249 bp), a small single-copy region (SSC; 17,029-17,838 bp), and two copies of inverted repeat (IR; 31,008-31,100 bp). The cp genomes of Hepatica possess 76 protein-coding genes (PCGs), 29 tRNAs, and four rRNA genes. Comparative analyses revealed a conserved ca. 5-kb IR expansion in Hepatica and other Anemoneae; moreover, multiple inversion events occurred in Hepatica and its relatives. Analyses of selection pressure (dN/dS) showed that most of the PCGs are highly conserved except for rpl20 and rpl22 in Hepatica falconeri, Hepatica americana, and Hepatica acutiloba. Two genes (rps16 and infA) were identified as pseudogenes in Hepatica. In contrast, rpl32 gene was completely lost. The phylogenetic analyses based on 76 PCGs resolved the phylogeny of Hepatica and its related genera. Non-monophyly of Anemone s.l. indicates that Hepatica should be reclassified as an independent genus. In addition, Hepatica nobilis var. japonica is not closely related to H. nobilis.
Collapse
|
12
|
Gomes Pacheco T, Morais da Silva G, de Santana Lopes A, de Oliveira JD, Rogalski JM, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. Phylogenetic and evolutionary features of the plastome of Tropaeolum pentaphyllum Lam. (Tropaeolaceae). PLANTA 2020; 252:17. [PMID: 32666132 DOI: 10.1007/s00425-020-03427-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Complete plastome sequence of Tropaeolum pentaphyllum revealed molecular markers, hotspots of nucleotide polymorphism, RNA editing sites and phylogenetic aspects Tropaeolaceae Juss. ex DC. comprises approximately 95 species across North and South Americas. Tropaeolum pentaphyllum Lam. is an unconventional and endangered species with occurrence in some countries of South America. Although this species presents nutritional, medicinal and ornamental uses, genetic studies involving natural populations or promising genotypes are practically non-existent. Here, we report the nucleotide sequence of T. pentaphyllum plastome. It represents the first complete plastome sequence of the family Tropaeolaceae to be fully sequenced and analyzed in detail. The sequencing data revealed that the T. pentaphyllum plastome is highly similar to the plastomes of other Brassicales. Notwithstanding, our analyses detected some specific features concerning events of IR expansion and structural changes in some genes such as matK, rpoA, and rpoC2. We also detected 251 SSR loci, nine hotspots of nucleotide polymorphism, and two specific RNA editing sites in the plastome of T. pentaphyllum. Moreover, plastid phylogenomic inference indicated a closed relationship between the families Tropaeolaceae and Akaniaceae, which formed a sister group to Moringaceae-Caricaceae. Finally, our data bring new molecular markers and evolutionary features to be applied in the natural population, germplasm collection, and genotype selection aiming conservation, genetic diversity evaluation, and exploitation of this endangered species.
Collapse
Affiliation(s)
- Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gleyson Morais da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - José Daniel de Oliveira
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Juliana Marcia Rogalski
- Núcleo de Ciências Biológicas e Ambientais, Instituto Federal do Rio Grande do Sul, Distrito Engenheiro Luiz Englert, Sertão, RS, Brazil
| | - Eduardo Balsanelli
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
13
|
Chen X, Fang D, Wu C, Liu B, Liu Y, Sahu SK, Song B, Yang S, Yang T, Wei J, Wang X, Zhang W, Xu Q, Wang H, Yuan L, Liao X, Chen L, Chen Z, Yuan F, Chang Y, Lu L, Yang H, Wang J, Xu X, Liu X, Wicke S, Liu H. Comparative Plastome Analysis of Root- and Stem-Feeding Parasites of Santalales Untangle the Footprints of Feeding Mode and Lifestyle Transitions. Genome Biol Evol 2020; 12:3663-3676. [PMID: 31845987 PMCID: PMC6953812 DOI: 10.1093/gbe/evz271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
In plants, parasitism triggers the reductive evolution of plastid genomes (plastomes). To disentangle the molecular evolutionary associations between feeding on other plants below- or aboveground and general transitions from facultative to obligate parasitism, we analyzed 34 complete plastomes of autotrophic, root- and stem-feeding hemiparasitic, and holoparasitic Santalales. We observed inexplicable losses of housekeeping genes and tRNAs in hemiparasites and dramatic genomic reconfiguration in holoparasitic Balanophoraceae, whose plastomes have exceptionally low GC contents. Genomic changes are related primarily to the evolution of hemi- or holoparasitism, whereas the transition from a root- to a stem-feeding mode plays no major role. In contrast, the rate of molecular evolution accelerates in a stepwise manner from autotrophs to root- and then stem-feeding parasites. Already the ancestral transition to root-parasitism coincides with a relaxation of selection in plastomes. Another significant selectional shift in plastid genes occurs as stem-feeders evolve, suggesting that this derived form coincides with trophic specialization despite the retention of photosynthetic capacity. Parasitic Santalales fill a gap in our understanding of parasitism-associated plastome degeneration. We reveal that lifestyle-genome associations unfold interdependently over trophic specialization and feeding mode transitions, where holoparasitic Balanophoraceae provide a system for exploring the functional realms of plastomes.
Collapse
Affiliation(s)
- Xiaoli Chen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dongming Fang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chenyu Wu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen, China.,Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Bo Song
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shuai Yang
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medical, Qingdao University, China
| | - Tuo Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jinpu Wei
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xuebing Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wen Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Qiwu Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huafeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Langxing Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xuezhu Liao
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lipeng Chen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ziqiang Chen
- College of Chinese Medicine Materials, Jilin Agricultural University, China
| | - Fu Yuan
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yue Chang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lihua Lu
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Germany†These authors contributed equally to this work
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
14
|
The complete chloroplast genome of Stryphnodendron adstringens (Leguminosae - Caesalpinioideae): comparative analysis with related Mimosoid species. Sci Rep 2019; 9:14206. [PMID: 31578450 PMCID: PMC6775074 DOI: 10.1038/s41598-019-50620-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023] Open
Abstract
Stryphnodendron adstringens is a medicinal plant belonging to the Leguminosae family, and it is commonly found in the southeastern savannas, endemic to the Cerrado biome. The goal of this study was to assemble and annotate the chloroplast genome of S. adstringens and to compare it with previously known genomes of the mimosoid clade within Leguminosae. The chloroplast genome was reconstructed using de novo and referenced-based assembly of paired-end reads generated by shotgun sequencing of total genomic DNA. The size of the S. adstringens chloroplast genome was 162,169 bp. This genome included a large single-copy (LSC) region of 91,045 bp, a small single-copy (SSC) region of 19,014 bp and a pair of inverted repeats (IRa and IRb) of 26,055 bp each. The S. adstringens chloroplast genome contains a total of 111 functional genes, including 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. A total of 137 SSRs and 42 repeat structures were identified in S. adstringens chloroplast genome, with the highest proportion in the LSC region. A comparison of the S. adstringens chloroplast genome with those from other mimosoid species indicated that gene content and synteny are highly conserved in the clade. The phylogenetic reconstruction using 73 conserved coding-protein genes from 19 Leguminosae species was supported to be paraphyletic. Furthermore, the noncoding and coding regions with high nucleotide diversity may supply valuable markers for molecular evolutionary and phylogenetic studies at different taxonomic levels in this group.
Collapse
|
15
|
Filyushin MA, Mazur AM, Shchennikova AV, Kochieva ЕZ. Comparative analysis of the complete plastomes of garlic Allium sativum and bulb onion Allium cepa. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sequencing and comparative characterization of plant plastid genomes, or plastomes, is an important tool for modern phylogenetic and taxonomic studies, as well as for understanding the plastome evolution. The genusAlliumL. (family Amaryllidaceae) incorporates more than 900 species, includes economically significant vegetable crops such as garlicA. sativum, onionA. cepa, leekA. porrum, etc. In this work, the plastome of garlicA. sativumhas been completely sequenced. TheA. sativumplastome is 153172 bp in size. It consists of a large unique (LSC, 82035 bp) and small unique (SSC, 18015 bp) copies, separated by inverted repeats (IRa and IRb) of 26561 bp each. In the garlic plastome, 134 genes have been annotated: 82 protein-coding genes, 38 tRNA genes, 8 rRNA genes, and 6 pseudogenes. Comparative analysis ofA. sativumandA. cepaplastomes reveals differences in the sizes of structural elements and spacers at the inverted repeat boundaries. The total numbers of genes inA. sativumandA. cepaare the same, but the gene composition is different: therpl22gene is functional inA. sativum, being a pseudogene inA. cepa; conversely, therps16gene is a pseudogene inA. sativumand a protein-coding gene inA. cepa. In theA. sativumandA. cepaplastomes, 32 SSR sequences have been identified. More than half of them are dinucleotides, and the remaining are tetra-, penta-, and hexanucleotides at the same time, trinucleotides were absent. The compared plastomes differ in the numbers of certain SSRs, and some are present in only one of the species.
Collapse
|
16
|
Liu W, Kong H, Zhou J, Fritsch PW, Hao G, Gong W. Complete Chloroplast Genome of Cercis chuniana (Fabaceae) with Structural and Genetic Comparison to Six Species in Caesalpinioideae. Int J Mol Sci 2018; 19:E1286. [PMID: 29693617 PMCID: PMC5983592 DOI: 10.3390/ijms19051286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022] Open
Abstract
The subfamily Caesalpinioideae of the Fabaceae has long been recognized as non-monophyletic due to its controversial phylogenetic relationships. Cercis chuniana, endemic to China, is a representative species of Cercis L. placed within Caesalpinioideae in the older sense. Here, we report the whole chloroplast (cp) genome of C. chuniana and compare it to six other species from the Caesalpinioideae. Comparative analyses of gene synteny and simple sequence repeats (SSRs), as well as estimation of nucleotide diversity, the relative ratios of synonymous and nonsynonymous substitutions (dn/ds), and Kimura 2-parameter (K2P) interspecific genetic distances, were all conducted. The whole cp genome of C. chuniana was found to be 158,433 bp long with a total of 114 genes, 81 of which code for proteins. Nucleotide substitutions and length variation are present, particularly at the boundaries among large single copy (LSC), inverted repeat (IR) and small single copy (SSC) regions. Nucleotide diversity among all species was estimated to be 0.03, the average dn/ds ratio 0.3177, and the average K2P value 0.0372. Ninety-one SSRs were identified in C. chuniana, with the highest proportion in the LSC region. Ninety-seven species from the old Caesalpinioideae were selected for phylogenetic reconstruction, the analysis of which strongly supports the monophyly of Cercidoideae based on the new classification of the Fabaceae. Our study provides genomic information for further phylogenetic reconstruction and biogeographic inference of Cercis and other legume species.
Collapse
Affiliation(s)
- Wanzhen Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China.
| | - Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Juan Zhou
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China.
| | - Peter W Fritsch
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107, USA.
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China.
| | - Wei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China.
| |
Collapse
|
17
|
Kong H, Liu W, Yao G, Gong W. A comparison of chloroplast genome sequences in Aconitum (Ranunculaceae): a traditional herbal medicinal genus. PeerJ 2017; 5:e4018. [PMID: 29134154 PMCID: PMC5680694 DOI: 10.7717/peerj.4018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022] Open
Abstract
The herbal medicinal genus Aconitum L., belonging to the Ranunculaceae family, represents the earliest diverging lineage within the eudicots. It currently comprises of two subgenera, A. subgenus Lycoctonum and A. subg. Aconitum. The complete chloroplast (cp) genome sequences were characterized in three species: A. angustius, A. finetianum, and A. sinomontanum in subg. Lycoctonum and compared to other Aconitum species to clarify their phylogenetic relationship and provide molecular information for utilization of Aconitum species particularly in Eastern Asia. The length of the chloroplast genome sequences were 156,109 bp in A. angustius, 155,625 bp in A. finetianum and 157,215 bp in A. sinomontanum, with each species possessing 126 genes with 84 protein coding genes (PCGs). While genomic rearrangements were absent, structural variation was detected in the LSC/IR/SSC boundaries. Five pseudogenes were identified, among which Ψrps19 and Ψycf1 were in the LSC/IR/SSC boundaries, Ψrps16 and ΨinfA in the LSC region, and Ψycf15 in the IRb region. The nucleotide variability (Pi) of Aconitum was estimated to be 0.00549, with comparably higher variations in the LSC and SSC than the IR regions. Eight intergenic regions were revealed to be highly variable and a total of 58-62 simple sequence repeats (SSRs) were detected in all three species. More than 80% of SSRs were present in the LSC region. Altogether, 64.41% and 46.81% of SSRs are mononucleotides in subg. Lycoctonum and subg. Aconitum, respectively, while a higher percentage of di-, tri-, tetra-, and penta- SSRs were present in subg. Aconitum. Most species of subg. Aconitum in Eastern Asia were first used for phylogenetic analyses. The availability of the complete cp genome sequences of these species in subg. Lycoctonum will benefit future phylogenetic analyses and aid in germplasm utilization in Aconitum species.
Collapse
Affiliation(s)
- Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wanzhen Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, Ourari M, Aïnouche M, Salmon A, Cabello-Hurtado F, Aïnouche A. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res 2017; 24:343-358. [PMID: 28338826 PMCID: PMC5737547 DOI: 10.1093/dnares/dsx006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 01/21/2023] Open
Abstract
The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades.
Collapse
Affiliation(s)
- J Keller
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - M Rousseau-Gueutin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France.,IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| | - G E Martin
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398 Montpellier, France
| | - J Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| | - J Boutte
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - E Coissac
- Laboratoire d'Ecologie Alpine, CNRS - Université de Grenoble 1 - Université de Savoie, 38041 Grenoble, France
| | - M Ourari
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie, Université Abderrahmane Mira, 06000 Bejaia, Algeria
| | - M Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - F Cabello-Hurtado
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| |
Collapse
|
19
|
Chloroplast Genome Sequence of Clusterbean (Cyamopsis tetragonoloba L.): Genome Structure and Comparative Analysis. Genes (Basel) 2017; 8:genes8090212. [PMID: 28925932 PMCID: PMC5615346 DOI: 10.3390/genes8090212] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
Clusterbean (Cyamopsis tetragonoloba L.), also known as guar, belongs to the family Leguminosae, and is an annual herbaceous legume. Guar is the main source of galactomannan for gas mining industries. In the present study, the draft chloroplast genome of clusterbean was generated and compared to some of the previously reported legume chloroplast genomes. The chloroplast genome of clusterbean is 152,530 bp in length, with a quadripartite structure consisting of large single copy (LSC) and small single copy (SSC) of 83,025 bp and 17,879 bp in size, respectively, and a pair of inverted repeats (IRs) of 25,790 bp in size. The chloroplast genome contains 114 unique genes, which includes 78 protein coding genes, 30 tRNAs, 4 rRNAs genes, and 2 pseudogenes. It also harbors a 50 kb inversion, typical of the Leguminosae family. The IR region of the clusterbean chloroplast genome has undergone an expansion, and hence, the whole rps19 gene is included in the IR, as compared to other legume plastid genomes. A total of 220 simple sequence repeats (SSRs) were detected in the clusterbean plastid genome. The analysis of the clusterbean plastid genome will provide useful insights for evolutionary, molecular and genetic engineering studies.
Collapse
|
20
|
Raman G, Park V, Kwak M, Lee B, Park S. Characterization of the complete chloroplast genome of Arabis stellari and comparisons with related species. PLoS One 2017; 12:e0183197. [PMID: 28809950 PMCID: PMC5557495 DOI: 10.1371/journal.pone.0183197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023] Open
Abstract
Arabis stellari var. japonica is an ornamental plant of the Brassicaceae family, and is widely distributed in South Korea. However, no information is available about its molecular biology and no genomic study has been performed on A. stellari. In this paper, the authors report the complete chloroplast genome sequence of A. stellari. The plastome of A. stellari was 153,683 bp in length with 36.4% GC and included a pair of inverted repeats (IRs) of 26,423 bp that separated a large single-copy (LSC) region of 82,807 bp and a small single-copy (SSC) region of 18,030 bp. It was also found to contain 113 unique genes, of which 79 were protein-coding genes, 30 were transfer RNAs, and four were ribosomal RNAs. The gene content and organization of the A. stellari chloroplast genome were similar to those of other Brassicaceae genomes except for the absence of the rps16 protein-coding gene. A total of 991 SSRs were identified in the genome. The chloroplast genome of A. stellari was compared with closely related species of the Brassicaceae family. Comparative analysis showed a minor divergence occurred in the protein-coding matK, ycf1, ccsA, accD and rpl22 genes and that the KA/KS nucleotide substitution ratio of the ndhA genes of A. stellari and A. hirsuta was 1.35135. The genes infA and rps16 were absent in the Arabis genus and phylogenetic evolutionary studies revealed that these genes evolved independently. However, phylogenetic analysis showed that the positions of Brassicaceae species are highly conserved. The present study provides A. stellari genomic information that may be found useful in conservation and molecular phylogenetic studies on Brassicaceae.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Veronica Park
- Mcneil high school, Austin, Texas, United States of America
| | - Myounghai Kwak
- Plant Resources Division, National Institute of Biological Resources of Korea, Incheon, Republic of Korea
| | - Byoungyoon Lee
- Plant Resources Division, National Institute of Biological Resources of Korea, Incheon, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, Zhang D, Ma T, Hu Q, Al-Shehbaz IA, Koch MA. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics 2017; 18:176. [PMID: 28209119 PMCID: PMC5312533 DOI: 10.1186/s12864-017-3555-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
Background The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Results Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Conclusions Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3555-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinyi Guo
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Jianquan Liu
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China.
| | - Guoqian Hao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China.,Biodiversity Institute of Mount Emei, Mount Emei Scenic Area Management Committee, 614200, Leshan, Sichuan, People's Republic of China
| | - Lei Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Kangshan Mao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Xiaojuan Wang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Dan Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Tao Ma
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Quanjun Hu
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | | | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Im Neuenheimer Feld 345, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, Zhang D, Ma T, Hu Q, Al-Shehbaz IA, Koch MA. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics 2017. [PMID: 28209119 DOI: 10.1186/s12864-017-3555-3553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. RESULTS Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. CONCLUSIONS Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.
Collapse
Affiliation(s)
- Xinyi Guo
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Jianquan Liu
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China.
| | - Guoqian Hao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
- Biodiversity Institute of Mount Emei, Mount Emei Scenic Area Management Committee, 614200, Leshan, Sichuan, People's Republic of China
| | - Lei Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Kangshan Mao
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Xiaojuan Wang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Dan Zhang
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Tao Ma
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | - Quanjun Hu
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 610065, Chengdu, People's Republic of China
| | | | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Im Neuenheimer Feld 345, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Sunar S, Yildirim N, Sengul M, Agar G. Genetic diversity and relationships detected by ISSR and RAPD analysis among Aethionema species growing in Eastern Anatolia (Turkey). C R Biol 2016; 339:147-51. [PMID: 27012533 DOI: 10.1016/j.crvi.2016.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
In this study, Random amplified polymorphic DNA (RAPD) and Inter-Simple Sequence Repeat (ISSR) analysis were used to examine the genetic relationships among eight Aethionema species (Aethionema caespitosum, A. arabicum, A. cordatum, A. fimnraitum, A. armenum, A. speciosum supsp. speciosum, A. memraneceum, A. grandiflorum var. grandiflorum) growing in the wild in Eastern Anatolia, Turkey. Fourteen RAPD primers and 7 ISSR primers were used. The UPGMA cluster was constructed using a combination of data from RAPD and ISSR markers. The Aethionema species were classified into two major groups. The similarity matrix values of between 0.182 (A. cordatum, A. speciosum supsp. speciosum) and 0.927 (A. grandiflorum var. grandiflorum, A. cordatum). High genetic variations among Aethionema species growing in the wild in Eastern Anatolia, Turkey may reveal differences in their origin. The present study suggests that both RAPD and ISSR analysis are useful for the differentiation of the Aethionema species.
Collapse
Affiliation(s)
- Serap Sunar
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erzincan University, 24000 Erzincan, Turkey.
| | - Nalan Yildirim
- Department of Biology, Faculty of Science, Erzincan University, 24000 Erzincan, Turkey
| | - Meryem Sengul
- Department of Biology, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Guleray Agar
- Department of Biology, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
24
|
Leister D, Kleine T. Role of intercompartmental DNA transfer in producing genetic diversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:73-114. [PMID: 22017974 DOI: 10.1016/b978-0-12-386035-4.00003-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genes are found in three compartments-the nucleus, mitochondria, and plastids-and extensive gene transfer has occurred between them. Most organellar genes in the nucleus migrated there long ago, but transfer is ongoing and ubiquitous. It now generates mostly noncoding nuclear DNA, can also disrupt gene functions, and reshape genes by adding novel exons. Plastid or nuclear sequences have also contributed to the formation of mitochondrial tRNA genes. It is now clear that organelle-to-nucleus DNA transfer involves the escape of DNA molecules from the organelles at times of stress or at certain developmental stages, and their subsequent incorporation at sites of double-stranded breaks in nuclear DNA by nonhomologous recombination. Intercompartmental DNA transfer thus appears to be an inescapable phenomenon that has had a broad impact on eukaryotic evolution, affecting DNA repair, gene and genome evolution, and redirecting proteins to different target compartments.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen, Department Biologie I, Ludwig-Maximilians-Universität München-LMU, Planegg-Martinsried, Germany
| | | |
Collapse
|