1
|
Kögler A, Seibt KM, Heitkam T, Morgenstern K, Reiche B, Brückner M, Wolf H, Krabel D, Schmidt T. Divergence of 3' ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:443-458. [PMID: 32056333 DOI: 10.1111/tpj.14721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Short interspersed nuclear elements (SINEs) are small, non-autonomous and heterogeneous retrotransposons that are widespread in plants. To explore the amplification dynamics and evolutionary history of SINE populations in representative deciduous tree species, we analyzed the genomes of the six following Salicaceae species: Populus deltoides, Populus euphratica, Populus tremula, Populus tremuloides, Populus trichocarpa, and Salix purpurea. We identified 11 Salicaceae SINE families (SaliS-I to SaliS-XI), comprising 27 077 full-length copies. Most of these families harbor segmental similarities, providing evidence for SINE emergence by reshuffling or heterodimerization. We observed two SINE groups, differing in phylogenetic distribution pattern, similarity and 3' end structure. These groups probably emerged during the 'salicoid duplication' (~65 million years ago) in the Salix-Populus progenitor and during the separation of the genus Salix (45-65 million years ago), respectively. In contrast to conserved 5' start motifs across species and SINE families, the 3' ends are highly variable in sequence and length. This extraordinary 3'-end variability results from mutations in the poly(A) tail, which were fixed by subsequent amplificational bursts. We show that the dissemination of newly evolved 3' ends is accomplished by a displacement of older motifs, leading to various 3'-end subpopulations within the SaliS families.
Collapse
Affiliation(s)
- Anja Kögler
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kristin Morgenstern
- Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany
| | - Birgit Reiche
- Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany
| | | | - Heino Wolf
- Staatsbetrieb Sachsenforst, 01796, Pirna, Germany
| | - Doris Krabel
- Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany
| | - Thomas Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
2
|
Mao H, Wang H. Distribution, Diversity, and Long-Term Retention of Grass Short Interspersed Nuclear Elements (SINEs). Genome Biol Evol 2018; 9:2048-2056. [PMID: 28903462 PMCID: PMC5585668 DOI: 10.1093/gbe/evx145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2017] [Indexed: 02/06/2023] Open
Abstract
Instances of highly conserved plant short interspersed nuclear element (SINE) families and their enrichment near genes have been well documented, but little is known about the general patterns of such conservation and enrichment and underlying mechanisms. Here, we perform a comprehensive investigation of the structure, distribution, and evolution of SINEs in the grass family by analyzing 14 grass and 5 other flowering plant genomes using comparative genomics methods. We identify 61 SINE families composed of 29,572 copies, in which 46 families are first described. We find that comparing with other grass TEs, grass SINEs show much higher level of conservation in terms of genomic retention: The origin of at least 26% families can be traced to early grass diversification and these families are among most abundant SINE families in 86% species. We find that these families show much higher level of enrichment near protein coding genes than families of relatively recent origin (51%:28%), and that 40% of all grass SINEs are near gene and the percentage is higher than other types of grass TEs. The pattern of enrichment suggests that differential removal of SINE copies in gene-poor regions plays an important role in shaping the genomic distribution of these elements. We also identify a sequence motif located at 3' SINE end which is shared in 17 families. In short, this study provides insights into structure and evolution of SINEs in the grass family.
Collapse
Affiliation(s)
- Hongliang Mao
- Department of Physics, T-Life Research Center, Fudan University, Shanghai, P.R. China
| | - Hao Wang
- Department of Physics, T-Life Research Center, Fudan University, Shanghai, P.R. China.,Department of Genetics, University of Georgia
| |
Collapse
|
3
|
Keidar D, Doron C, Kashkush K. Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations. PLANT CELL REPORTS 2018; 37:193-208. [PMID: 29164313 PMCID: PMC5787218 DOI: 10.1007/s00299-017-2213-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/05/2017] [Indexed: 05/02/2023]
Abstract
Here, we show that Au SINE elements have strong associations with protein-coding genes in wheat. Most importantly Au SINE insertion within introns causes allelic variation and might induce intron retention. The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat (T. aestivum), in addition to the updated genome drafts of the diploid donor species, T. urartu and Ae. tauschii, to retrieve and analyze a non-LTR retrotransposon family, termed Au SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of Au SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact Au SINE insertions from T. urartu, Ae. tauschii and T. aestivum genome drafts, respectively. The 1886 Au SINE insertions were distributed in the seven homoeologous chromosomes of T. aestivum, while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the Triticum-Aegilops genus. In addition, expression analysis revealed that both regular transcripts and alternative Au SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of Au SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants. Au SINE might play a prominent role in speciation by creating transcriptome variation.
Collapse
Affiliation(s)
- Danielle Keidar
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Chen Doron
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| |
Collapse
|
4
|
Kögler A, Schmidt T, Wenke T. Evolutionary modes of emergence of short interspersed nuclear element (SINE) families in grasses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:676-695. [PMID: 28857316 DOI: 10.1111/tpj.13676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Short interspersed nuclear elements (SINEs) are non-autonomous transposable elements which are propagated by retrotransposition and constitute an inherent part of the genome of most eukaryotic species. Knowledge of heterogeneous and highly abundant SINEs is crucial for de novo (or improvement of) annotation of whole genome sequences. We scanned Poaceae genome sequences of six important cereals (Oryza sativa, Triticum aestivum, Hordeum vulgare, Panicum virgatum, Sorghum bicolor, Zea mays) and Brachypodium distachyon to examine the diversity and evolution of SINE populations. We comparatively analyzed the structural features, distribution, evolutionary relation and abundance of 32 SINE families and subfamilies within grasses, comprising 11 052 individual copies. The investigation of activity profiles within the Poaceae provides insights into their species-specific diversification and amplification. We found that Poaceae SINEs (PoaS) fall into two length categories: simple SINEs of up to 180 bp and dimeric SINEs larger than 240 bp. Detailed analysis at the nucleotide level revealed that multimerization of related and unrelated SINE copies is an important evolutionary mechanism of SINE formation. We conclude that PoaS families diversify by massive reshuffling between SINE families, likely caused by insertion of truncated copies, and provide a model for this evolutionary scenario. Twenty-eight of 32 PoaS families and subfamilies show significant conservation, in particular either in the 5' or 3' regions, across Poaceae species and share large sequence stretches with one or more other PoaS families.
Collapse
Affiliation(s)
- Anja Kögler
- Institute of Botany, Technische Universität Dresden, Dresden, 01069, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, 01069, Germany
| | - Torsten Wenke
- Institute of Botany, Technische Universität Dresden, Dresden, 01069, Germany
| |
Collapse
|
5
|
Fawcett JA, Innan H. High Similarity between Distantly Related Species of a Plant SINE Family Is Consistent with a Scenario of Vertical Transmission without Horizontal Transfers. Mol Biol Evol 2016; 33:2593-604. [PMID: 27436006 DOI: 10.1093/molbev/msw130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many transposable element (TE) families show surprisingly high levels of similarity between distantly related species. This high similarity, coupled with a "patchy" phylogenetic distribution, has often been attributed to frequent horizontal transfers of TEs between species, even though the mechanistic basis tends to be speculative. Here, we studied the evolution of the Au SINE (Short INterspersed Element) family, in which high similarity between distantly related plant species has been reported. We were able to identify several copies present in orthologous regions of various species, including species that diverged ∼90 Ma, thereby confirming the presence of Au SINE at multiple evolutionary time points. We also found that the Au SINE has been degenerating and is en route to disappearing in many species, indicating that the loss of Au SINE is common. Our results suggest that the evolution of the Au SINE can be readily explained by a scenario of vertical transmission without having to invoke hypothetical scenarios of rampant horizontal transfers. The Au SINE was likely present in the common ancestor of all angiosperms and was retained in some lineages while lost from others. The high level of conservation is probably because the sequences were important for ensuring their transpositional activity. This model of TE evolution should provide a basic framework for understanding the evolution of TEs in general.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hideki Innan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
6
|
Seibt KM, Wenke T, Muders K, Truberg B, Schmidt T. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:268-285. [PMID: 26996788 DOI: 10.1111/tpj.13170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions.
Collapse
Affiliation(s)
- Kathrin M Seibt
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Torsten Wenke
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | | | | | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
7
|
Luchetti A, Šatović E, Mantovani B, Plohl M. RUDI, a short interspersed element of the V-SINE superfamily widespread in molluscan genomes. Mol Genet Genomics 2016; 291:1419-29. [PMID: 26987730 DOI: 10.1007/s00438-016-1194-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 01/28/2023]
Abstract
Short interspersed elements (SINEs) are non-autonomous retrotransposons that are widespread in eukaryotic genomes. They exhibit a chimeric sequence structure consisting of a small RNA-related head, an anonymous body and an AT-rich tail. Although their turnover and de novo emergence is rapid, some SINE elements found in distantly related species retain similarity in certain core segments (or highly conserved domains, HCD). We have characterized a new SINE element named RUDI in the bivalve molluscs Ruditapes decussatus and R. philippinarum and found this element to be widely distributed in the genomes of a number of mollusc species. An unexpected structural feature of RUDI is the HCD domain type V, which was first found in non-amniote vertebrate SINEs and in the SINE from one cnidarian species. In addition to the V domain, the overall sequence conservation pattern of RUDI elements resembles that found in ancient AmnSINE (~310 Myr old) and Au SINE (~320 Myr old) families, suggesting that RUDI might be among the most ancient SINE families. Sequence conservation suggests a monophyletic origin of RUDI. Nucleotide variability and phylogenetic analyses suggest long-term vertical inheritance combined with at least one horizontal transfer event as the most parsimonious explanation for the observed taxonomic distribution.
Collapse
Affiliation(s)
- Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy.
| | - Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
8
|
RNA-Mediated Gene Duplication and Retroposons: Retrogenes, LINEs, SINEs, and Sequence Specificity. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:424726. [PMID: 23984183 PMCID: PMC3747384 DOI: 10.1155/2013/424726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022]
Abstract
A substantial number of “retrogenes” that are derived from the mRNA of various intron-containing genes have been reported. A class of mammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3′-end sequences of various SINEs originated from a corresponding LINE. As the 3′-untranslated regions of several LINEs are essential for retroposition, these LINEs presumably require “stringent” recognition of the 3′-end sequence of the RNA template. However, the 3′-ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3′-poly(A) repeats. Since the 3′-poly(A) repeats of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu SINE but also cytosolic mRNA. Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A) repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution.
Collapse
|