1
|
Guay SY, Patel PH, Thomalla JM, McDermott KL, O'Toole JM, Arnold SE, Obrycki SJ, Wolfner MF, Findlay GD. An orphan gene is essential for efficient sperm entry into eggs in Drosophila melanogaster. Genetics 2025; 229:iyaf008. [PMID: 39903197 DOI: 10.1093/genetics/iyaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
While spermatogenesis has been extensively characterized in the Drosophila melanogaster model system, very little is known about the genes required for fly sperm entry into eggs. We identified a lineage-specific gene, which we named katherine johnson (kj), that is required for efficient fertilization. Males that do not express kj produce and transfer sperm that are stored normally in females, but sperm from these males enter eggs with severely reduced efficiency. Using a tagged transgenic rescue construct, we observed that the KJ protein localizes around the edge of the nucleus at various stages of spermatogenesis but is undetectable in mature sperm. These data suggest that kj exerts an effect on sperm development, the loss of which results in reduced fertilization ability. Interestingly, KJ protein lacks detectable sequence similarity to any other known protein, suggesting that kj could be a lineage-specific orphan gene. While previous bioinformatic analyses indicated that kj was restricted to the melanogaster group of Drosophila, we identified putative orthologs with conserved synteny, male-biased expression, and predicted protein features across the genus, as well as likely instances of gene loss in some lineages. Thus, kj was likely present in the Drosophila common ancestor. It is unclear whether its role in fertility had already evolved at that time or developed later in the lineage leading to D. melanogaster. Our results demonstrate a new aspect of male reproduction that has been shaped by a lineage-specific gene and provide a molecular foothold for further investigating the mechanism of sperm entry into eggs in Drosophila.
Collapse
Affiliation(s)
- Sara Y Guay
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Prajal H Patel
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Kerry L McDermott
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Jillian M O'Toole
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Sarah E Arnold
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Sarah J Obrycki
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| |
Collapse
|
2
|
Guay SY, Patel PH, Thomalla JM, McDermott KL, O'Toole JM, Arnold SE, Obrycki SJ, Wolfner MF, Findlay GD. An orphan gene is essential for efficient sperm entry into eggs in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607187. [PMID: 39149251 PMCID: PMC11326263 DOI: 10.1101/2024.08.08.607187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
While spermatogenesis has been extensively characterized in the Drosophila melanogaster model system, very little is known about the genes required for fly sperm entry into eggs. We identified a lineage-specific gene, which we named katherine johnson (kj), that is required for efficient fertilization. Males that do not express kj produce and transfer sperm that are stored normally in females, but sperm from these males enter eggs with severely reduced efficiency. Using a tagged transgenic rescue construct, we observed that the KJ protein localizes around the edge of the nucleus at various stages of spermatogenesis but is undetectable in mature sperm. These data suggest that kj exerts an effect on sperm development, the loss of which results in reduced fertilization ability. Interestingly, KJ protein lacks detectable sequence similarity to any other known protein, suggesting that kj could be a lineage-specific orphan gene. While previous bioinformatic analyses indicated that kj was restricted to the melanogaster group of Drosophila, we identified putative orthologs with conserved synteny, male-biased expression, and predicted protein features across the genus, as well as likely instances of gene loss in some lineages. Thus, kj was likely present in the Drosophila common ancestor and subsequently evolved an essential role in fertility in D. melanogaster. Our results demonstrate a new aspect of male reproduction that has been shaped by a lineage-specific gene and provide a molecular foothold for further investigating the mechanism of sperm entry into eggs in Drosophila.
Collapse
Affiliation(s)
- Sara Y Guay
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Prajal H Patel
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Kerry L McDermott
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Jillian M O'Toole
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Sarah E Arnold
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Sarah J Obrycki
- Department of Biology, College of the Holy Cross, Worcester, MA 01610
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
3
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
4
|
Zhang M, Hu Y, Liu J, Guan Z, Zhang W. CRISPR/Cas9-mediated genome editing of gustatory receptor NlugGr23a causes male sterility in the brown planthopper Nilaparvata lugens. Int J Biol Macromol 2023; 241:124612. [PMID: 37119891 DOI: 10.1016/j.ijbiomac.2023.124612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Gustatory receptors (Grs) have an essential role in chemical recognition so as to evaluate food quality. Insect Grs also participate in non-gustatory functions, such as olfaction, temperature sensing, and mating. In this study, we knocked out NlugGr23a, a putative fecundity-related Gr, using the CRISPR/Cas9 system in the brown planthopper Nilaparvata lugens, a serious insect pest of rice. Surprisingly, homozygous NlugGr23a mutant (NlugGr23a-/-) males were sterile but their sperm were motile and morphologically normal. DAPI staining of mutant sperm inseminated eggs showed that most of NlugGr23a-/- sperm failed to fertilize eggs, even if they were capable of entering into the egg as a result of their arrested development prior to male pronucleus formation. Immunohistochemistry demonstrated the expression of NlugGr23a in testis. Moreover, prior mating by NlugGr23a-/- males suppressed female fertility. To our knowledge, it is the first report that a chemoreceptor is implicated in male sterility and provides a potential molecular target for genetic pest control alternatives.
Collapse
Affiliation(s)
- Mengyi Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yutao Hu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahui Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhanwen Guan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Ohsako T, Shirakami M, Oiwa K, Ibaraki K, Karr TL, Tomaru M, Sanuki R, Takano-Shimizu-Kouno T. The Drosophila Neprilysin 4 gene is essential for sperm function following sperm transfer to females. Genes Genet Syst 2021; 96:177-186. [PMID: 34556622 DOI: 10.1266/ggs.21-00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sperm are modified substantially in passing through both the male and the female reproductive tracts, only thereafter becoming functionally competent to fertilize eggs. Drosophila sperm become motile in the seminal vesicle; after ejaculation, they interact with seminal fluid proteins and undergo biochemical changes on their surface while they are stored in the female sperm storage organs. However, the molecular mechanisms underlying these maturation processes remain largely unknown. Here, we focused on Drosophila Neprilysin genes, which are the fly orthologs of the mouse Membrane metallo-endopeptidase-like 1 (Mmel1) gene. While Mmel1 knockout male mice have reduced fertility without abnormality in either testis morphology or sperm motility, there are inconsistent results regarding the association of any Neprilysin gene with male fertility in Drosophila. We examined the association of the Nep1-5 genes with male fertility by RNAi and found that Nep4 gene function is specifically required in germline cells. To investigate this in more detail, we induced mutations in the Nep4 gene by the CRISPR/Cas9 system and isolated two mutants, both of which were viable and female fertile, but male sterile. The mutant males had normal-looking testes and sperm; during copulation, sperm were transferred to females and stored in the seminal receptacle and paired spermathecae. However, following sperm transfer and storage, three defects were observed for Nep4 mutant sperm. First, sperm were quickly discarded by the females; second, the proportion of eggs fertilized was significantly lower for mutant sperm than for control sperm; and third, most eggs laid did not initiate development after sperm entry. Taking these observations together, we conclude that the Nep4 gene is essential for sperm function following sperm transfer to females.
Collapse
Affiliation(s)
- Takashi Ohsako
- Advanced Technology Center, Kyoto Institute of Technology
| | - Machi Shirakami
- Graduate School of Science and Technology, Kyoto Institute of Technology
| | - Kazuharu Oiwa
- Graduate School of Science and Technology, Kyoto Institute of Technology
| | - Kimihide Ibaraki
- Graduate School of Science and Technology, Kyoto Institute of Technology
| | - Timothy L Karr
- Mass Spectroscopy Core Facility, Biodesign Institute, Arizona State University
| | - Masatoshi Tomaru
- Faculty of Applied Biology, Kyoto Institute of Technology.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology
| | - Rikako Sanuki
- Faculty of Applied Biology, Kyoto Institute of Technology.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology
| | - Toshiyuki Takano-Shimizu-Kouno
- Faculty of Applied Biology, Kyoto Institute of Technology.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology
| |
Collapse
|
6
|
Ibaraki K, Nakatsuka M, Ohsako T, Watanabe M, Miyazaki Y, Shirakami M, Karr TL, Sanuki R, Tomaru M, Takano-Shimizu-Kouno T. A cross-species approach for the identification of Drosophila male sterility genes. G3 GENES|GENOMES|GENETICS 2021; 11:6288452. [PMID: 34849808 PMCID: PMC8496277 DOI: 10.1093/g3journal/jkab183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/13/2021] [Indexed: 12/03/2022]
Abstract
Male reproduction encompasses many essential cellular processes and interactions. As a focal point for these events, sperm offer opportunities for advancing our understanding of sexual reproduction at multiple levels during development. Using male sterility genes identified in human, mouse, and fruit fly databases as a starting point, 103 Drosophila melanogaster genes were screened for their association with male sterility by tissue-specific RNAi knockdown and CRISPR/Cas9-mediated mutagenesis. This list included 56 genes associated with male infertility in the human databases, but not found in the Drosophila database, resulting in the discovery of 63 new genes associated with male fertility in Drosophila. The phenotypes identified were categorized into six distinct classes affecting sperm development. Interestingly, the second largest class (Class VI) caused sterility despite apparently normal testis and sperm morphology suggesting that these proteins may have functions in the mature sperm following spermatogenesis. We focused on one such gene, Rack 1, and found that it plays an important role in two developmental periods, in early germline cells or germline stem cells and in spermatogenic cells or sperm. Taken together, many genes are yet to be identified and their role in male reproduction, especially after ejaculation, remains to be elucidated in Drosophila, where a wealth of data from human and other model organisms would be useful.
Collapse
Affiliation(s)
- Kimihide Ibaraki
- Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Mihoko Nakatsuka
- Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Takashi Ohsako
- Advanced Technology Center, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Masahide Watanabe
- Department of Drosophila Genomics and Genetic Resources, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto 616-8354, Japan
| | - Yu Miyazaki
- Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Machi Shirakami
- Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Timothy L Karr
- Mass Spectroscopy Core Facility, Biodesign Institute, Arizona State University, Tempe, AZ 85257-7205, USA
| | - Rikako Sanuki
- Department of Drosophila Genomics and Genetic Resources, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto 616-8354, Japan
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Masatoshi Tomaru
- Department of Drosophila Genomics and Genetic Resources, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto 616-8354, Japan
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Toshiyuki Takano-Shimizu-Kouno
- Department of Drosophila Genomics and Genetic Resources, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto 616-8354, Japan
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
7
|
Grewal G, Patlar B, Civetta A. Expression of Mst89B and CG31287 is Needed for Effective Sperm Storage and Egg Fertilization in Drosophila. Cells 2021; 10:cells10020289. [PMID: 33535499 PMCID: PMC7912738 DOI: 10.3390/cells10020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/05/2022] Open
Abstract
In Drosophila, male reproductive fitness can be affected by any number of processes, ranging from development of gametes, transfer to and storage of mature sperm within the female sperm storage organs, and utilization of sperm for fertilization. We have previously identified the 89B cytogenetic map position of D. melanogaster as a hub for genes that effect male paternity success when disturbed. Here, we used RNA interference to test 11 genes that are highly expressed in the testes and located within the 89B region for their role in sperm competition and male fecundity when their expression is perturbed. Testes-specific knockdown (KD) of bor and CSN5 resulted in complete sterility, whereas KD of CG31287, Manf and Mst89B, showed a breakdown in sperm competitive success when second to mate (P2 < 0.5) and reduced fecundity in single matings. The low fecundity of Manf KD is explained by a significant reduction in the amount of mature sperm produced. KD of Mst89B and CG31287 does not affect sperm production, sperm transfer into the female bursa or storage within 30 min after mating. Instead, a significant reduction of sperm in female storage is observed 24 h after mating. Egg hatchability 24 h after mating is also drastically reduced for females mated to Mst89B or CG31287 KD males, and this reduction parallels the decrease in fecundity. We show that normal germ-line expression of Mst89B and CG31287 is needed for effective sperm usage and egg fertilization.
Collapse
|
8
|
Tomaru M, Ohsako T, Watanabe M, Juni N, Matsubayashi H, Sato H, Takahashi A, Yamamoto MT. Severe Fertility Effects of sheepish Sperm Caused by Failure To Enter Female Sperm Storage Organs in Drosophila melanogaster. G3 (BETHESDA, MD.) 2018; 8:149-160. [PMID: 29158336 PMCID: PMC5765343 DOI: 10.1534/g3.117.300171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
In Drosophila, mature sperm are transferred from males to females during copulation, stored in the sperm storage organs of females, and then utilized for fertilization. Here, we report a gene named sheepish (shps) of Drosophila melanogaster that is essential for sperm storage in females. shps mutant males, although producing morphologically normal and motile sperm that are effectively transferred to females, produce very few offspring. Direct counts of sperm indicated that the primary defect was correlated to failure of shps sperm to migrate into the female sperm storage organs. Increased sperm motion parameters were seen in the control after transfer to females, whereas sperm from shps males have characteristics of the motion parameters different from the control. The few sperm that occasionally entered the female sperm storage organs showed no obvious defects in fertilization and early embryo development. The female postmating responses after copulation with shps males appeared normal, at least with respect to conformational changes of uterus, mating plug formation, and female remating rates. The shps gene encodes a protein with homology to amine oxidases, including as observed in mammals, with a transmembrane region at the C-terminal end. The shps mutation was characterized by a nonsense replacement in the third exon of CG13611, and shps was rescued by transformants of the wild-type copy of CG13611 Thus, shps may define a new class of gene responsible for sperm storage.
Collapse
Affiliation(s)
- Masatoshi Tomaru
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Takashi Ohsako
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masahide Watanabe
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Naoto Juni
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiroshi Matsubayashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiromi Sato
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Ayako Takahashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masa-Toshi Yamamoto
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| |
Collapse
|
9
|
Abstract
Fertilization, the union of an oocyte and a sperm, is a fundamental process that restores the diploid genome and initiates embryonic development. For the sperm, fertilization is the end of a long journey, one that starts in the male testis before transitioning to the female reproductive tract's convoluted tubule architecture. Historically, motile sperm were thought to complete this journey using luck and numbers. A different picture of sperm has emerged recently as cells that integrate complex sensory information for navigation. Chemical, physical, and thermal cues have been proposed to help guide sperm to the waiting oocyte. Molecular mechanisms are being delineated in animal models and humans, revealing common features, as well as important differences. Exposure to pheromones and nutritional signals can modulate guidance mechanisms, indirectly impacting sperm motility performance and fertility. These studies highlight the importance of sensory information and signal transduction in fertilization.
Collapse
Affiliation(s)
- Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
10
|
Unlocking sperm chromatin at fertilization requires a dedicated egg thioredoxin in Drosophila. Nat Commun 2016; 7:13539. [PMID: 27876811 PMCID: PMC5122968 DOI: 10.1038/ncomms13539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022] Open
Abstract
In most animals, the extreme compaction of sperm DNA is achieved after the massive replacement of histones with sperm nuclear basic proteins (SNBPs), such as protamines. In some species, the ultracompact sperm chromatin is stabilized by a network of disulfide bonds connecting cysteine residues present in SNBPs. Studies in mammals have established that the reduction of these disulfide crosslinks at fertilization is required for sperm nuclear decondensation and the formation of the male pronucleus. Here, we show that the Drosophila maternal thioredoxin Deadhead (DHD) is specifically required to unlock sperm chromatin at fertilization. In dhd mutant eggs, the sperm nucleus fails to decondense and the replacement of SNBPs with maternally-provided histones is severely delayed, thus preventing the participation of paternal chromosomes in embryo development. We demonstrate that DHD localizes to the sperm nucleus to reduce its disulfide targets and is then rapidly degraded after fertilization.
Collapse
|
11
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
12
|
Schnakenberg SL, Siegal ML, Bloch Qazi MC. Oh, the places they'll go: Female sperm storage and sperm precedence in Drosophila melanogaster. SPERMATOGENESIS 2014; 2:224-235. [PMID: 23087839 PMCID: PMC3469444 DOI: 10.4161/spmg.21655] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among most animals with internal fertilization, females store sperm in specific regions of their reproductive tract for later use. Sperm storage enables prolonged fertility, physical and temporal separation of mating from fertilization and, when females mate with multiple males, opportunities for differential use of the various males’ sperm. Thus, stored sperm move within the female reproductive tract as well as to several potential fates – fertilization, displacement by other sperm or ejection by the female. Drosophila melanogaster is a leading model system for elucidating both the mechanisms and evolutionary consequences of female sperm storage and differential male fertilization success. The prominence of Drosophila is due, in part, to the ability to examine processes influencing sperm movement and fate at several biological levels, from molecules to organ systems. In this review, we describe male and female factors, as well as their interactions, involved in female sperm storage and differential male fertilization success.
Collapse
Affiliation(s)
- Sandra L Schnakenberg
- Center for Genomics and Systems Biology; Department of Biology; New York University; New York, NY USA
| | | | | |
Collapse
|
13
|
Yasuno Y, Inoue YH, Yamamoto MT. Elimination of Y chromosome-bearing spermatids during spermiogenesis in an autosomal sex-ratio mutant of Drosophila simulans. Genes Genet Syst 2014; 88:113-26. [PMID: 23832303 DOI: 10.1266/ggs.88.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sex ratio distortion, which is commonly abbreviated as sex-ratio, has been studied in many Drosophila species, but the mechanism remains largely unknown. Here, we report on the sex-ratio mutant of D. simulans named excess of females (exf). The third chromosomal recessive mutation results in a sex ratio of approximately 0.2 or less (males/total). Cytological observation demonstrated that meiosis appeared to be completed normally, but that most Y chromosome-bearing nuclei failed to elongate during spermiogenesis, as revealed by fluorescence in situ hybridization using sex chromosome-specific probes. These aberrant nuclei contained membranous inclusions as revealed by electron microscopic analysis. Most of the aberrant exf spermatids failed to individualize and mature, suggesting that a later stage of spermiogenesis is involved in prevention of production of sperm with abnormal morphology. On the one hand, in exf seminal vesicles, sperm nuclei with a length of 5-8.5 μm were occasionally observed, in addition to those with wild-type sperm dimensions, that is, a length of approximately 10 μm. Thus, spermatids with less severe nuclear defects can escape elimination and be released into the seminal vesicles as mature sperm. Furthermore, we constructed His2AvD-GFP and ProtamineB-eGFP transgenic lines in D. simulans, and examined the processes involved in replacement of chromatin proteins over a time course, according to nuclear morphology. We found that both normal and abnormal sperm heads demonstrated equal chromatin replacement during late spermiogenesis. Our results suggest that exf belongs to a unique class of meiotic drive systems in that (1) intranuclear membranous inclusions cause failure of nuclear shaping of Y-bearing spermatids without affecting the histone-protamine transition, and (2) a portion of the aberrant spermatids differentiate into mature sperm; these are transferred to and stored by females.
Collapse
Affiliation(s)
- Yusaku Yasuno
- Drosophila Genetic Resource Center, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan.
| | | | | |
Collapse
|
14
|
Minami R, Wakabayashi M, Sugimori S, Taniguchi K, Kokuryo A, Imano T, Adachi-Yamada T, Watanabe N, Nakagoshi H. The homeodomain protein defective proventriculus is essential for male accessory gland development to enhance fecundity in Drosophila. PLoS One 2012; 7:e32302. [PMID: 22427829 PMCID: PMC3299662 DOI: 10.1371/journal.pone.0032302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/26/2012] [Indexed: 11/18/2022] Open
Abstract
The Drosophila male accessory gland has functions similar to those of the mammalian prostate gland and the seminal vesicle, and secretes accessory gland proteins into the seminal fluid. Each of the two lobes of the accessory gland is composed of two types of binucleate cell: about 1,000 main cells and 40 secondary cells. A well-known accessory gland protein, sex peptide, is secreted from the main cells and induces female postmating response to increase progeny production, whereas little is known about physiological significance of the secondary cells. The homeodomain transcriptional repressor Defective proventriculus (Dve) is strongly expressed in adult secondary cells, and its mutation resulted in loss of secondary cells, mononucleation of main cells, and reduced size of the accessory gland. dve mutant males had low fecundity despite the presence of sex peptide, and failed to induce the female postmating responses of increased egg laying and reduced sexual receptivity. RNAi-mediated dve knockdown males also had low fecundity with normally binucleate main cells. We provide the first evidence that secondary cells are crucial for male fecundity, and also that Dve activity is required for survival of the secondary cells. These findings provide new insights into a mechanism of fertility/fecundity.
Collapse
Affiliation(s)
- Ryunosuke Minami
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Miyuki Wakabayashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Seiko Sugimori
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kiichiro Taniguchi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Kokuryo
- Institute of Biomolecular Science, Gakushuin University, Tokyo, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Takao Imano
- Institute of Biomolecular Science, Gakushuin University, Tokyo, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Takashi Adachi-Yamada
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
- Institute of Biomolecular Science, Gakushuin University, Tokyo, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Naoko Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Hideki Nakagoshi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
15
|
A requirement for the neuromodulators octopamine and tyramine in Drosophila melanogaster female sperm storage. Proc Natl Acad Sci U S A 2012; 109:4562-7. [PMID: 22393023 DOI: 10.1073/pnas.1117689109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Female sperm storage is common among organisms with internal fertilization. It is important for extended fertility and, in cases of multiple mating, for sperm competition. The physiological mechanisms by which females store and manage stored sperm are poorly understood. Here, we report that the biogenic amines tyramine (TA) and octopamine (OA) in Drosophila melanogaster females play essential roles in sperm storage. D. melanogaster females store sperm in two types of organs, a single seminal receptacle and a pair of spermathecae. We examined sperm storage parameters in females mutant in enzymes required for the biochemical synthesis of tyrosine to TA and TA to OA, respectively. Postmating uterine conformational changes, which are associated with sperm entry and accumulation into storage, were unaffected by the absence of either TA or OA. However, sperm release from storage requires both TA and OA; sperm were retained in storage in both types of mutant females at significantly higher levels than in control flies. Absence of OA inhibited sperm depletion only from the seminal receptacle, whereas absence of both OA and TA perturbed sperm depletion from both storage organ types. We find innervation of the seminal receptacle and spermathecae by octopaminergic-tyraminergic neurons. These findings identify a distinct role for TA and OA in reproduction, regulating the release of sperm from storage, and suggest a mechanism by which Drosophila females actively regulate the release of stored sperm.
Collapse
|