1
|
Tripathi T, Uversky VN, Giuliani A. 'Intelligent' proteins. Cell Mol Life Sci 2025; 82:239. [PMID: 40515853 PMCID: PMC12167427 DOI: 10.1007/s00018-025-05770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/20/2025] [Accepted: 05/25/2025] [Indexed: 06/16/2025]
Abstract
We present an idea of protein molecules that challenges the traditional view of proteins as simple molecular machines and suggests instead that they exhibit a basic form of "intelligence". The idea stems from suggestions coming from Integrated Information Theory (IIT), network theory, and allostery to explore how proteins process information, adapt to their environment, and even show memory-like behaviors. We define protein intelligence using IIT and focus on how proteins integrate information (in terms of the parameter Φ coming from IIT) and balance their core (stable, ordered regions) and periphery (flexible, disordered regions). This balance allows proteins to remain stable while adapting to changes and operating in a critical state where order and disorder coexist. We summarize recent findings on conformational memory, allosteric regulation, protein intrinsic disorder, liquid-liquid phase separation, and critical transitions, and compare protein behavior to other complex systems like ecosystems and neural networks. While our perspective offers a unified framework to understand proteins, it also raises questions about applying intelligence concepts to molecular systems. We discuss how this understanding could advance protein engineering, drug design, and synthetic biology, while at the same time acknowledging the challenges of creating adaptive, "intelligent" proteins. This concept bridges the gap between mechanistic and systems-level views of proteins and offers a comprehensive understanding of their dynamic and adaptive nature. We have tried to redefine the traditionally metaphorical concept of "intelligence" in biochemistry as a measurable property while simultaneously establishing the material foundation of protein intelligence through the identification of fundamental elements such as memory and learning in molecular systems.
Collapse
Affiliation(s)
- Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Shillong, 793022, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33612, USA.
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, 00161, Italy
| |
Collapse
|
2
|
Vangala VNP, Uversky VN. Intrinsic disorder in protein interaction networks linking cancer with metabolic diseases. Comput Biol Chem 2025; 118:108493. [PMID: 40319601 DOI: 10.1016/j.compbiolchem.2025.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Complex diseases are usually driven by numerous proteins that operate as intricate network systems. Deciphering of their signals is required for more advanced level understanding of the cellular processes driven by protein interactions. Therefore, placing diseases into a framework, where they can be viewed together, represents an important and fruitful approach. The goal of this study was to assess the intrinsic disorder present in the proteins forming PPI networks linking cancer with different human diseases. To this end, we used a set of bioinformatics tools to explore intrinsic disorder and liquid-liquid phase separation predispositions of 340 proteins reported earlier by Hirsch et al. (Cancer Cell (2010) 17(4), 348-361; doi: 10.1016/j.ccr.2010.01.022) as differently expressed in common chronic diseases, such as cancer, obesity, diabetes, and cardiovascular diseases. We further examined selected proteins from this set for their interactability and intrinsic disorder-based functionality. Our analyses demonstrated that intrinsically disordered proteins and proteins with intrinsically disordered regions may act as active network promoters and operate as highly connected hubs, which further enables them to play key roles in the disease pathways. The study also indicated that differently expressed proteins involved in disease progression could be characterized by diverse degrees of intrinsic disorder and LLPS propensity. We hope that our findings in combination with the outputs of the proteomic and functional genomic analyses contain essential clues that can be used in further medical research leading to the design of better therapies.
Collapse
Affiliation(s)
- Veda Naga Priya Vangala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Röntgen A, Toprakcioglu Z, Dada ST, Morris OM, Knowles TPJ, Vendruscolo M. Aggregation of α-synuclein splice isoforms through a phase separation pathway. SCIENCE ADVANCES 2025; 11:eadq5396. [PMID: 40238878 PMCID: PMC12002138 DOI: 10.1126/sciadv.adq5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/09/2025] [Indexed: 04/18/2025]
Abstract
The aggregation of α-synuclein (αSyn) is associated with Parkinson's disease and other related synucleinopathies. Considerable efforts have thus been directed at understanding this process. However, the recently discovered condensation pathway, which involves the formation of phase-separated liquid intermediate states, has added further complexity. In parallel, it has been reported that different αSyn splice isoforms may be implicated in aggregate formation in disease. In this study, we compare the phase behavior of four αSyn isoforms (αSyn-140, αSyn-126, αSyn-112, and αSyn-98). Using different biophysical tools including confocal microscopy, kinetic assays and microfluidic-based approaches, we find stark differences between the four systems in their propensities to undergo phase separation and aggregation. Furthermore, we show that even small amounts of αSyn-112, one of the predominant isoforms after αSyn-140, can affect the phase separation of αSyn-140. These results highlight the importance of conducting further investigations to elucidate the role of alternative splicing in synucleinopathies.
Collapse
Affiliation(s)
- Alexander Röntgen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Samuel T. Dada
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Owen M. Morris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
4
|
Bhattacharya S, Gupta N, Dutta A, Khanra PK, Dutta R, Žiarovská J, Tzvetkov NT, Severová L, Kopecká L, Milella L, Fernández-Cusimamani E. Repurposing major metabolites of lamiaceae family as potential inhibitors of α-synuclein aggregation to alleviate neurodegenerative diseases: an in silico approach. Front Pharmacol 2025; 16:1519145. [PMID: 40308772 PMCID: PMC12041775 DOI: 10.3389/fphar.2025.1519145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDs) are typically characterized by progressive loss of neuronal function and the deposition of misfolded proteins in the brain and peripheral organs. They are molecularly classified based on the specific proteins involved, underscoring the critical role of protein-processing systems in their pathogenesis. Alpha-synuclein (α-syn) is a neural protein that is crucial in initiating and progressing various NDs by directly or indirectly regulating other ND-associated proteins. Therefore, reducing the α-syn aggregation can be an excellent option for combating ND initiation and progression. This study presents an in silico phytochemical-based approach for discovering novel neuroprotective agents from bioactive compounds of the Lamiaceae family, highlighting the potential of computational methods such as functional networking, pathway enrichment analysis, molecular docking, and simulation in therapeutic discovery. Functional network and enrichment pathway analysis established the direct or indirect involvement of α-syn in various NDs. Furthermore, molecular docking interaction and simulation studies were conducted to screen 85 major bioactive compounds of the Lamiaceae family against the α-syn aggregation. The results showed that five compounds (α-copaene, γ-eudesmol, carnosol, cedryl acetate, and spathulenol) had a high binding affinity towards α-syn with potential inhibitory activity towards its aggregation. MD simulations validated the stability of the molecular interactions determined by molecular docking. In addition, in silico pharmacokinetic analysis underscores their potential as promising drug candidates, demonstrating excellent blood-brain barrier (BBB) permeability, bioactivity, and reduced toxicity. In summary, this study identifies the most suitable compounds for targeting the α-syn aggregation and recommends these compounds as potential therapeutic agents against various NDs, pending further in vitro and in vivo validation.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Adrish Dutta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pijush Kanti Khanra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ritesh Dutta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Jana Žiarovská
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Lenka Kopecká
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Luigi Milella
- Department of Science, University of Basilicata, Potenza, Italy
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
5
|
Selvaraj NR, Nandan D, Nair BG, Nair VA, Venugopal P, Aradhya R. Oxidative Stress and Redox Imbalance: Common Mechanisms in Cancer Stem Cells and Neurodegenerative Diseases. Cells 2025; 14:511. [PMID: 40214466 PMCID: PMC11988017 DOI: 10.3390/cells14070511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/14/2025] Open
Abstract
Oxidative stress (OS) is an established hallmark of cancer and neurodegenerative disorders (NDDs), which contributes to genomic instability and neuronal loss. This review explores the contrasting role of OS in cancer stem cells (CSCs) and NDDs. Elevated levels of reactive oxygen species (ROS) contribute to genomic instability and promote tumor initiation and progression in CSCs, while in NDDs such as Alzheimer's and Parkinson's disease, OS accelerates neuronal death and impairs cellular repair mechanisms. Both scenarios involve disruption of the delicate balance between pro-oxidant and antioxidant systems, which leads to chronic oxidative stress. Notably, CSCs and neurons display alterations in redox-sensitive signaling pathways, including Nrf2 and NF-κB, which influence cell survival, proliferation, and differentiation. Mitochondrial dynamics further illustrate these differences: enhanced function in CSCs supports adaptability and survival, whereas impairments in neurons heighten vulnerability. Understanding these common mechanisms of OS-induced redox imbalance may provide insights for developing interventions, addressing aging hallmarks, and potentially mitigating or preventing both cancer and NDDs.
Collapse
Affiliation(s)
| | | | | | | | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (N.R.S.); (D.N.); (B.G.N.); (V.A.N.)
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (N.R.S.); (D.N.); (B.G.N.); (V.A.N.)
| |
Collapse
|
6
|
Ahanger IA, Hajam IB, Wani OH. Modulation of conformational integrity and aggregation propensity of α-synuclein by osmolytes: Implications in therapeutic intervention of Parkinson's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 211:63-87. [PMID: 39947754 DOI: 10.1016/bs.pmbts.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Understanding the factors capable of modulation of conformational stability and aggregation propensity of α-synuclein (α-Syn), a hallmark of Parkinson's disease (PD), is crucial for developing future therapeutic interventions for this disease. This chapter aims at exploring the roles of osmolytes in affecting the structural dynamics of α-Syn as well as focuses on how these osmolytes impact folding, stability, and aggregation behavior of this important intrinsically disordered protein. A number of potent osmolytes, including trimethylamine N-oxide (TMAO), trehalose, myo-inositol, taurine, glycine, glutamate, and glycerol were discussed along with their overall effect on α-Syn. These osmolytes can stabilize native conformations or promote alternative folding pathways, thereby influencing α-Syn aggregation. The chapter highlights the dual role of osmolytes in either preventing or exacerbating aggregation, depending on their concentration and interaction mechanism with α-Syn. Moreover, by integrating current research results, the chapter provides insights into how osmolytes might be utilized for therapeutic interventions with potential avenues for managing PD. Overall, the chapter underscores the significance of osmolyte-induced modulation of α-Syn aggregation in the context of PD and highlights future research areas in this direction.
Collapse
Affiliation(s)
| | | | - Owais Hassan Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| |
Collapse
|
7
|
Gujral J, Gandhi OH, Singh SB, Ahmed M, Ayubcha C, Werner TJ, Revheim ME, Alavi A. PET, SPECT, and MRI imaging for evaluation of Parkinson's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:371-390. [PMID: 39840378 PMCID: PMC11744359 DOI: 10.62347/aicm8774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025]
Abstract
This review assesses the primary neuroimaging techniques used to evaluate Parkinson's disease (PD) - a neurological condition characterized by gradual dopamine-producing nerve cell degeneration. The neuroimaging techniques explored include positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). These modalities offer varying degrees of insights into PD pathophysiology, diagnostic accuracy, specificity by way of exclusion of other Parkinsonian syndromes, and monitoring of disease progression. Neuroimaging is thus crucial for diagnosing and managing PD, with integrated multimodal approaches and novel techniques further enhancing early detection and treatment evaluation.
Collapse
Affiliation(s)
- Jaskeerat Gujral
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Om H Gandhi
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Shashi B Singh
- Stanford University School of MedicineStanford, CA 94305, USA
| | - Malia Ahmed
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Cyrus Ayubcha
- Harvard Medical SchoolBoston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBoston, MA 02115, USA
| | - Thomas J Werner
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- The Intervention Center, Rikshopitalet, Division of Technology and Innovation, Oslo University HospitalOslo 0372, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo 0315, Norway
| | - Abass Alavi
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| |
Collapse
|
8
|
Grizel AV, Gorsheneva NA, Stevenson JB, Pflaum J, Wilfling F, Rubel AA, Chernoff YO. Osmotic stress induces formation of both liquid condensates and amyloids by a yeast prion domain. J Biol Chem 2024; 300:107766. [PMID: 39276934 PMCID: PMC11736011 DOI: 10.1016/j.jbc.2024.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e.g., at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels. The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.
Collapse
Affiliation(s)
- Anastasia V Grizel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Natalia A Gorsheneva
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Jonathan B Stevenson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy Pflaum
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
10
|
De Barros Oliveira R, Anselmi M, Marchette RCN, Roversi K, Fadanni GP, De Carvalho LM, Damasceno S, Heinrich IA, Leal RB, Cavalli J, Moreira-Júnior RE, Godard ALB, Izídio GS. Differential expression of alpha-synuclein in the hippocampus of SHR and SLA16 isogenic rat strains. Behav Brain Res 2024; 461:114835. [PMID: 38151185 DOI: 10.1016/j.bbr.2023.114835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Two inbred strains, Lewis (LEW) and Spontaneously Hypertensive Rats (SHR), are well-known for their contrasting behavior related to anxiety/emotionality. Studies with these two strains led to the discovery of the Quantitative Trait Loci (QTL) on chromosome 4 (Anxrr16). To better understand the influences of this genomic region, the congenic rat strain SLA16 (SHR.LEW-Anxrr16) was developed. SLA16 rats present higher hyperactivity/impulsivity, deficits in learning and memory, and lower basal blood pressure than the SHR strain, even though genetic differences between them are only in chromosome 4. Thus, the present study proposed the alpha-synuclein and the dopaminergic system as candidates to explain the differential behavior of SHR and SLA16 strains. To accomplish this, beyond the behavioral analysis, we performed (I) the Snca gene expression and (II) quantification of the alpha-synuclein protein in the hippocampus (HPC), prefrontal cortex (PFC), and striatum (STR) of SHR and SLA16 strains; (III) sequencing of the 3'UTR of the Snca gene; and (IV) evaluation of miRNA binding in the 3'UTR site. A Single Nucleotide Polymorphism (SNP) was identified in the 3'UTR of the Snca gene, which exhibited upregulation in the HPC of SHR compared to SLA16 females. Alpha-synuclein protein was higher in the HPC of SHR males compared to SLA16 males. The results of this work suggested that differences in alpha-synuclein HPC content could be influenced by miRNA regulation and associated with behavioral differences between SHR and SLA16 animals.
Collapse
Affiliation(s)
- Rachel De Barros Oliveira
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mayara Anselmi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Katiane Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Guilherme Pasetto Fadanni
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luana Martins De Carvalho
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samara Damasceno
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rodrigo Bainy Leal
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliana Cavalli
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Curitibanos, Brazil
| | | | - Ana Lúcia Brunialti Godard
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geison Souza Izídio
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
11
|
Manyilov VD, Ilyinsky NS, Nesterov SV, Saqr BMGA, Dayhoff GW, Zinovev EV, Matrenok SS, Fonin AV, Kuznetsova IM, Turoverov KK, Ivanovich V, Uversky VN. Chaotic aging: intrinsically disordered proteins in aging-related processes. Cell Mol Life Sci 2023; 80:269. [PMID: 37634152 PMCID: PMC11073068 DOI: 10.1007/s00018-023-04897-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
The development of aging is associated with the disruption of key cellular processes manifested as well-established hallmarks of aging. Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) have no stable tertiary structure that provide them a power to be configurable hubs in signaling cascades and regulate many processes, potentially including those related to aging. There is a need to clarify the roles of IDPs/IDRs in aging. The dataset of 1702 aging-related proteins was collected from established aging databases and experimental studies. There is a noticeable presence of IDPs/IDRs, accounting for about 36% of the aging-related dataset, which is however less than the disorder content of the whole human proteome (about 40%). A Gene Ontology analysis of the used here aging proteome reveals an abundance of IDPs/IDRs in one-third of aging-associated processes, especially in genome regulation. Signaling pathways associated with aging also contain IDPs/IDRs on different hierarchical levels, revealing the importance of "structure-function continuum" in aging. Protein-protein interaction network analysis showed that IDPs present in different clusters associated with different aging hallmarks. Protein cluster with IDPs enrichment has simultaneously high liquid-liquid phase separation (LLPS) probability, "nuclear" localization and DNA-associated functions, related to aging hallmarks: genomic instability, telomere attrition, epigenetic alterations, and stem cells exhaustion. Intrinsic disorder, LLPS, and aggregation propensity should be considered as features that could be markers of pathogenic proteins. Overall, our analyses indicate that IDPs/IDRs play significant roles in aging-associated processes, particularly in the regulation of DNA functioning. IDP aggregation, which can lead to loss of function and toxicity, could be critically harmful to the cell. A structure-based analysis of aging and the identification of proteins that are particularly susceptible to disturbances can enhance our understanding of the molecular mechanisms of aging and open up new avenues for slowing it down.
Collapse
Affiliation(s)
- Vladimir D Manyilov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Baraa M G A Saqr
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Guy W Dayhoff
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Simon S Matrenok
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Alexander V Fonin
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Irina M Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | | | - Valentin Ivanovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
| |
Collapse
|
12
|
Norris V, Oláh J, Krylov SN, Uversky VN, Ovádi J. The Sherpa hypothesis: Phenotype-Preserving Disordered Proteins stabilize the phenotypes of neurons and oligodendrocytes. NPJ Syst Biol Appl 2023; 9:31. [PMID: 37433867 DOI: 10.1038/s41540-023-00291-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Intrinsically disordered proteins (IDPs), which can interact with many partner proteins, are central to many physiological functions and to various pathologies that include neurodegeneration. Here, we introduce the Sherpa hypothesis, according to which a subset of stable IDPs that we term Phenotype-Preserving Disordered Proteins (PPDP) play a central role in protecting cell phenotypes from perturbations. To illustrate and test this hypothesis, we computer-simulate some salient features of how cells evolve and differentiate in the presence of either a single PPDP or two incompatible PPDPs. We relate this virtual experiment to the pathological interactions between two PPDPs, α-synuclein and Tubulin Polymerization Promoting Protein/p25, in neurodegenerative disorders. Finally, we discuss the implications of the Sherpa hypothesis for aptamer-based therapies of such disorders.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Sergey N Krylov
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J1P3, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| |
Collapse
|
13
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
14
|
Hu Q, Hong M, Huang M, Gong Q, Zhang X, Uversky VN, Pan-Montojo F, Huang T, Zhou H, Zhu S. Age-dependent aggregation of α-synuclein in the nervous system of gut-brain axis is associated with caspase-1 activation. Metab Brain Dis 2022; 37:1669-1681. [PMID: 35089485 DOI: 10.1007/s11011-022-00917-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-Syn) plays a key role in the development of Parkinson' desease (PD). As aging is acknowledged to be the greatest risk factor for PD, here we investigated α-Syn expression in the ileum, thoracic spinal cord, and midbrain of young (1-month-old), middle-aged (6-, 12-month-old) to old (18-month-old) mice. We demonstrated that both the levels of α-Syn monomers, oligomers and ratios of oligomers to monomers were increased with aging in the ileum, thoracic spinal cord, and midbrain. Whereas, the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis, was decreased with aging in the midbrain. We failed to find corresponding α-Syn mRNA increase with aging. However, we found an increased expression of caspase-1 in the ileum, thoracic spinal cord, and midbrain. A specific caspase-1 inhibitor VX765 significantly reduced levels of both the α-Syn monomers and oligomers triggered by the rotenone in vitro. Taken together, the increase in α-Syn aggregation with aging might not occur first in the gut, but simultaneously in the nervous system of gut-brain axis. The mechanism of the age-dependent aggregation of α-Syn in nervous system is likely triggered by the aging-related caspase-1 activation.
Collapse
Affiliation(s)
- Qi Hu
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Mei Hong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, People's Republic of China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, People's Republic of China
- Department of Respiratory Medicine, Changhang General Hospital, Wuhan, 430015, People's Republic of China
| | - Mengyang Huang
- Department of Cardiac Function, Wuhan Central Hospital, Wuhan, 430345, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, People's Republic of China.
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, People's Republic of China.
| | - Xiaofan Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, 142290, Russia
| | - Francisco Pan-Montojo
- Department of Psychiatry, Klinikum Der Ludwig-Maximilian Universität, 80336, Munich, Germany
| | - Teng Huang
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Honglian Zhou
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
15
|
What Is Parvalbumin for? Biomolecules 2022; 12:biom12050656. [PMID: 35625584 PMCID: PMC9138604 DOI: 10.3390/biom12050656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Parvalbumin (PA) is a small, acidic, mostly cytosolic Ca2+-binding protein of the EF-hand superfamily. Structural and physical properties of PA are well studied but recently two highly conserved structural motifs consisting of three amino acids each (clusters I and II), which contribute to the hydrophobic core of the EF-hand domains, have been revealed. Despite several decades of studies, physiological functions of PA are still poorly known. Since no target proteins have been revealed for PA so far, it is believed that PA acts as a slow calcium buffer. Numerous experiments on various muscle systems have shown that PA accelerates the relaxation of fast skeletal muscles. It has been found that oxidation of PA by reactive oxygen species (ROS) is conformation-dependent and one more physiological function of PA in fast muscles could be a protection of these cells from ROS. PA is thought to regulate calcium-dependent metabolic and electric processes within the population of gamma-aminobutyric acid (GABA) neurons. Genetic elimination of PA results in changes in GABAergic synaptic transmission. Mammalian oncomodulin (OM), the β isoform of PA, is expressed mostly in cochlear outer hair cells and in vestibular hair cells. OM knockout mice lose their hearing after 3–4 months. It was suggested that, in sensory cells, OM maintains auditory function, most likely affecting outer hair cells’ motility mechanisms.
Collapse
|
16
|
Initiation and progression of α-synuclein pathology in Parkinson’s disease. Cell Mol Life Sci 2022; 79:210. [PMID: 35347432 PMCID: PMC8960654 DOI: 10.1007/s00018-022-04240-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
Abstract
α-Synuclein aggregation is a critical molecular process that underpins the pathogenesis of Parkinson’s disease. Aggregates may originate at synaptic terminals as a consequence of aberrant interactions between α-synuclein and lipids or evasion of proteostatic defences. The nature of these interactions is likely to influence the emergence of conformers or strains that in turn could explain the clinical heterogeneity of Parkinson’s disease and related α-synucleinopathies. For neurodegeneration to occur, α-synuclein assemblies need to exhibit seeding competency, i.e. ability to template further aggregation, and toxicity which is at least partly mediated by interference with synaptic vesicle or organelle homeostasis. Given the dynamic and reversible conformational plasticity of α-synuclein, it is possible that seeding competency and cellular toxicity are mediated by assemblies of different structure or size along this continuum. It is currently unknown which α-synuclein assemblies are the most relevant to the human condition but recent advances in the cryo-electron microscopic characterisation of brain-derived fibrils and their assessment in stem cell derived and animal models are likely to facilitate the development of precision therapies or biomarkers. This review summarises the main principles of α-synuclein aggregate initiation and propagation in model systems, and their relevance to clinical translation.
Collapse
|
17
|
Upcott M, Chaprov KD, Buchman VL. Toward a Disease-Modifying Therapy of Alpha-Synucleinopathies: New Molecules and New Approaches Came into the Limelight. Molecules 2021; 26:7351. [PMID: 34885933 PMCID: PMC8658846 DOI: 10.3390/molecules26237351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
The accumulation of the various products of alpha-synuclein aggregation has been associated with the etiology and pathogenesis of several neurodegenerative conditions, including both familial and sporadic forms of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). It is now well established that the aggregation and spread of alpha-synuclein aggregation pathology activate numerous pathogenic mechanisms that contribute to neurodegeneration and, ultimately, to disease progression. Therefore, the development of a safe and effective disease-modifying therapy that limits or prevents the accumulation of the toxic intermediate products of alpha-synuclein aggregation and the spread of alpha-synuclein aggregation pathology could provide significant positive clinical outcomes in PD/DLB cohorts. It has been suggested that this goal can be achieved by reducing the intracellular and/or extracellular levels of monomeric and already aggregated alpha-synuclein. The principal aim of this review is to critically evaluate the potential of therapeutic strategies that target the post-transcriptional steps of alpha-synuclein production and immunotherapy-based approaches to alpha-synuclein degradation in PD/DLB patients. Strategies aimed at the downregulation of alpha-synuclein production are at an early preclinical stage of drug development and, although they have shown promise in animal models of alpha-synuclein aggregation, many limitations need to be resolved before in-human clinical trials can be seriously considered. In contrast, many strategies aimed at the degradation of alpha-synuclein using immunotherapeutic approaches are at a more advanced stage of development, with some in-human Phase II clinical trials currently in progress. Translational barriers for both strategies include the limitations of alpha-synuclein aggregation models, poor understanding of the therapeutic window for the alpha-synuclein knockdown, and variability in alpha-synuclein pathology across patient cohorts. Overcoming such barriers should be the main focus of further studies. However, it is already clear that these strategies do have the potential to achieve a disease-modifying effect in PD and DLB.
Collapse
Affiliation(s)
- Mae Upcott
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Kirill D. Chaprov
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovk, 142432 Moscow, Russia;
- Belgorod State National Research University, 85 Pobedy Street, 308015 Belgorod, Russia
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovk, 142432 Moscow, Russia;
- Belgorod State National Research University, 85 Pobedy Street, 308015 Belgorod, Russia
| |
Collapse
|
18
|
Specht CG. A Quantitative Perspective of Alpha-Synuclein Dynamics - Why Numbers Matter. Front Synaptic Neurosci 2021; 13:753462. [PMID: 34744680 PMCID: PMC8569944 DOI: 10.3389/fnsyn.2021.753462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
The function of synapses depends on spatially and temporally controlled molecular interactions between synaptic components that can be described in terms of copy numbers, binding affinities, and diffusion properties. To understand the functional role of a given synaptic protein, it is therefore crucial to quantitatively characterise its biophysical behaviour in its native cellular environment. Single molecule localisation microscopy (SMLM) is ideally suited to obtain quantitative information about synaptic proteins on the nanometre scale. Molecule counting of recombinant proteins tagged with genetically encoded fluorophores offers a means to determine their absolute copy numbers at synapses due to the known stoichiometry of the labelling. As a consequence of its high spatial precision, SMLM also yields accurate quantitative measurements of molecule concentrations. In addition, live imaging of fluorescently tagged proteins at synapses can reveal diffusion dynamics and local binding properties of behaving proteins under normal conditions or during pathological processes. In this perspective, it is argued that the detailed structural information provided by super-resolution imaging can be harnessed to gain new quantitative information about the organisation and dynamics of synaptic components in cellula. To illustrate this point, I discuss the concentration-dependent aggregation of α-synuclein in the axon and the concomitant changes in the dynamic equilibrium of α-synuclein at synapses in quantitative terms.
Collapse
Affiliation(s)
- Christian G. Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm, Université Paris-Saclay, Paris, France
| |
Collapse
|
19
|
Marzullo L, Turco MC, Uversky VN. What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. J Cell Biochem 2021; 123:22-42. [PMID: 34339540 DOI: 10.1002/jcb.30123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
20
|
Uversky VN, Albar AH, Khan RH, Redwan EM. Multifunctionality and intrinsic disorder of royal jelly proteome. Proteomics 2021; 21:e2000237. [PMID: 33463023 DOI: 10.1002/pmic.202000237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Royal Jelly (RJ) is a gelatinous white-yellowish fluid, possessing a sour taste and a slight phenolic smell that is secreted by the hypopharyngeal and mandibular salivary glands of the nurse honeybees, and is used in nutrition of larvae and adult queens. Similar to other substances associated with the activities of honeybees, RJ not only contains nutritive components, such as carbohydrates, proteins, peptides, lipids, vitamins, and mineral salts, but also represents a natural ingredient with cosmetic and health-promoting properties. RJ is characterized by remarkable multifunctionality, possessing numerous biological activities. Although this multifunctionality of RJ can be considered as a consequence of its complex nature, many proteins and peptides in RJ are polyfunctional entities themselves. In this article, we show that RJ proteins contain different levels of intrinsic disorder, have sites of post-translational modifications, can be found in multiple isoforms, and many of them possess disorder-based binding sites, suggesting that the conformational ensembles of the RJ proteins might undergo change as a result of their interaction with specific binding partners. All these observations suggest that the multifunctionality of proteins and peptides from RJ is determined by their structural heterogeneity and polymorphism, and serve as an illustration of the protein structure-function continuum concept.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589 80203, Saudi Arabia.,Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Abdulgader H Albar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589 80203, Saudi Arabia
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589 80203, Saudi Arabia
| |
Collapse
|
21
|
Marsal-García L, Urbizu A, Arnaldo L, Campdelacreu J, Vilas D, Ispierto L, Gascón-Bayarri J, Reñé R, Álvarez R, Beyer K. Expression Levels of an Alpha-Synuclein Transcript in Blood May Distinguish between Early Dementia with Lewy Bodies and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22020725. [PMID: 33450872 PMCID: PMC7828374 DOI: 10.3390/ijms22020725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Lewy body diseases (LBD) including dementia with Lewy bodies (DLB) and Parkinson disease (PD) are characterized by alpha-synuclein pathology. DLB is difficult to diagnose and peripheral biomarkers are urgently needed. Therefore, we analyzed the expression of five alpha-synuclein gene (SNCA) transcripts, SNCAtv1, SNCAtv2, SNCAtv3, SNCA126, and SNCA112, in 45 LBD and control temporal cortex samples and in the blood of 72 DLB, 59 PD, and 54 control subjects. The results revealed overexpression of SNCAtv1 and SNCA112 in DLB, and SNCAtv2 in PD temporal cortices. In DLB blood, diminution of all SNCA transcripts was observed. SNCAtv1 and SNCAtv2 were diminished in PD with disease onset before 70 years. SNCAtv3, driven by its own promoter, showed opposite expression in early DLB and PD, suggesting that its amount may be an early, DLB specific biomarker. Correlation between blood transcript levels and disease duration was positive in DLB and negative in PD, possibly reflecting differences in brain alpha-synuclein aggregation rates associated with differences in disease courses. In conclusion, SNCA transcripts showed a disease-specific increase in the brain and were diminished in blood of LBD patients. SNCAtv3 expression was decreased in early DLB and increased in early PD and could be a biomarker for early DLB diagnosis.
Collapse
Affiliation(s)
- Laura Marsal-García
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (L.M.-G.); (A.U.); (L.A.)
| | - Aintzane Urbizu
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (L.M.-G.); (A.U.); (L.A.)
| | - Laura Arnaldo
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (L.M.-G.); (A.U.); (L.A.)
| | - Jaume Campdelacreu
- Servei de Neurologia, Hospital Universitari Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (J.C.); (J.G.-B.); (R.R.)
| | - Dolores Vilas
- Servei de Neurologia, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (D.V.); (L.I.); (R.Á.)
| | - Lourdes Ispierto
- Servei de Neurologia, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (D.V.); (L.I.); (R.Á.)
| | - Jordi Gascón-Bayarri
- Servei de Neurologia, Hospital Universitari Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (J.C.); (J.G.-B.); (R.R.)
| | - Ramón Reñé
- Servei de Neurologia, Hospital Universitari Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (J.C.); (J.G.-B.); (R.R.)
| | - Ramiro Álvarez
- Servei de Neurologia, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (D.V.); (L.I.); (R.Á.)
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (L.M.-G.); (A.U.); (L.A.)
- Correspondence: ; Tel.: +34-93-497-8355
| |
Collapse
|
22
|
Chaprov KD, Teterina EV, Roman AY, Ivanova TA, Goloborshcheva VV, Kucheryanu VG, Morozov SG, Lysikova EA, Lytkina OA, Koroleva IV, Popova NI, Antohin AI, Ovchinnikov RK, Kukharsky MS. Comparative Analysis of MPTP Neurotoxicity in Mice with a Constitutive Knockout of the α-Synuclein Gene. Mol Biol 2021. [DOI: 10.1134/s0026893321010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Fast kinetics of environmentally induced α-synuclein aggregation mediated by structural alteration in NAC region and result in structure dependent cytotoxicity. Sci Rep 2020; 10:18412. [PMID: 33110167 PMCID: PMC7591854 DOI: 10.1038/s41598-020-75361-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is associated with the manifestation of various pathogenic synucleinopathies, including Parkinson’s disease attributed to both genetic and environmental stress factors. The initial events triggering α-syn aggregation and disease initiation due to environmental stress factors are still largely unknown. Here, to understand the mechanism of misfolding and aggregation initiation, we induced α-syn aggregation with rotenone, an established chemical inducer of PD like symptoms. We found that rotenone accelerates the formation of structurally distinct oligomers and fibrils that act as templates and increase the formation of conformers capable of spreading to the neighboring neuronal cells. Molecular dynamics simulations and NMR studies revealed the involvement of NAC region and formation of helical conformations resulting in structural variations in oligomers and fibrils. These structural variations affect the cytotoxic potential of oligomers and fibrils, where, the beta sheet rich oligomers and fibrils alter the membrane potential of neuronal cells and lead to early apoptosis. Our results describe the initial mechanistic events in pathogenic protein aggregation, where initial structural alterations in response to external stress factors dictate the toxicity of resulting conformers. This information will further provide insights in the understanding of protein aggregation, disease progression and pathogenesis.
Collapse
|
24
|
Epigenetics in Lewy Body Diseases: Impact on Gene Expression, Utility as a Biomarker, and Possibilities for Therapy. Int J Mol Sci 2020; 21:ijms21134718. [PMID: 32630630 PMCID: PMC7369933 DOI: 10.3390/ijms21134718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Lewy body disorders (LBD) include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). They are synucleinopathies with a heterogeneous clinical manifestation. As a cause of neuropathological overlap with other neurodegenerative diseases, the establishment of a correct clinical diagnosis is still challenging, and clinical management may be difficult. The combination of genetic variation and epigenetic changes comprising gene expression-modulating DNA methylation and histone alterations modifies the phenotype, disease course, and susceptibility to disease. In this review, we summarize the results achieved in the deciphering of the LBD epigenome. To provide an appropriate context, first LBD genetics is briefly outlined. Afterwards, a detailed review of epigenetic modifications identified for LBD in human cells, postmortem, and peripheral tissues is provided. We also focus on the difficulty of identifying epigenome-related biomarker candidates and discuss the results obtained so far. Additionally, epigenetic changes as therapeutic targets, as well as different epigenome-based treatments, are revised. The number of studies focusing on PD is relatively limited and practically inexistent for DLB. There is a lack of replication studies, and some results are even contradictory, probably due to differences in sample collection and analytical techniques. In summary, we show the current achievements and directions for future research.
Collapse
|
25
|
Ninkina N, Tarasova TV, Chaprov KD, Roman AY, Kukharsky MS, Kolik LG, Ovchinnikov R, Ustyugov AA, Durnev AD, Buchman VL. Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice. Neurobiol Aging 2020; 91:76-87. [PMID: 32224067 PMCID: PMC7242904 DOI: 10.1016/j.neurobiolaging.2020.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 01/05/2023]
Abstract
The etiology and pathogenesis of Parkinson's disease (PD) are tightly linked to the gain-of-function of α-synuclein. However, gradual accumulation of α-synuclein aggregates in dopaminergic neurons of substantia nigra pars compacta (SNpc) leads to the depletion of the functional pool of soluble α-synuclein, and therefore, creates loss-of-function conditions, particularly in presynaptic terminals of these neurons. Studies of how this late-onset depletion of a protein involved in many important steps of neurotransmission contributes to PD progression and particularly, to worsening the nigrostriatal pathology at late stages of the disease are limited and obtained data, are controversial. Recently, we produced a mouse line for conditional knockout of the gene encoding α-synuclein, and here we used its tamoxifen-inducible pan-neuronal inactivation to study consequences of the adult-onset (from the age of 6 months) and late-onset (from the age of 12 months) α-synuclein depletion to the nigrostriatal system. No significant changes of animal balance/coordination, the number of dopaminergic neurons in the SNpc and the content of dopamine and its metabolites in the striatum were observed after adult-onset α-synuclein depletion, but in aging (18-month-old) late-onset depleted mice we found a significant reduction of major dopamine metabolites without changes to the content of dopamine itself. Our data suggest that this might be caused, at least partially, by reduced expression of aldehyde dehydrogenase ALDH1a1 and could lead to the accumulation of toxic intermediates of dopamine catabolism. By extrapolating our findings to a potential clinical situation, we suggest that therapeutic downregulation of α-synuclein expression in PD patients is a generally safe option as it should not cause adverse side effects on the functionality of their nigrostriatal system. However, if started in aged patients, this type of therapy might trigger slight functional changes of the nigrostriatal system with potentially unwanted additive effect to already existing pathology.
Collapse
Affiliation(s)
- Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Moscow Region, Russian Federation.
| | - Tatiana V Tarasova
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Moscow Region, Russian Federation
| | - Kirill D Chaprov
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Moscow Region, Russian Federation
| | - Andrei Yu Roman
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Moscow Region, Russian Federation
| | - Michail S Kukharsky
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Moscow Region, Russian Federation; FSBI Research Zakusov Institute of Pharmacology (FSBI RZIP), Moscow, Russian Federation; Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Larisa G Kolik
- FSBI Research Zakusov Institute of Pharmacology (FSBI RZIP), Moscow, Russian Federation
| | - Ruslan Ovchinnikov
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Moscow Region, Russian Federation; Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Aleksey A Ustyugov
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Moscow Region, Russian Federation
| | - Andrey D Durnev
- FSBI Research Zakusov Institute of Pharmacology (FSBI RZIP), Moscow, Russian Federation
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Moscow Region, Russian Federation.
| |
Collapse
|
26
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
27
|
O'Carroll A, Coyle J, Gambin Y. Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Semin Cell Dev Biol 2019; 99:115-130. [PMID: 31818518 DOI: 10.1016/j.semcdb.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.
Collapse
Affiliation(s)
- Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
28
|
The Role of Xenobiotics and Trace Metals in Parkinson’s Disease. Mol Neurobiol 2019; 57:1405-1417. [DOI: 10.1007/s12035-019-01832-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
|
29
|
Appadurai R, Uversky VN, Srivastava A. The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. J Membr Biol 2019; 252:273-292. [PMID: 31139867 PMCID: PMC7617717 DOI: 10.1007/s00232-019-00069-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
The intrinsically disordered proteins and protein regions (IDPs/IDPRs) do not have unique structures, but are known to be functionally important and their conformational flexibility and structural plasticity have engendered a paradigmatic shift in the classical sequence-structure-function maxim. Fundamental understanding in this field has significantly evolved since the discovery of this class of proteins about 25 years ago. Though the IDPRs of transmembrane proteins (TMP-IDPRs) comply with the broad definition of typical IDPs and IDPRs found in water-soluble globular proteins, much less is explored and known about them. In this review, we assimilate the key emerging biophysical principles from the limited studies on TMP-IDPRs and provide several context-specific biological examples to highlight the ubiquitous nature of TMP-IDPRs and their functional importance in cellular functions. Besides providing a spectrum of insights from sequence to structural disorder and functions, we also review the challenges and methodological advances in studying the structure-function relationship of TMP-IDPRs. We also lay stress upon the importance of an integrative framework, where ensemble-averaged (and mostly low-resolution) data from multiple experiments can be faithfully integrated with modelling techniques such as advanced sampling, coarse-graining, and free energy minimization methods for a high-fidelity characterization of TMP-IDPRs. We close the review by providing futuristic perspective with suggestions on how we could use the ideas and methods from the exciting field of protein engineering in conjunction with integrative modelling framework to advance the IDPR field and harness the sequence-disorder-function paradigm towards functional design of proteins.
Collapse
Affiliation(s)
- Rajeswari Appadurai
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow Region, Russia, 142290
| | - Anand Srivastava
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
30
|
Yeast Models for Amyloids and Prions: Environmental Modulation and Drug Discovery. Molecules 2019; 24:molecules24183388. [PMID: 31540362 PMCID: PMC6767215 DOI: 10.3390/molecules24183388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition) with human disease-related amyloids. Fundamental protein quality control pathways, including chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative diseases have become powerful tools for high-throughput screening for chemical compounds and FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions. Studies of environmental and physiological regulation of yeast prions open new possibilities for pharmacological intervention and/or prophylactic procedures aiming on common cellular systems rather than the properties of specific amyloids.
Collapse
|
31
|
Fujiwara S, Kono F, Matsuo T, Sugimoto Y, Matsumoto T, Narita A, Shibata K. Dynamic Properties of Human α-Synuclein Related to Propensity to Amyloid Fibril Formation. J Mol Biol 2019; 431:3229-3245. [DOI: 10.1016/j.jmb.2019.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
|
32
|
Progressive supranuclear palsy and multiple system atrophy: clinicopathological concepts and therapeutic challenges. Curr Opin Neurol 2019; 31:448-454. [PMID: 29746401 DOI: 10.1097/wco.0000000000000581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This update discusses novel aspects on clinicopathological concepts and therapeutic challenges in progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), arising from publications of the last 1.5 years. RECENT FINDINGS The clinical criteria for diagnosis of PSP have been revised. Clinical variability of pathologically defined PSP and MSA makes the development of mature biomarkers for early diagnosis and biomarker-based trial design indispensable. Novel molecular techniques for biomarker supported diagnosis of PSP and MSA and for monitoring disease progression are being studied. Research in the pathophysiology of both diseases generates gradual progress in the understanding of the underlying processes. Several promising disease-modifying therapeutic approaches for PSP and MSA are now moving into clinical trials. SUMMARY Recent research generates insights in the pathophysiological relevant processes and raises hope for earlier clinical diagnosis and disease-modifying therapies of patients with PSP and MSA.
Collapse
|
33
|
Höllerhage M, Bickle M, Höglinger GU. Unbiased Screens for Modifiers of Alpha-Synuclein Toxicity. Curr Neurol Neurosci Rep 2019; 19:8. [PMID: 30739256 DOI: 10.1007/s11910-019-0925-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW We provide an overview about unbiased screens to identify modifiers of alpha-synuclein (αSyn)-induced toxicity, present the models and the libraries that have been used for screening, and describe how hits from primary screens were selected and validated. RECENT FINDINGS Screens can be classified as either genetic or chemical compound modifier screens, but a few screens do not fit this classification. Most screens addressing αSyn-induced toxicity, including genome-wide overexpressing and deletion, were performed in yeast. More recently, newer methods such as CRISPR-Cas9 became available and were used for screening purposes. Paradoxically, given that αSyn-induced toxicity plays a role in neurological diseases, there is a shortage of human cell-based models for screening. Moreover, most screens used mutant or fluorescently tagged forms of αSyn and only very few screens investigated wild-type αSyn. Particularly, no genome-wide αSyn toxicity screen in human dopaminergic neurons has been published so far. Most unbiased screens for modifiers of αSyn toxicity were performed in yeast, and there is a lack of screens performed in human and particularly dopaminergic cells.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Department of Neurology, Technical University of Munich (TUM), 81675, Munich, Germany
| | - Marc Bickle
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.
- Department of Neurology, Technical University of Munich (TUM), 81675, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilians University (LMU), 81377, Munich, Germany.
| |
Collapse
|
34
|
Redwan EM, AlJaddawi AA, Uversky VN. Structural disorder in the proteome and interactome of Alkhurma virus (ALKV). Cell Mol Life Sci 2019; 76:577-608. [PMID: 30443749 PMCID: PMC7079808 DOI: 10.1007/s00018-018-2968-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Infection by the Alkhurma virus (ALKV) leading to the Alkhurma hemorrhagic fever is a common thread in Saudi Arabia, with no efficient treatment or prevention available as of yet. Although the rational drug design traditionally uses information on known 3D structures of viral proteins, intrinsically disordered proteins (i.e., functional proteins that do not possess unique 3D structures), with their multitude of disorder-dependent functions, are crucial for the biology of viruses. Here, viruses utilize disordered regions in their invasion of the host organisms and in hijacking and repurposing of different host systems. Furthermore, the ability of viruses to efficiently adjust and accommodate to their hostile habitats is also intrinsic disorder-dependent. However, little is currently known on the level of penetrance and functional utilization of intrinsic disorder in the ALKV proteome. To fill this gap, we used here multiple computational tools to evaluate the abundance of intrinsic disorder in the ALKV genome polyprotein. We also analyzed the peculiarities of intrinsic disorder predisposition of the individual viral proteins, as well as human proteins known to be engaged in interaction with the ALKV proteins. Special attention was paid to finding a correlation between protein functionality and structural disorder. To the best of our knowledge, this work represents the first systematic study of the intrinsic disorder status of ALKV proteome and interactome.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Abdullah A AlJaddawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.
| |
Collapse
|
35
|
Tanaka G, Yamanaka T, Furukawa Y, Kajimura N, Mitsuoka K, Nukina N. Biochemical and morphological classification of disease-associated alpha-synuclein mutants aggregates. Biochem Biophys Res Commun 2018; 508:729-734. [PMID: 30528390 DOI: 10.1016/j.bbrc.2018.11.200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023]
Abstract
Alpha-synuclein (a-syn) aggregation in brain is implicated in several synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Until date, at least six disease-associated mutations in a-syn (namely A30P, E46K, H50Q, G51D, A53T, and A53E) are known to cause dominantly inherited familial forms of synucleinopathies. Previous studies using recombinant proteins have reported that a subset of disease-associated mutants show higher aggregation propensities and form spectroscopically distinguishable aggregates compared to wild-type (WT). However, morphological and biochemical comparison of the aggregates for all disease-associated a-syn mutants have not yet been performed. In this study, we performed electron microscopic examination, guanidinium hydrochloride (GdnHCl) denaturation, and protease digestion to classify the aggregates from their respective point mutations. Using electron microscopy we observed variations of amyloid fibrillar morphologies among the aggregates of a-syn mutants, mainly categorized into two groups: twisted fibrils observed for both WT and E46K while straight fibrils for the other mutants. GdnHCl denaturation experiments revealed the a-syn mutants except for E46K were more resistant than WT against the denaturation. Mass spectrometry analysis of protease-treated aggregates showed a variety of protease-resistant cores, which may correspond to their morphological properties. The difference of their properties could be implicated in the clinicopathological difference of synucleinopathies with those mutations.
Collapse
Affiliation(s)
- Goki Tanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, 223-8522, Japan
| | - Naoko Kajimura
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.
| |
Collapse
|
36
|
Kulkarni P, Uversky VN. Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics 2018; 18:e1800061. [DOI: 10.1002/pmic.201800061] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research; City of Hope National Medical Center; Duarte CA 91010 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa FL 33612 USA
- Laboratory of New methods in Biology; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino Moscow Region 142290 Russia
| |
Collapse
|
37
|
Terada M, Suzuki G, Nonaka T, Kametani F, Tamaoka A, Hasegawa M. The effect of truncation on prion-like properties of α-synuclein. J Biol Chem 2018; 293:13910-13920. [PMID: 30030380 PMCID: PMC6130941 DOI: 10.1074/jbc.ra118.001862] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/15/2018] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that α-synuclein (αS) aggregates in brains of individuals with Parkinson's disease and dementia with Lewy bodies can spread in a prion-like manner. Although the initial αS nuclei are pivotal in determining αS fibril polymorphs and resulting phenotypes, it is not clear how the initial fibril seeds are generated. Previous studies have shown that αS truncation might have an important role in αS aggregation. However, little is known about how this truncation influences αS's propagation properties. In the present study, we generated αS fibrils from a series of truncated human αS constructs, characterized their structures and conformational stabilities, and investigated their ability to convert the conformation of full-length αS in vitro, in cultured cells, and in WT mice. We show that both C- and N-terminal truncations of human αS induce fibril polymorphs and exhibit different cross-seeding activities. N-terminally 10- or 30-residue-truncated human αS fibrils induced more abundant αS pathologies than WT fibrils in mice, whereas other truncated fibrils induced less abundant pathologies. Biochemical analyses of these truncated fibrils revealed that N-terminal 10- or 30-residue truncations of human αS change the fibril conformation in a manner that increases their structural compatibility with WT mouse αS fibrils and reduces their stability. C-terminally 20-residue-truncated fibrils displayed enhanced seeding activity in vitro Our findings imply that truncation of αS can influence its prion-like pathogenicity, resulting in phenotypic diversity of α-synucleinopathies.
Collapse
Affiliation(s)
- Makoto Terada
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan and
- Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Genjiro Suzuki
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan and
| | - Takashi Nonaka
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan and
| | - Fuyuki Kametani
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan and
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masato Hasegawa
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan and
| |
Collapse
|
38
|
Bondarev SA, Antonets KS, Kajava AV, Nizhnikov AA, Zhouravleva GA. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int J Mol Sci 2018; 19:ijms19082292. [PMID: 30081572 PMCID: PMC6121665 DOI: 10.3390/ijms19082292] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Amyloids are unbranched protein fibrils with a characteristic spatial structure. Although the amyloids were first described as protein deposits that are associated with the diseases, today it is becoming clear that these protein fibrils play multiple biological roles that are essential for different organisms, from archaea and bacteria to humans. The appearance of amyloid, first of all, causes changes in the intracellular quantity of the corresponding soluble protein(s), and at the same time the aggregate can include other proteins due to different molecular mechanisms. The co-aggregation may have different consequences even though usually this process leads to the depletion of a functional protein that may be associated with different diseases. The protein co-aggregation that is related to functional amyloids may mediate important biological processes and change of protein functions. In this review, we survey the known examples of the amyloid-related co-aggregation of proteins, discuss their pathogenic and functional roles, and analyze methods of their studies from bacteria and yeast to mammals. Such analysis allow for us to propose the following co-aggregation classes: (i) titration: deposition of soluble proteins on the amyloids formed by their functional partners, with such interactions mediated by a specific binding site; (ii) sequestration: interaction of amyloids with certain proteins lacking a specific binding site; (iii) axial co-aggregation of different proteins within the same amyloid fibril; and, (iv) lateral co-aggregation of amyloid fibrils, each formed by different proteins.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Kirill S Antonets
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France.
- Institut de Biologie Computationnelle (IBC), 34095 Montpellier, France.
- University ITMO, Institute of Bioengineering, Kronverksky Pr. 49, St. Petersburg 197101, Russia.
| | - Anton A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
39
|
Chartier S, Duyckaerts C. Is Lewy pathology in the human nervous system chiefly an indicator of neuronal protection or of toxicity? Cell Tissue Res 2018; 373:149-160. [PMID: 29869713 DOI: 10.1007/s00441-018-2854-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/04/2018] [Indexed: 11/30/2022]
Abstract
Misfolded α-synuclein accumulates in histological inclusions constituting "Lewy pathology" found in idiopathic Parkinson disease, Parkinson disease dementia and dementia with Lewy body. The mechanism inducing α-synuclein misfolding is still unknown. The misfolded molecules form oligomers that organize into fibrils. α-Synuclein fibrils, in vitro, are capable of initiating an auto-replicating process, transforming normal molecules into misfolded molecules that aggregate. Fibrils can cross the neuronal membrane and recruit α-synuclein molecules in connected neurons. Such properties of seeding and propagation, shared with prion proteins, belong to "tissular propagons". Lewy bodies isolate harmful species from the cytoplasm and have been thought to be protective. In PRKN gene mutations, however, the absence of Lewy bodies is not associated with a more aggressive course. In idiopathic Parkinson disease, the proportion of neurons with Lewy bodies in the substantia nigra remains stable despite the progression of neuronal loss. This stable proportion suggests that Lewy bodies are eliminated at the rate at which neurons are lost because Lewy bodies cause, or invariably accompany, neuronal loss. Experimentally, cellular death selectively occurs in inclusion-bearing neurons. This set of data indicates that α-synuclein misfolding is the essential mechanism causing the lesions of Parkinson disease and dementia with Lewy body. Lewy pathology is a direct and visible evidence of α-synuclein misfolding and, as such, is an accurate marker for assessing the presence of α-synuclein misfolding even if the inclusions themselves may not be as directly causative as the molecules they accumulate.
Collapse
Affiliation(s)
- Suzanne Chartier
- Escourolle Neuropathology Department, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 47 Boulevard de l'Hopital, 75651, Paris Cedex 13, France
| | - Charles Duyckaerts
- Escourolle Neuropathology Department, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 47 Boulevard de l'Hopital, 75651, Paris Cedex 13, France.
- Alzheimer-Prions Team, Brain and Spinal Cord Institute (ICM), Paris, France.
| |
Collapse
|
40
|
Prediction of Disordered Regions and Their Roles in the Anti-Pathogenic and Immunomodulatory Functions of Butyrophilins. Molecules 2018; 23:molecules23020328. [PMID: 29401697 PMCID: PMC6017450 DOI: 10.3390/molecules23020328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Butyrophilins (BTNs) are a group of the moonlighting proteins, some members of which are secreted in milk. They constitute a large family of structurally similar type 1 transmembrane proteins from the immunoglobulin superfamily. Although the founding member of this family is related to lactation, participating in the secretion, formation and stabilization of milk fat globules, it may also have a cell surface receptor function. Generally, the BTN family members are known to modulate co-stimulatory responses, T cell selection, differentiation, and cell fate determination. Polymorphism of these genes was shown to be associated with the pathology of several human diseases. Despite their biological significance, structural information on human butyrophilins is rather limited. Based on their remarkable multifunctionality, butyrophilins seem to belong to the category of moonlighting proteins, which are known to contain intrinsically disordered protein regions (IDPRs). However, the disorder status of human BTNs was not systematically investigated as of yet. The goal of this study is to fill this gap and to evaluate peculiarities of intrinsic disorder predisposition of the members of human BTN family, and to find if they have IDPRs that can be attributed to the multifunctionality of these important proteins.
Collapse
|
41
|
Gámez-Valero A, Beyer K. Alternative Splicing of Alpha- and Beta-Synuclein Genes Plays Differential Roles in Synucleinopathies. Genes (Basel) 2018; 9:genes9020063. [PMID: 29370097 PMCID: PMC5852559 DOI: 10.3390/genes9020063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
The synuclein family is composed of three members, two of which, α- and β-synuclein, play a major role in the development of synucleinopathies, including Parkinson’s disease (PD) as most important movement disorder, dementia with Lewy bodies (DLB) as the second most frequent cause of dementia after Alzheimer’s disease and multiple system atrophy. Whereas abnormal oligomerization and fibrillation of α-synuclein are now well recognized as initial steps in the development of synucleinopathies, β-synuclein is thought to be a natural α-synuclein anti-aggregant. α-synuclein is encoded by the SNCA gene, and β-synuclein by SNCB. Both genes are homologous and undergo complex splicing events. On one hand, in-frame splicing of coding exons gives rise to at least three shorter transcripts, and the functional properties of the corresponding protein isoforms are different. Another type of alternative splicing is the alternative inclusion of at least four initial exons in the case of SNCA, and two in the case of SNCB. Finally, different lengths of 3’ untranslated regions have been also reported for both genes. SNCB only expresses in the brain, but some of the numerous SNCA transcripts are also brain-specific. With the present article, we aim to provide a systematic review of disease related changes in the differential expression of the various SNCA and SNCB transcript variants in brain, blood, and non-neuronal tissue of synucleinopathies, but especially PD and DLB as major neurodegenerative disorders.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department of Pathology, Germans Trias i Pujol Research Institute, Badalona, 08916 Barcelona, Spain.
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute, Badalona, 08916 Barcelona, Spain.
| |
Collapse
|
42
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
43
|
Nusrat S, Khan RH. Exploration of ligand-induced protein conformational alteration, aggregate formation, and its inhibition: A biophysical insight. Prep Biochem Biotechnol 2018; 48:43-56. [PMID: 29106330 DOI: 10.1080/10826068.2017.1387561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The association of protein aggregates with plentiful human diseases has fascinated studies regarding the biophysical characterization of protein misfolding and ultimately their aggregate formation mechanism. Protein-ligand interaction, their mechanism, conformational changes by ligands, and protein aggregate formation have been studied upon exploiting experimental techniques and computational methodologies. Such studies for the exploration of ligand-induced conformational changes in protein, misfolding and aggregation, has confirmed drastic progresses in the study of aggregate formation pathways. This review comprises of an inclusive description of contemporary experimental techniques as well as theoretical improvements in the interpretation of the conformational properties of protein. We have also discussed various factors responsible for the microenvironment change around protein that sequentially causes amyloidoses. Biophysical techniques and cell-based assays to gain comprehensive understandings of protein-ligand interaction, protein folding, and aggregation pathways have also been described. The promising therapeutic methods used to inhibit the protein fibrillogenesis have also been discussed.
Collapse
Affiliation(s)
- Saima Nusrat
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Rizwan Hasan Khan
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| |
Collapse
|
44
|
Fauerbach JA, Jovin TM. Pre-aggregation kinetics and intermediates of α-synuclein monitored by the ESIPT probe 7MFE. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:345-362. [PMID: 29255947 PMCID: PMC5982440 DOI: 10.1007/s00249-017-1272-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 01/04/2023]
Abstract
The defining feature of the extensive family of amyloid diseases is the formation of networks of entangled elongated protein fibrils and amorphous aggregates exhibiting crossed β-sheet secondary structure. The time course of amyloid conversion has been studied extensively in vitro with the proteins involved in the neurodegenerative pathology of Parkinson's disease (α-synuclein), Alzheimer's disease (Tau) and Huntington's disease (Huntingtin). Although much is known about the thermodynamics and kinetics of the transition from a soluble, intrinsically disordered monomer to the fibrillar end state, the putative oligomeric intermediates, currently considered to be the major initiators of cellular toxicity, are as yet poorly defined. We have detected and characterized amyloid precursors by monitoring AS aggregation with ESIPT (excited state intramolecular protein transfer) probes, one of which, 7MFE [7-(3-maleimido-N-propanamide)-2-(4-diethyaminophenyl)-3-hydroxychromone], is introduced here and compared with a related compound, 6MFC, used previously. A series of 140 spectra for sparsely labeled AS was acquired during the course of aggregation, and resolved into the relative contributions (spectra, intensities) of discrete molecular species including the monomeric, fibrillar, and ensemble of intermediate forms. Based on these findings, a kinetic scheme was devised to simulate progress curves as a function of key parameters. An essential feature of the model, one not previously invoked in schemes of amyloid aggregation, is the catalysis of molecular fuzziness by discrete colloidal nanoparticles arising spontaneously via monomer condensation upon exposure of AS to ≥ 37 °C.
Collapse
Affiliation(s)
- Jonathan A Fauerbach
- Miltenyi Biotec GmbH, Friedrich-Ebert Str. 42, 51429, Bergisch-Gladbach, Germany
| | - Thomas M Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
45
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|