1
|
Burtscher J, Motl RW, Berek K, Ehrenreich H, Kopp M, Hohenauer E. Hypoxia in multiple sclerosis. Redox Biol 2025; 83:103666. [PMID: 40347693 DOI: 10.1016/j.redox.2025.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Low oxygen availability (hypoxia) is a prominent but poorly understood feature in multiple sclerosis (MS). Whether hypoxia causes or drives MS pathology and symptoms or whether it is a consequence of other pathological events, such as inflammation and vascular dysfunction, is unknown. Here, we summarize the available literature on the interplay between hypoxia and both pathological and symptomatic features of MS. Severe environmental hypoxia (i.e., altitude) may trigger or facilitate MS-related events, possibly by exacerbating tissue hypoxia in the central nervous system. Accordingly, increasing oxygen supply can mitigate pathological and clinical parameters in MS models. In contrast, stimulating the endogenous hypoxia response and adaptation systems by controlled exposure to hypoxia (hypoxia conditioning) renders the central nervous system more resistant to hypoxic insults, thereby attenuating pathology and symptomatology in MS models. Overlapping mechanisms likely play a role in the benefits conferred by physical activity in MS. We provide an integrative model to explain the paradoxically beneficial outcomes of both increased and decreased ambient oxygen conditions. In conclusion, controlled exposure to hypoxia, perhaps in combination with exercise, is a promising, possibly disease-course modifying therapeutic approach for MS. However, many open questions remain.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannelore Ehrenreich
- Experimental Medicine, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, Mannheim, Germany
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Soroush A, Dunn JF. A Hypoxia-Inflammation Cycle and Multiple Sclerosis: Mechanisms and Therapeutic Implications. Curr Treat Options Neurol 2024; 27:6. [PMID: 39569339 PMCID: PMC11573864 DOI: 10.1007/s11940-024-00816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demyelination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, and its implications for therapeutic targets. Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray matter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation (StO2), as well as through blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood-brain barrier (BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The hypoxia can, in turn, drive more inflammation. Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore therapeutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could improve quality of life or reduce rates of progression.
Collapse
Affiliation(s)
- Ateyeh Soroush
- Department of Neuroscience, University of Calgary, Calgary, Alberta Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Department of Radiology, University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
3
|
Kleerekooper I, Verschueren D, Trip S, Plant G, Petzold A. Ellipsoid Zone Reflectivity: Exploring its Potential as a Novel Non-Invasive Biomarker for Assessing Mitochondrial Function. Neuroophthalmology 2024; 48:417-428. [PMID: 39583018 PMCID: PMC11581146 DOI: 10.1080/01658107.2024.2341769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 11/26/2024] Open
Abstract
The ellipsoid zone (EZ) on macular optical coherence tomography (OCT) scans exhibits high intensity due to a high density of light-scattering mitochondria, making its reflectivity a potential marker for mitochondrial function. Here, we developed a reliable analysis tool for extracting relative EZ reflectivity and explore its potential as a biomarker in various diseases. We analysed OCT scans of patients with optic neuritis (ON), primary progressive optic neuropathy (PPON), chronic progressive external ophthalmoplegia (CPEO), dominant optic atrophy (DOA), and healthy controls. EZ reflectivity (normalised to the retina pigment epithelium (RPE) and outer nuclear layer (ONL)) was evaluated. Reliability was assessed using intraclass correlation coefficients (ICC), and group differences were analysed through multivariable linear regression, adjusting for relevant confounders. In total, 12 controls, 23 ON patients, 7 CPEO patients, 13 DOA patients, and 13 PPON patients were included. EZ/RPE20% and EZ/ONL ratios demonstrated good test-retest reliability with ICCs of 0.76 (p < .001) and 0.63 (p = .013), respectively. Multivariable regression analysis revealed that median EZ/RPE20% and EZ/ONL ratios were lower in CPEO (r = -0.12, p = .036, and r = -0.59, p = .011), DOA (r = -0.16, p = .049, and r = -0.55, p = .082), PPON (r = -0.17, p = .014, and r = -0.57, p = .037), and ON (r = -0.11, p = .013, and r = -0.42, p = .006) compared to controls, respectively. These data show that EZ reflectivity can be reliably determined from OCT scans and appears to be reduced in neuroinflammatory and mitochondrial disorders. Further validation in larger prospective cohorts is warranted, but our findings suggest that EZ reflectivity might serve as a non-invasive in-vivo biomarker for mitochondrial health.
Collapse
Affiliation(s)
- I. Kleerekooper
- Department of Brain Repair and Rehabilitation, Moorfields Eye Hospital NHS Foundation Trust, UCL, London, UK
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - D.V. Verschueren
- Department of Brain Repair and Rehabilitation, Moorfields Eye Hospital NHS Foundation Trust, UCL, London, UK
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Biomedical Research Centre, National Institute for Health Research (NIHR), University College London Hospitals (UCLH), London, UK
- Department of Brain Repair and Rehabilitation, University College London, London, UK
- Dutch Expertise Centre for Neuro-Ophthalmology, MS Centre, Departments of Neurology & Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
| | - S.A. Trip
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Biomedical Research Centre, National Institute for Health Research (NIHR), University College London Hospitals (UCLH), London, UK
| | - G.T. Plant
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - A. Petzold
- Department of Brain Repair and Rehabilitation, Moorfields Eye Hospital NHS Foundation Trust, UCL, London, UK
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Dutch Expertise Centre for Neuro-Ophthalmology, MS Centre, Departments of Neurology & Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Yang Z, Marcoci C, Öztürk HK, Giama E, Yenicelik AG, Slanař O, Linington C, Desai R, Smith KJ. Tissue Hypoxia and Associated Innate Immune Factors in Experimental Autoimmune Optic Neuritis. Int J Mol Sci 2024; 25:3077. [PMID: 38474322 DOI: 10.3390/ijms25053077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Cristina Marcoci
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Hatice Kübra Öztürk
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Eleni Giama
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ayse Gertrude Yenicelik
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Christopher Linington
- School of Infection and Immunity, The Sir Graeme Davies Building, Glasgow G12 8TA, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| |
Collapse
|
5
|
Buscho SE, Xia F, Shi S, Lin JL, Szczesny B, Zhang W, Motamedi M, Liu H. Non-Invasive Evaluation of Retinal Vascular Alterations in a Mouse Model of Optic Neuritis Using Laser Speckle Flowgraphy and Optical Coherence Tomography Angiography. Cells 2023; 12:2685. [PMID: 38067113 PMCID: PMC10705764 DOI: 10.3390/cells12232685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Optic neuritis, a characteristic feature of multiple sclerosis (MS), involves the inflammation of the optic nerve and the degeneration of retinal ganglion cells (RGCs). Although previous studies suggest that retinal blood flow alterations occur during optic neuritis, the precise location, the degree of impairment, and the underlying mechanisms remain unclear. In this study, we utilized two emerging non-invasive imaging techniques, laser speckle flowgraphy (LSFG) and optical coherence tomography angiography (OCTA), to investigate retinal vascular changes in a mouse model of MS, known as experimental autoimmune encephalomyelitis (EAE). We associated these changes with leukostasis, RGC injury, and the overall progression of EAE. LSFG imaging revealed a progressive reduction in retinal blood flow velocity and increased vascular resistance near the optic nerve head in the EAE model, indicating impaired ocular blood flow. OCTA imaging demonstrated significant decreases in vessel density, number of junctions, and total vessel length in the intermediate and deep capillary plexus of the EAE mice. Furthermore, our analysis of leukostasis revealed a significant increase in adherent leukocytes in the retinal vasculature of the EAE mice, suggesting the occurrence of vascular inflammation in the early development of EAE pathology. The abovechanges preceded or were accompanied by the characteristic hallmarks of optic neuritis, such as RGC loss and reduced visual acuity. Overall, our study sheds light on the intricate relationship between retinal vascular alterations and the progression of optic neuritis as well as MS clinical score. It also highlights the potential for the development of image-based biomarkers for the diagnosis and monitoring of optic neuritis as well as MS, particularly in response to emerging treatments.
Collapse
Affiliation(s)
- Seth E. Buscho
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| | - Fan Xia
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| | - Shuizhen Shi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| | - Jonathan L. Lin
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| |
Collapse
|
6
|
Ramos-Vega M, Kjellman P, Todorov MI, Kylkilahti TM, Bäckström BT, Ertürk A, Madsen CD, Lundgaard I. Mapping of neuroinflammation-induced hypoxia in the spinal cord using optoacoustic imaging. Acta Neuropathol Commun 2022; 10:51. [PMID: 35410629 PMCID: PMC8996517 DOI: 10.1186/s40478-022-01337-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Recent studies suggest that metabolic changes and oxygen deficiency in the central nervous system play an important role in the pathophysiology of multiple sclerosis (MS). In our present study, we investigated the changes in oxygenation and analyzed the vascular perfusion of the spinal cord in a rodent model of MS. We performed multispectral optoacoustic tomography of the lumbar spinal cord before and after an oxygen enhancement challenge in mice with experimental autoimmune encephalomyelitis (EAE), a model for MS. In addition, mice were transcardially perfused with lectin to label the vasculature and their spinal columns were optically cleared, followed by light sheet fluorescence microscopy. To analyze the angioarchitecture of the intact spine, we used VesSAP, a novel deep learning-based framework. In EAE mice, the spinal cord had lower oxygen saturation and hemoglobin concentration compared to healthy mice, indicating compromised perfusion of the spinal cord. Oxygen administration reversed hypoxia in the spinal cord of EAE mice, although the ventral region remained hypoxic. Additionally, despite the increased vascular density, we report a reduction in length and complexity of the perfused vascular network in EAE. Taken together, these findings highlight a new aspect of neuroinflammatory pathology, revealing a significant degree of hypoxia in EAE in vivo that is accompanied by changes in spinal vascular perfusion. The study also introduces optoacoustic imaging as a tractable technique with the potential to further decipher the role of hypoxia in EAE and to monitor it in MS patients.
Collapse
|
7
|
Kleerekooper I, Chua S, Foster PJ, Trip SA, Plant GT, Petzold A, Patel P. Associations of Alcohol Consumption and Smoking With Disease Risk and Neurodegeneration in Individuals With Multiple Sclerosis in the United Kingdom. JAMA Netw Open 2022; 5:e220902. [PMID: 35238934 PMCID: PMC8895260 DOI: 10.1001/jamanetworkopen.2022.0902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Understanding the effects of modifiable risk factors on risk for multiple sclerosis (MS) and associated neurodegeneration is important to guide clinical counseling. OBJECTIVE To investigate associations of alcohol use, smoking, and obesity with odds of MS diagnosis and macular ganglion cell layer and inner plexiform layer (mGCIPL) thickness. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study analyzed data from the community-based UK Biobank study on health behaviors and retinal thickness (measured by optical coherence tomography in both eyes) in individuals aged 40 to 69 years examined from December 1, 2009, to December 31, 2010. Risk factors were identified with multivariable logistic regression analyses. To adjust for intereye correlations, multivariable generalized estimating equations were used to explore associations of alcohol use and smoking with mGCIPL thickness. Finally, interaction models explored whether the correlations of alcohol and smoking with mGCIPL thickness differed for individuals with MS. Data were analyzed from February 1 to July 1, 2021. EXPOSURES Smoking status (never, previous, or current), alcohol intake (never or special occasions only [low], once per month to ≤4 times per week [moderate], or daily/almost daily [high]), and body mass index. MAIN OUTCOMES AND MEASURES Multiple sclerosis case status and mGCIPL thickness. RESULTS A total of 71 981 individuals (38 685 women [53.7%] and 33 296 men [46.3%]; mean [SD] age, 56.7 [8.0] years) were included in the analysis (20 065 healthy control individuals, 51 737 control individuals with comorbidities, and 179 individuals with MS). Modifiable risk factors significantly associated with MS case status were current smoking (odds ratio [OR], 3.05 [95% CI, 1.95-4.64]), moderate alcohol intake (OR, 0.62 [95% CI, 0.43-0.91]), and obesity (OR, 1.72 [95% CI, 1.15-2.56]) compared with healthy control individuals. Compared with the control individuals with comorbidities, only smoking was associated with case status (OR, 2.30 [95% CI, 1.48-3.51]). High alcohol intake was associated with a thinner mGCIPL in individuals with MS (adjusted β = -3.09 [95% CI, -5.70 to -0.48] μm; P = .02). In the alcohol interaction model, high alcohol intake was associated with thinner mGCIPL in control individuals (β = -0.93 [95% CI, -1.07 to -0.79] μm; P < .001), but there was no statistically significant association in individuals with MS (β = -2.27 [95% CI, -4.76 to 0.22] μm; P = .07). Smoking was not associated with mGCIPL thickness in MS. However, smoking was associated with greater mGCIPL thickness in control individuals (β = 0.89 [95% CI, 0.74-1.05 μm]; P < .001). CONCLUSIONS AND RELEVANCE These findings suggest that high alcohol intake was associated with retinal features indicative of more severe neurodegeneration, whereas smoking was associated with higher odds of being diagnosed with MS.
Collapse
Affiliation(s)
- Iris Kleerekooper
- Queen Square MS Centre, Department of Neuroinflammation, UCL (University College London) Institute of Neurology, London, United Kingdom
- Department of Neuro-ophthalmology, Moorfields Eye Hospital, London, United Kingdom
| | - Sharon Chua
- NIHR (National Institute for Health Research) Biomedical Research Centre, Moorfields Eye Hospital, NHS (National Health Service) Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Paul J. Foster
- NIHR (National Institute for Health Research) Biomedical Research Centre, Moorfields Eye Hospital, NHS (National Health Service) Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - S. Anand Trip
- Queen Square MS Centre, Department of Neuroinflammation, UCL (University College London) Institute of Neurology, London, United Kingdom
| | - Gordon T. Plant
- Queen Square MS Centre, Department of Neuroinflammation, UCL (University College London) Institute of Neurology, London, United Kingdom
| | - Axel Petzold
- Queen Square MS Centre, Department of Neuroinflammation, UCL (University College London) Institute of Neurology, London, United Kingdom
- Department of Neuro-ophthalmology, Moorfields Eye Hospital, London, United Kingdom
- Dutch Expertise Centre for Neuro-ophthalmology and MS (Multiple Sclerosis) Centre, Departments of Neurology and Ophthalmology, Amsterdam University Medical College, Amsterdam, the Netherlands
| | - Praveen Patel
- NIHR (National Institute for Health Research) Biomedical Research Centre, Moorfields Eye Hospital, NHS (National Health Service) Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
8
|
Chhugani S, Agarwal N, Sheikh F, Borca F, Spanoulis A, Galea I. Cervical spinal degenerative disease in multiple sclerosis. Eur J Neurol 2021; 28:2497-2502. [PMID: 33817913 DOI: 10.1111/ene.14855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Root and cord irritation from cervical spinal degenerative disease (SDD) may share clinical features with progressive multiple sclerosis (MS), so diagnostic overshadowing may occur. We hypothesized that cervical stenotic SDD is commoner in people with progressive MS, compared to controls. METHODS A retrospective case-control study of 111 cases (56 with progressive MS and 55 age- and sex-matched controls) was conducted. Five types of cervical SDD (disc degeneration, posterior disc protrusion, endplate changes, canal stenosis and foraminal stenosis) were assessed objectively on magnetic resonance imaging using published scales. Multivariable regression analysis was performed. RESULTS Moderate-to-severe cervical spinal degeneration occurred more frequently in progressive MS, compared to controls. In multivariable regression, foraminal stenosis was three times more likely in progressive MS (odds ratio 3.20, 95% confidence interval 1.27, 8.09; p = 0.014), and was more severe (p = 0.009). This finding was confirmed on retrospective evaluation of clinical radiology reports in the same population. Foraminal stenosis was twice as likely in progressive MS, compared to relapsing-remitting MS. CONCLUSIONS People with progressive MS are susceptible to foraminal stenosis. A higher index of suspicion for cervical SDD is required when appropriate neurological symptoms occur in the setting of progressive MS, to guide appropriate treatment or monitoring.
Collapse
Affiliation(s)
- Simran Chhugani
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nivedita Agarwal
- Section of Radiology, Santa Maria del Carmine Hospital, Rovereto, Italy
| | - Faraz Sheikh
- Department of Neuroradiology, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Florina Borca
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Aginor Spanoulis
- Department of Neurology, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Neurology, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
9
|
Kleerekooper I, Petzold A, Trip SA. Anterior visual system imaging to investigate energy failure in multiple sclerosis. Brain 2020; 143:1999-2008. [PMID: 32163545 DOI: 10.1093/brain/awaa049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial failure and hypoxia are key contributors to multiple sclerosis pathophysiology. Importantly, improving mitochondrial function holds promise as a new therapeutic strategy in multiple sclerosis. Currently, studying mitochondrial changes in multiple sclerosis is hampered by a paucity of non-invasive techniques to investigate mitochondrial function of the CNS in vivo. It is against this backdrop that the anterior visual system provides new avenues for monitoring of mitochondrial changes. The retina and optic nerve are among the metabolically most active structures in the human body and are almost always affected to some degree in multiple sclerosis. Here, we provide an update on emerging technologies that have the potential to indirectly monitor changes of metabolism and mitochondrial function. We report on the promising work with optical coherence tomography, showing structural changes in outer retinal mitochondrial signal bands, and with optical coherence angiography, quantifying retinal perfusion at the microcapillary level. We show that adaptive optics scanning laser ophthalmoscopy can visualize live perfusion through microcapillaries and structural changes at the level of single photoreceptors and neurons. Advantages and limitations of these techniques are summarized with regard to future research into the pathology of the disease and as trial outcome measures.
Collapse
Affiliation(s)
- Iris Kleerekooper
- Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Moorfields Eye Hospital, City Road, London, UK
| | - Axel Petzold
- Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Moorfields Eye Hospital, City Road, London, UK.,Dutch Expertise Centre Neuro-ophthalmology and MS Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - S Anand Trip
- Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
10
|
Wang MR, Zhang XJ, Liu HC, Ma WD, Zhang ML, Zhang Y, Li X, Dou MM, Jing YL, Chu YJ, Zhu L. Matrine protects oligodendrocytes by inhibiting their apoptosis and enhancing mitochondrial autophagy. Brain Res Bull 2019; 153:30-38. [DOI: 10.1016/j.brainresbull.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
11
|
Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Sci Rep 2019; 9:8488. [PMID: 31186441 PMCID: PMC6560061 DOI: 10.1038/s41598-019-44682-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022] Open
Abstract
Atrophy has become a clinically relevant marker of progressive neurodegeneration in multiple sclerosis (MS). To better understand atrophy, mouse models that feature atrophy along with other aspects of MS are needed. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS was used to determine the extent of atrophy in a model of inflammation-associated central nervous system pathology. High-resolution magnetic resonance imaging (MRI) and atlas-based volumetric analysis were performed to measure brain regional volumes in EAE mice. EAE brains were larger at peak clinical disease (days 14–16) compared to controls, with affected regions including the cerebellum, hippocampus, and corpus callosum. Following peak clinical disease, EAE mice exhibited significant loss of volume at chronic long-term disease duration (day 66+). Atrophy was identified in both white and grey matter regions including the cerebral cortex, cerebellum, hippocampus, corpus callosum, basal forebrain, midbrain, optic tract, and colliculus. Histological analysis of the atrophied cortex, cerebellum, and hippocampus showed demyelination, and axonal/neuronal loss. We hypothesize this atrophy could be a result of inflammatory associated neurodegenerative processes, which may also be involved in MS. Using MRI and atlas-based volumetrics, EAE has the potential to be a test bed for treatments aimed at reducing progressive neurological deterioration in MS.
Collapse
|