1
|
Harris MC, Gary HE, Cooper SK, Ackart DF, DiLisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Branch Moody D, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. Infect Immun 2024; 92:e0038024. [PMID: 39494875 PMCID: PMC11629625 DOI: 10.1128/iai.00380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
CD1 is an antigen-presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigens. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by the availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b, and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that the upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that parallels the kinetic changes in CD1b expression in Mtb-infected lungs and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
Affiliation(s)
- Macallister C. Harris
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Hadley E. Gary
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah K. Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - David F. Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James E. DiLisio
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Randall J. Basaraba
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Tan-Yun Cheng
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Ildiko van Rhijn
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Yang LY, Ping K, Luo Y, McShan AC. BioDolphin as a comprehensive database of lipid-protein binding interactions. Commun Chem 2024; 7:288. [PMID: 39633021 PMCID: PMC11618342 DOI: 10.1038/s42004-024-01384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Lipid-protein interactions are crucial for virtually all biological processes in living cells. However, existing structural databases focusing on these interactions are limited to integral membrane proteins. A systematic understanding of diverse lipid-protein interactions also encompassing lipid-anchored, peripheral membrane and soluble lipid binding proteins remains to be elucidated. To address this gap and facilitate the research of universal lipid-protein assemblies, we developed BioDolphin - a curated database with over 127,000 lipid-protein interactions. BioDolphin provides comprehensive annotations, including protein functions, protein families, lipid classifications, lipid-protein binding affinities, membrane association type, and atomic structures. Accessible via a publicly available web server ( www.biodolphin.chemistry.gatech.edu ), users can efficiently search for lipid-protein interactions using a wide range of options and download datasets of interest. Additionally, BioDolphin features interactive 3D visualization of each lipid-protein complex, facilitating the exploration of structure-function relationships. BioDolphin also includes detailed information on atomic-level intermolecular interactions between lipids and proteins that enable large scale analysis of both paired complexes and larger assemblies. As an open-source resource, BioDolphin enables global analysis of lipid-protein interactions and supports data-driven approaches for developing predictive machine learning algorithms for lipid-protein binding affinity and structures.
Collapse
Affiliation(s)
- Li-Yen Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kaike Ping
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yunan Luo
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Zhu R, Zhao Y, Yin H, Shu L, Ma Y, Tao Y. Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis. Sci Rep 2024; 14:29964. [PMID: 39622956 PMCID: PMC11612211 DOI: 10.1038/s41598-024-81803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, poses significant health challenges worldwide, particularly due to severe immune-related complications. Understanding the molecular mechanisms and identifying key immune-related genes (IRGs) involved in COVID-19 pathogenesis is critical for developing effective prevention and treatment strategies. This study employed computational tools to analyze biological data (bioinformatics) and a method for inferring causal relationships based on genetic variations, known as Mendelian randomization (MR), to explore the roles of IRGs in COVID-19. We identified differentially expressed genes (DEGs) from datasets available in the Gene Expression Omnibus (GEO), comparing COVID-19 patients with healthy controls. IRGs were sourced from the ImmPort database. We conducted functional enrichment analysis, pathway analysis, and immune infiltration assessments to determine the biological significance of the identified IRGs. A total of 360 common differential IRGs were identified. Among these genes, CD1C, IL1B, and SLP1 have emerged as key IRGs with potential protective effects against COVID-19. Pathway enrichment analysis revealed that CD1C is involved in terpenoid backbone biosynthesis and Th17 cell differentiation, while IL1B is linked to B-cell receptor signaling and the NF-kappa B signaling pathway. Significant correlations were observed between key genes and various immune cells, suggesting that they influence immune cell modulation in COVID-19. This study provides new insights into the immune mechanisms underlying COVID-19, highlighting the crucial role of IRGs in disease progression. These findings suggest that CD1C and IL1B could be potential therapeutic targets. The integrated bioinformatics and MR analysis approach offers a robust framework for further exploring immune responses in COVID-19 patients, as well as for targeted therapy and vaccine development.
Collapse
Affiliation(s)
- Rui Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, 312000, China
| | - Hui Yin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Linfeng Shu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuhang Ma
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yingli Tao
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Ni L, Xu J, Li Q, Ge X, Wang F, Deng X, Miao L. Focusing on the Immune Cells: Recent Advances in Immunotherapy for Biliary Tract Cancer. Cancer Manag Res 2024; 16:941-963. [PMID: 39099760 PMCID: PMC11296367 DOI: 10.2147/cmar.s474348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Biliary tract cancer (BTC) represents a challenging malignancy characterized by aggressive behavior, high relapse rates, and poor prognosis. In recent years, immunotherapy has revolutionized the treatment landscape for various cancers, but its efficacy in BTC remains limited. This article provides a comprehensive overview of the advances in preclinical and clinical studies of immunotherapy for BTC. We explore the potential of immune checkpoint inhibitors in reshaping the management of BTC. Despite disappointing results thus far, ongoing clinical trials are investigating the combination of immunotherapy with other treatment modalities. Furthermore, research on the tumor microenvironment has unveiled novel targets for immunotherapeutic interventions. By understanding the current state of immunotherapy in BTC and highlighting future directions, this article aims to fuel further exploration and ultimately improve patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Luohang Ni
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jianing Xu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xianxiu Ge
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Fei Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueting Deng
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Ye JH, Chen YL, Ogg G. CD1a and skin T cells: a pathway for therapeutic intervention. Clin Exp Dermatol 2024; 49:450-458. [PMID: 38173286 PMCID: PMC11037390 DOI: 10.1093/ced/llad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.
Collapse
Affiliation(s)
- John H Ye
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Xiang X, Gao LM, Zhang Y, Zhu Q, Zhao S, Liu W, Ye Y, Tang Y, Zhang W. Identifying CD1c as a potential biomarker by the comprehensive exploration of tumor mutational burden and immune infiltration in diffuse large B cell lymphoma. PeerJ 2023; 11:e16618. [PMID: 38099311 PMCID: PMC10720422 DOI: 10.7717/peerj.16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Background Tumor mutational burden (TMB) is a valuable prognostic biomarker. This study explored the predictive value of TMB and the potential association between TMB and immune infiltration in diffuse large B-cell lymphoma (DLBCL). Methods We downloaded the gene expression profile, somatic mutation, and clinical data of DLBCL patients from The Cancer Genome Atlas (TCGA) database. We classified the samples into high-and low-TMB groups to identify differentially expressed genes (DEGs). Functional enrichment analyses were performed to determine the biological functions of the DEGs. We utilized the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm to estimate the abundance of 22 immune cells, and the significant difference was determined by the Wilcoxon rank-sum test between the high- and low-TMB group. Hub gene had been screened as the prognostic TMB-related immune biomarker by the combination of the Immunology Database and Analysis Portal (ImmPort) database and the univariate Cox analysis from the Gene Expression Omnibus (GEO) database including six DLBCL datasets. Various database applications such as Tumor Immune Estimation Resource (TIMER), CellMiner, konckTF, and Genotype-Tissue Expression (GTEx) verified the functions of the target gene. Wet assay confirmed the target gene expression at RNA and protein levels in DLBCL tissue and cell samples. Results Single nucleotide polymorphism (SNP) occurred more frequently than insertion and deletion, and C > T was the most common single nucleotide variant (SNV) in DLBCL. Survival analysis showed that the high-TMB group conferred poor survival outcomes. A total of 62 DEGs were obtained, and 13 TMB-related immune genes were identified. Univariate Cox analysis results illustrated that CD1c mutation was associated with lower TMB and manifested a satisfactory clinical prognosis by analysis of large samples from the GEO database. In addition, infiltration levels of immune cells in the high-TMB group were lower. Using the TIMER database, we systematically analyzed that the expression of CD1c was positively correlated with B cells, neutrophils, and dendritic cells and negatively correlated with CD8+ T cells, CD4+ T cells, and macrophages. Drug sensitivity showed a significant positive correlation between CD1c expression level and clinical drug sensitivity from the CellMiner database. CREB1, AHR, and TOX were used to comprehensively explore the regulation of CD1c-related transcription factors and signaling pathways by the KnockTF database. We searched the GETx database to compare the mRNA expression levels of CD1c between DLBCL and normal tissues, and the results suggested a significant difference between them. Moreover, wet experiments were conducted to verify the high expression of CD1c in DLBCL at the RNA and protein levels. Conclusions Higher TMB correlated with poor survival outcomes and inhibited the immune infiltrates in DLBCL. Our results suggest that CD1c is a TMB-related prognostic biomarker.
Collapse
Affiliation(s)
- Xiaoyu Xiang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuehua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiqi Zhu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Sha Zhao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weiping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yunxia Ye
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuan Tang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Harris MC, Gary HE, Cooper SK, Ackart DF, Dilisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Moody DB, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541963. [PMID: 37292852 PMCID: PMC10245897 DOI: 10.1101/2023.05.23.541963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CD1 is an antigen presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigen. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that closely paralleled the kinetic changes in CD1b expression in Mtb infected lung and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
|
8
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
9
|
Chen X, Zhang J, Lei X, Yang L, Li W, Zheng L, Zhang S, Ding Y, Shi J, Zhang L, Li J, Tang T, Jia W. CD1C is associated with breast cancer prognosis and immune infiltrates. BMC Cancer 2023; 23:129. [PMID: 36755259 PMCID: PMC9905770 DOI: 10.1186/s12885-023-10558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) in breast cancer plays a vital role in occurrence, development, and therapeutic responses. However, immune and stroma constituents in the TME are major obstacles to understanding and treating breast cancer. We evaluated the significance of TME-related genes in breast cancer. METHODS Invasive breast cancer (BRCA) samples were retrieved from the TCGA and GEO databases. Stroma and immune scores of samples as well as the proportion of tumor infiltrating immune cells (TICs) were calculated using the ESTIMATE and CIBERSORT algorithms. TME-related differentially expressed genes (DEGs) were analyzed by a protein interaction (PPI) network and univariate Cox regression to determine CD1C as a hub gene. Subsequently, the prognostic value of CD1C, its response to immunotherapy, and its mechanism in the TME were further studied. RESULTS In BRCA, DEGs were determined to identify CD1C as a hub gene. The expression level of CD1C in BRCA patients was verified based on the TCGA database, polymerase chain reaction (PCR) results, and western blot analysis. Immunohistochemical staining (IHC) results revealed a correlation between prognosis, clinical features, and CD1C expression in BRCA. Enrichment analysis of GSEA and GSVA showed that CD1C participates in immune-associated signaling pathways. CIBERSORT showed that CD1C levels were associated with tumor immune infiltrating cells (TILs), such as different kinds of T cells. Gene co-expression analysis showed that CD1C and the majority of immune-associated genes were co-expressed in BRCA. In renal cell carcinoma, patients with a high expression of CD1C had a better immunotherapy effect. CONCLUSION CD1C is an important part of the TME and participates in immune activity regulation in breast tumors. CD1C is expected to become a prognostic marker and a new treatment target for breast cancer.
Collapse
Affiliation(s)
- Xiao Chen
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Jianzhong Zhang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Xinhan Lei
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Lei Yang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Wanwan Li
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Lu Zheng
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Shuai Zhang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Yihan Ding
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Jianing Shi
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Jia Li
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Tong Tang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - WenJun Jia
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Win TS, Crisler WJ, Dyring-Andersen B, Lopdrup R, Teague JE, Zhan Q, Barrera V, Ho Sui S, Tasigiorgos S, Murakami N, Chandraker A, Tullius SG, Pomahac B, Riella LV, Clark RA. Immunoregulatory and lipid presentation pathways are upregulated in human face transplant rejection. J Clin Invest 2021; 131:135166. [PMID: 33667197 PMCID: PMC8262560 DOI: 10.1172/jci135166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUNDRejection is the primary barrier to broader implementation of vascularized composite allografts (VCAs), including face and limb transplants. The immunologic pathways activated in face transplant rejection have not been fully characterized.METHODSUsing skin biopsies prospectively collected over 9 years from 7 face transplant patients, we studied rejection by gene expression profiling, histology, immunostaining, and T cell receptor sequencing.RESULTSGrade 1 rejection did not differ significantly from nonrejection, suggesting that it does not represent a pathologic state. In grade 2, there was a balanced upregulation of both proinflammatory T cell activation pathways and antiinflammatory checkpoint and immunomodulatory pathways, with a net result of no tissue injury. In grade 3, IFN-γ-driven inflammation, antigen-presenting cell activation, and infiltration of the skin by proliferative T cells bearing markers of antigen-specific activation and cytotoxicity tipped the balance toward tissue injury. Rejection of VCAs and solid organ transplants had both distinct and common features. VCA rejection was uniquely associated with upregulation of immunoregulatory genes, including SOCS1; induction of lipid antigen-presenting CD1 proteins; and infiltration by T cells predicted to recognize CD1b and CD1c.CONCLUSIONOur findings suggest that the distinct features of VCA rejection reflect the unique immunobiology of skin and that enhancing cutaneous immunoregulatory networks may be a useful strategy in combatting rejection.Trial registrationClinicalTrials.gov NCT01281267.FUNDINGAssistant Secretary of Defense and Health Affairs, through Reconstructive Transplant Research (W81XWH-17-1-0278, W81XWH-16-1-0647, W81XWH-16-1-0689, W81XWH-18-1-0784, W81XWH-1-810798); American Society of Transplantation's Transplantation and Immunology Research Network Fellowship Research Grant; Plastic Surgery Foundation Fellowship from the American Society of Plastic Surgeons; Novo Nordisk Foundation (NNF15OC0014092); Lundbeck Foundation; Aage Bangs Foundation; A.P. Moller Foundation for the Advancement of Medical Science; NIH UL1 RR025758.
Collapse
Affiliation(s)
- Thet Su Win
- Department of Dermatology and
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Rachel Lopdrup
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sotirios Tasigiorgos
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Kai K, Tanaka T, Ide T, Kawaguchi A, Noshiro H, Aishima S. Immunohistochemical analysis of the aggregation of CD1a-positive dendritic cells in resected specimens and its association with surgical outcomes for patients with gallbladder cancer. Transl Oncol 2021; 14:100923. [PMID: 33129106 PMCID: PMC7590585 DOI: 10.1016/j.tranon.2020.100923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis. Antigen-presenting dendritic cells (DCs) play a central role in antitumor immunity. DCs expressing CD1a (CD1a-DCs) are considered immature DCs. The aim of this study was to evaluate the clinical impact of CD1a-DC infiltration into GBC tissue. Seventy-five patients with GBC (excluding non-invasive and intramucosal cancer) were enrolled. Immunohistochemistry for CD1a, S100 and CD8 was performed using representative surgically resected specimens. The cases were divided into a high CD1a-DC group (27 cases, 36%) and low CD1a-DC group (48 cases, 64%) according to the degree of CD1a-DC infiltration/aggregation. The high CD1a-DC group contained fewer patients with distant metastasis (P = 0.039) and more patients given postoperative chemotherapy (P = 0.038). The high CD1a-DC group had significantly longer overall survival (P = 0.001) and disease-specific survival (P = 0.002) than the low CD1a-DC group. In contrast, S100-DC and CD8+ tumor-infiltrating lymphocyte statuses were without effect on OS or DSS. The results of multivariate analyses indicated that the degree of infiltration/aggregation of CD1a-DCs was an independent prognostic factor associated with a favorable prognosis after surgery.
Collapse
Affiliation(s)
- Keita Kai
- Department of Pathology, Saga University Hospital, Nabeshima 5-1-1, Saga 849-8501, Japan.
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga, Japan
| | - Takao Ide
- Department of Surgery, Saga University Faculty of Medicine, Saga, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Saga, Japan
| | - Shinichi Aishima
- Department of Pathology, Saga University Hospital, Nabeshima 5-1-1, Saga 849-8501, Japan; Department of Pathology & Microbiology, Saga University Faculty of Medicine, Saga, Japan
| |
Collapse
|
12
|
Källenius G, Nigou J, Cooper A, Correia-Neves M. Editorial: Mycobacterial Glycolipids-Role in Immunomodulation and Targets for Vaccine Development. Front Immunol 2020; 11:603900. [PMID: 33133110 PMCID: PMC7579406 DOI: 10.3389/fimmu.2020.603900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre national de la recherche scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Andrea Cooper
- Leicester Tuberculosis Research Group (LTBRG), Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Margarida Correia-Neves
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/Biomaterials, Biodegradables and Biomimetics (3B’s), Portugal (PT) Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
13
|
Banach M, Robert J. Evolutionary Underpinnings of Innate-Like T Cell Interactions with Cancer. Immunol Invest 2019; 48:737-758. [PMID: 31223047 DOI: 10.1080/08820139.2019.1631341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancers impose a significant health and economic burden. By harnessing the immune system, current immunotherapies have revolutionized the treatment against human cancers and potentially offer a long-term cure. Among others, innate-like T (iT) cells, including natural killer T cells, are promising candidates for immunotherapies. Unlike conventional T cells, iT cells regulate multiple immune processes and express an invariant T cell receptor that is shared among different individuals. However, the conditions that activate the pro- and antitumor functions of iT cells are partially understood. These gaps in knowledge hamper the use of iT cell in clinics. It might be beneficial to examine the roles of iT cells in an alternative animal model - the amphibian Xenopus whose immune system shares many similarities to that of mammals. Here, we review the iT cell biology in the context of mammalian cancers and discuss the challenges currently found in the field. Next, we introduce the advantages of Xenopus as a model to investigate the role of iT cells and interacting major histocompatibility complex (MHC) class I-like molecules in tumor immunity. In Xenopus, 2 specific iT cell subsets, Vα6 and Vα22 iT cells, recognize and fight tumor cells. Furthermore, our recent data reveal the complex functions of the Xenopus MHC class I-like (XNC) gene XNC10 in tumor immune responses. By utilizing reverse genetics, transgenesis, and MHC tetramers, we have a unique opportunity to uncover the relevance of XNC genes and iT cell in Xenopus tumor immunity.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Immunology & Microbiology, University of Colorado School of Medicine , Aurora , CO , USA.,Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester , NY , USA
| | - Jacques Robert
- Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|