1
|
Su T, Xia Y. A quantitative comparison of the deleteriousness of missense and nonsense mutations using the structurally resolved human protein interactome. Protein Sci 2025; 34:e70155. [PMID: 40384578 PMCID: PMC12086521 DOI: 10.1002/pro.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/02/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
The complex genotype-to-phenotype relationships in Mendelian diseases can be elucidated by mutation-induced disturbances to the networks of molecular interactions (interactomes) in human cells. Missense and nonsense mutations cause distinct perturbations within the human protein interactome, leading to functional and phenotypic effects with varying degrees of severity. Here, we structurally resolve the human protein interactome at atomic-level resolutions and perform structural and thermodynamic calculations to assess the biophysical implications of these mutations. We focus on a specific type of missense mutation, known as "quasi-null" mutations, which destabilize proteins and cause similar functional consequences (node removal) to nonsense mutations. We propose a "fold difference" quantification of deleteriousness, which measures the ratio between the fractions of node-removal mutations in datasets of Mendelian disease-causing and non-pathogenic mutations. We estimate the fold differences of node-removal mutations to range from 3 (for quasi-null mutations with folding ΔΔG ≥2 kcal/mol) to 20 (for nonsense mutations). We observe a strong positive correlation between biophysical destabilization and phenotypic deleteriousness, demonstrating that the deleteriousness of quasi-null mutations spans a continuous spectrum, with nonsense mutations at the extreme (highly deleterious) end. Our findings substantiate the disparity in phenotypic severity between missense and nonsense mutations and suggest that mutation-induced protein destabilization is indicative of the phenotypic outcomes of missense mutations. Our analyses of node-removal mutations allow for the potential identification of proteins whose removal or destabilization lead to harmful phenotypes, enabling the development of targeted therapeutic approaches, and enhancing comprehension of the intricate mechanisms governing genotype-to-phenotype relationships in clinically relevant diseases.
Collapse
Affiliation(s)
- Ting‐Yi Su
- Graduate Program in Quantitative Life SciencesMcGill UniversityMontréalQuébecCanada
| | - Yu Xia
- Graduate Program in Quantitative Life SciencesMcGill UniversityMontréalQuébecCanada
- Department of BioengineeringMcGill UniversityMontréalQuébecCanada
| |
Collapse
|
2
|
Gisonno RA, Masson T, Ramella NA, Barrera EE, Romanowski V, Tricerri MA. Evolutionary and structural constraints influencing apolipoprotein A-I amyloid behavior. Proteins 2021; 90:258-269. [PMID: 34414600 DOI: 10.1002/prot.26217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Apolipoprotein A-I (apoA-I) has a key function in the reverse cholesterol transport. However, aggregation of apoA-I single point mutants can lead to hereditary amyloid pathology. Although several studies have tackled the biophysical and structural consequences introduced by these mutations, there is little information addressing the relationship between the evolutionary and structural features that contribute to the amyloid behavior of apoA-I. We combined evolutionary studies, in silico mutagenesis and molecular dynamics (MD) simulations to provide a comprehensive analysis of the conservation and pathogenic role of the aggregation-prone regions (APRs) present in apoA-I. Sequence analysis demonstrated that among the four amyloidogenic regions described for human apoA-I, only two (APR1 and APR4) are evolutionary conserved across different species of Sarcopterygii. Moreover, stability analysis carried out with the FoldX engine showed that APR1 contributes to the marginal stability of apoA-I. Structural properties of full-length apoA-I models suggest that aggregation is avoided by placing APRs into highly packed and rigid portions of its native fold. Compared to silent variants extracted from the gnomAD database, the thermodynamic and pathogenic impact of amyloid mutations showed evidence of a higher destabilizing effect. MD simulations of the amyloid variant G26R evidenced the partial unfolding of the alpha-helix bundle with the concomitant exposure of APR1 to the solvent, suggesting an insight into the early steps involved in its aggregation. Our findings highlight APR1 as a relevant component for apoA-I structural integrity and emphasize a destabilizing effect of amyloid variants that leads to the exposure of this region.
Collapse
Affiliation(s)
- Romina A Gisonno
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Tomas Masson
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Nahuel A Ramella
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Exequiel E Barrera
- Group of Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Víctor Romanowski
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - M Alejandra Tricerri
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Timmers LFSM, Peixoto JV, Ducati RG, Bachega JFR, de Mattos Pereira L, Caceres RA, Majolo F, da Silva GL, Anton DB, Dellagostin OA, Henriques JAP, Xavier LL, Goettert MI, Laufer S. SARS-CoV-2 mutations in Brazil: from genomics to putative clinical conditions. Sci Rep 2021; 11:11998. [PMID: 34099808 PMCID: PMC8184806 DOI: 10.1038/s41598-021-91585-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Due to the high rate of transmissibility, Brazil became the new COVID-19 outbreak epicenter and, since then, is being monitored to understand how SARS-CoV-2 mutates and spreads. We combined genomic and structural analysis to evaluate genomes isolated from different regions of Brazil and show that the most prevalent mutations were located in the S, N, ORF3a and ORF6 genes, which are involved in different stages of viral life cycle and its interaction with the host cells. Structural analysis brought to light the positions of these mutations on protein structures, contributing towards studies of selective structure-based drug discovery and vaccine development.
Collapse
Affiliation(s)
- Luis Fernando Saraiva Macedo Timmers
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil.
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil.
| | - Julia Vasconcellos Peixoto
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande Do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Rodrigo Gay Ducati
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - José Fernando Ruggiero Bachega
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Leandro de Mattos Pereira
- Laboratory of Molecular Microbial Ecology, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Rafael Andrade Caceres
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Fernanda Majolo
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Débora Bublitz Anton
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Odir Antônio Dellagostin
- Graduate Program in Biotechnology, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - João Antônio Pegas Henriques
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Léder Leal Xavier
- Laboratory of Cell and Tissue Biology, Pontifical Catholic University of Rio Grande Do Sul - PUCRS, Porto Alegre, RS, Brazil
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Youssef N, Susko E, Bielawski JP. Consequences of Stability-Induced Epistasis for Substitution Rates. Mol Biol Evol 2020; 37:3131-3148. [DOI: 10.1093/molbev/msaa151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AbstractDo interactions between residues in a protein (i.e., epistasis) significantly alter evolutionary dynamics? If so, what consequences might they have on inference from traditional codon substitution models which assume site-independence for the sake of computational tractability? To investigate the effects of epistasis on substitution rates, we employed a mechanistic mutation-selection model in conjunction with a fitness framework derived from protein stability. We refer to this as the stability-informed site-dependent (S-SD) model and developed a new stability-informed site-independent (S-SI) model that captures the average effect of stability constraints on individual sites of a protein. Comparison of S-SI and S-SD offers a novel and direct method for investigating the consequences of stability-induced epistasis on protein evolution. We developed S-SI and S-SD models for three natural proteins and showed that they generate sequences consistent with real alignments. Our analyses revealed that epistasis tends to increase substitution rates compared with the rates under site-independent evolution. We then assessed the epistatic sensitivity of individual site and discovered a counterintuitive effect: Highly connected sites were less influenced by epistasis relative to exposed sites. Lastly, we show that, despite the unrealistic assumptions, traditional models perform comparably well in the presence and absence of epistasis and provide reasonable summaries of average selection intensities. We conclude that epistatic models are critical to understanding protein evolutionary dynamics, but epistasis might not be required for reasonable inference of selection pressure when averaging over time and sites.
Collapse
Affiliation(s)
- Noor Youssef
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Edward Susko
- Centre for Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph P Bielawski
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Coppée R, Jeffares DC, Miteva MA, Sabbagh A, Clain J. Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13. Sci Rep 2019; 9:10675. [PMID: 31337835 PMCID: PMC6650413 DOI: 10.1038/s41598-019-47034-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 01/31/2023] Open
Abstract
Numerous mutations in the Plasmodium falciparum Kelch13 (K13) protein confer resistance to artemisinin derivatives, the current front-line antimalarial drugs. K13 is an essential protein that contains BTB and Kelch-repeat propeller (KREP) domains usually found in E3 ubiquitin ligase complexes that target substrate protein(s) for ubiquitin-dependent degradation. K13 is thought to bind substrate proteins, but its functional/interaction sites and the structural alterations associated with artemisinin resistance mutations remain unknown. Here, we screened for the most evolutionarily conserved sites in the protein structure of K13 as indicators of structural and/or functional constraints. We inferred structure-dependent substitution rates at each amino acid site of the highly conserved K13 protein during the evolution of Apicomplexa parasites. We found two solvent-exposed patches of extraordinarily conserved sites likely involved in protein-protein interactions, one in BTB and the other one in KREP. The conserved patch in K13 KREP overlaps with a shallow pocket that displays a differential electrostatic surface potential, relative to neighboring sites, and that is rich in serine and arginine residues. Comparative structural and evolutionary analyses revealed that these properties were also found in the functionally-validated shallow pocket of other KREPs including that of the cancer-related KEAP1 protein. Finally, molecular dynamics simulations carried out on PfK13 R539T and C580Y artemisinin resistance mutant structures revealed some local structural destabilization of KREP but not in its shallow pocket. These findings open new avenues of research on one of the most enigmatic malaria proteins with the utmost clinical importance.
Collapse
Affiliation(s)
- Romain Coppée
- Université de Paris, UMR 261 MERIT, IRD, F-75006 Paris, France
| | - Daniel C Jeffares
- Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Maria A Miteva
- Université de Paris, Inserm U1268 MCTR, CiTCom UMR 8038 CNRS, Paris, France
| | - Audrey Sabbagh
- Université de Paris, UMR 261 MERIT, IRD, F-75006 Paris, France.
| | - Jérôme Clain
- Université de Paris, UMR 261 MERIT, IRD, F-75006 Paris, France. .,Centre National de Référence du Paludisme, Hôpital Bichat-Claude Bernard, Assistance Publique des Hôpitaux de Paris, F-75018 Paris, France.
| |
Collapse
|
6
|
Martín-Sánchez L, Singh KS, Avalos M, van Wezel GP, Dickschat JS, Garbeva P. Phylogenomic analyses and distribution of terpene synthases among Streptomyces. Beilstein J Org Chem 2019; 15:1181-1193. [PMID: 31293665 PMCID: PMC6604706 DOI: 10.3762/bjoc.15.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
Terpene synthases are widely distributed among microorganisms and have been mainly studied in members of the genus Streptomyces. However, little is known about the distribution and evolution of the genes for terpene synthases. Here, we performed whole-genome based phylogenetic analysis of Streptomyces species, and compared the distribution of terpene synthase genes among them. Overall, our study revealed that ten major types of terpene synthases are present within the genus Streptomyces, namely those for geosmin, 2-methylisoborneol, epi-isozizaene, 7-epi-α-eudesmol, epi-cubenol, caryolan-1-ol, cyclooctat-9-en-7-ol, isoafricanol, pentalenene and α-amorphene. The Streptomyces species divide in three phylogenetic groups based on their whole genomes for which the distribution of the ten terpene synthases was analysed. Geosmin synthases were the most widely distributed and were found to be evolutionary positively selected. Other terpene synthases were found to be specific for one of the three clades or a subclade within the genus Streptomyces. A phylogenetic analysis of the most widely distributed classes of Streptomyces terpene synthases in comparison to the phylogenomic analysis of this genus is discussed.
Collapse
Affiliation(s)
- Lara Martín-Sánchez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Mariana Avalos
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,The Netherlands
| | - Gilles P van Wezel
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Spielman SJ, Kosakovsky Pond SL. Relative Evolutionary Rates in Proteins Are Largely Insensitive to the Substitution Model. Mol Biol Evol 2018; 35:2307-2317. [PMID: 29924340 PMCID: PMC6107055 DOI: 10.1093/molbev/msy127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relative evolutionary rates at individual sites in proteins are informative measures of conservation or adaptation. Often used as evolutionarily aware conservation scores, relative rates reveal key functional or strongly selected residues. Estimating rates in a phylogenetic context requires specifying a protein substitution model, which is typically a phenomenological model trained on a large empirical data set. A strong emphasis has traditionally been placed on selecting the "best-fit" model, with the implicit understanding that suboptimal or otherwise ill-fitting models might bias inferences. However, the pervasiveness and degree of such bias has not been systematically examined. We investigated how model choice impacts site-wise relative rates in a large set of empirical protein alignments. We compared models designed for use on any general protein, models designed for specific domains of life, and the simple equal-rates Jukes Cantor-style model (JC). As expected, information theoretic measures showed overwhelming evidence that some models fit the data decidedly better than others. By contrast, estimates of site-specific evolutionary rates were impressively insensitive to the substitution model used, revealing an unexpected degree of robustness to potential model misspecification. A deeper examination of the fewer than 5% of sites for which model inferences differed in a meaningful way showed that the JC model could uniquely identify rapidly evolving sites that models with empirically derived exchangeabilities failed to detect. We conclude that relative protein rates appear robust to the applied substitution model, and any sensible model of protein evolution, regardless of its fit to the data, should produce broadly consistent evolutionary rates.
Collapse
Affiliation(s)
- Stephanie J Spielman
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
8
|
Spielman SJ, Kosakovsky Pond SL. Relative evolutionary rate inference in HyPhy with LEISR. PeerJ 2018; 6:e4339. [PMID: 29423346 PMCID: PMC5804317 DOI: 10.7717/peerj.4339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 01/10/2023] Open
Abstract
We introduce LEISR (Likehood Estimation of Individual Site Rates, pronounced “laser”), a tool to infer relative evolutionary rates from protein and nucleotide data, implemented in HyPhy. LEISR is based on the popular Rate4Site (Pupko et al., 2002) approach for inferring relative site-wise evolutionary rates, primarily from protein data. We extend the original method for more general use in several key ways: (i) we increase the support for nucleotide data with additional models, (ii) we allow for datasets of arbitrary size, (iii) we support analysis of site-partitioned datasets to correct for the presence of recombination breakpoints, (iv) we produce rate estimates at all sites rather than at just a subset of sites, and (v) we implemented LEISR as MPI-enabled to support rapid, high-throughput analysis. LEISR is available in HyPhy starting with version 2.3.8, and it is accessible as an option in the HyPhy analysis menu (“Relative evolutionary rate inference”), which calls the HyPhy batchfile LEISR.bf.
Collapse
Affiliation(s)
- Stephanie J Spielman
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States of America
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|