1
|
Zhao R, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zheng Y, Gu H, Zhao D, Madhunapantula SV, Zhu X, Liu J, Fan R. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: can it enhance the success of immunotherapy? Cell Commun Signal 2024; 22:379. [PMID: 39068453 PMCID: PMC11282696 DOI: 10.1186/s12964-024-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.
Collapse
Affiliation(s)
- Ruiwen Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yufei Zheng
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Gu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deyao Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - SabbaRao V Madhunapantula
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Xiaorong Zhu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruitai Fan
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Meraz-Torres F, Niessner H, Plöger S, Riel S, Schörg B, Casadei N, Kneilling M, Schaller M, Flatz L, Macek B, Eigentler T, Rieß O, Garbe C, Amaral T, Sinnberg T. Augmenting MEK inhibitor efficacy in BRAF wild-type melanoma: synergistic effects of disulfiram combination therapy. J Exp Clin Cancer Res 2024; 43:30. [PMID: 38263136 PMCID: PMC10804659 DOI: 10.1186/s13046-023-02941-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND MEK inhibitors (MEKi) were shown to be clinically insufficiently effective in patients suffering from BRAF wild-type (BRAF WT) melanoma, even if the MAPK pathway was constitutively activated due to mutations in NRAS or NF-1. Thus, novel combinations are needed to increase the efficacy and duration of response to MEKi in BRAF WT melanoma. Disulfiram and its metabolite diethyldithiocarbamate are known to have antitumor effects related to cellular stress, and induction of endoplasmic reticulum (ER) stress was found to synergize with MEK inhibitors in NRAS-mutated melanoma cells. Therefore, we investigated the combination of both therapeutics to test their effects on BRAF-WT melanoma cells and compared them with monotherapy using the MEKi trametinib. METHODS The effects of combined therapy with disulfiram or its metabolite diethyldithiocarbamate and the MEKi trametinib were evaluated in a series of BRAF-WT melanoma cell lines by measuring cell viability and apoptosis induction. Cytotoxicity was additionally assessed in 3D spheroids, ex vivo melanoma slice cultures, and in vivo xenograft mouse models. The response of melanoma cells to treatment was studied at the RNA and protein levels to decipher the mode of action. Intracellular and intratumoral copper measurements were performed to investigate the role of copper ions in the antitumor cytotoxicity of disulfiram and its combination with the MEKi. RESULTS Diethyldithiocarbamate enhanced trametinib-induced cytotoxicity and apoptosis induction in 2D and 3D melanoma culture models. Mechanistically, copper-dependent induction of oxidative stress and ER stress led to Janus kinase (JNK)-mediated apoptosis in melanoma cells. This mechanism was also detectable in patient-derived xenograft melanoma models and resulted in a significantly improved therapeutic effect compared to monotherapy with the MEKi trametinib. CONCLUSIONS Disulfiram and its metabolite represent an attractive pharmaceutical approach to induce ER stress in melanoma cells that potentiates the antitumor effect of MEK inhibition and may be an interesting candidate for combination therapy of BRAF WT melanoma.
Collapse
Affiliation(s)
| | - Heike Niessner
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University Hospital Tübingen, Tübingen, 72076, Germany
| | - Sarah Plöger
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Simon Riel
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Barbara Schörg
- Department of Preclinical Imaging and Radiopharmacy, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, University of Tübingen, Tübingen, 72076, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University Hospital Tübingen, Tübingen, 72076, Germany
- Department of Preclinical Imaging and Radiopharmacy, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, University of Tübingen, Tübingen, 72076, Germany
| | - Martin Schaller
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Thomas Eigentler
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Olaf Rieß
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University Hospital Tübingen, Tübingen, 72076, Germany
| | - Tobias Sinnberg
- Department of Dermatology, Tübingen University Hospital, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University Hospital Tübingen, Tübingen, 72076, Germany.
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
5
|
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E, Vicente-Romero J. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers (Basel) 2023; 15:cancers15112972. [PMID: 37296934 DOI: 10.3390/cancers15112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Quality pharmacological treatment can improve survival in many types of cancer. Drug repurposing offers advantages in comparison with traditional drug development procedures, reducing time and risk. This systematic review identified the most recent randomized controlled clinical trials that focus on drug repurposing in oncology. We found that only a few clinical trials were placebo-controlled or standard-of-care-alone-controlled. Metformin has been studied for potential use in various types of cancer, including prostate, lung, and pancreatic cancer. Other studies assessed the possible use of the antiparasitic agent mebendazole in colorectal cancer and of propranolol in multiple myeloma or, when combined with etodolac, in breast cancer. We were able to identify trials that study the potential use of known antineoplastics in other non-oncological conditions, such as imatinib for severe coronavirus disease in 2019 or a study protocol aiming to assess the possible repurposing of leuprolide for Alzheimer's disease. Major limitations of these clinical trials were the small sample size, the high clinical heterogeneity of the participants regarding the stage of the neoplastic disease, and the lack of accounting for multimorbidity and other baseline clinical characteristics. Drug repurposing possibilities in oncology must be carefully examined with well-designed trials, considering factors that could influence prognosis.
Collapse
Affiliation(s)
- Ignatios Ioakeim-Skoufa
- WHO Collaborating Centre for Drug Statistics Methodology, Department of Drug Statistics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, NO-0213 Oslo, Norway
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Natalia Tobajas-Ramos
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Enrica Menditto
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Mercedes Aza-Pascual-Salcedo
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Primary Care Pharmacy Service Zaragoza III, Aragon Health Service (SALUD), ES-50017 Zaragoza, Spain
| | - Antonio Gimeno-Miguel
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
| | - Valentina Orlando
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Francisca González-Rubio
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
| | - Ana Fanlo-Villacampa
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Carmen Lasala-Aza
- Pharmacy Service, Virgen de la Victoria University Hospital, ES-29010 Malaga, Spain
| | - Ewelina Ostasz
- Rehabilitation Centre Vikersund Bad AS, NO-3370 Vikersund, Norway
| | - Jorge Vicente-Romero
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| |
Collapse
|
6
|
Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer 2023; 22:46. [PMID: 36882769 PMCID: PMC9990368 DOI: 10.1186/s12943-023-01732-y] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Cuproptosis was a copper-dependent and unique kind of cell death that was separate from existing other forms of cell death. The last decade has witnessed a considerable increase in investigations of programmed cell death, and whether copper induced cell death was an independent form of cell death has long been argued until mechanism of cuproptosis has been revealed. After that, increasing number of researchers attempted to identify the relationship between cuproptosis and the process of cancer. Thus, in this review, we systematically detailed the systemic and cellular metabolic processes of copper and the copper-related tumor signaling pathways. Moreover, we not only focus on the discovery process of cuproptosis and its mechanism, but also outline the association between cuproptosis and cancers. Finally, we further highlight the possible therapeutic direction of employing copper ion ionophores with cuproptosis-inducing functions in combination with small molecule drugs for targeted therapy to treat specific cancers.
Collapse
Affiliation(s)
- Jiaming Xie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| |
Collapse
|
7
|
Werlenius K, Kinhult S, Solheim TS, Magelssen H, Löfgren D, Mudaisi M, Hylin S, Bartek J, Strandéus M, Lindskog M, Rashid HB, Carstam L, Gulati S, Solheim O, Bartek J, Salvesen Ø, Jakola AS. Effect of Disulfiram and Copper Plus Chemotherapy vs Chemotherapy Alone on Survival in Patients With Recurrent Glioblastoma: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e234149. [PMID: 37000452 PMCID: PMC10066460 DOI: 10.1001/jamanetworkopen.2023.4149] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 04/01/2023] Open
Abstract
Importance Disulfiram has demonstrated broad antitumoral effect in several preclinical studies. One of the proposed indications is for the treatment of glioblastoma. Objective To evaluate the efficacy and safety of disulfiram and copper as add-on to alkylating chemotherapy in patients with recurrent glioblastoma. Design, Setting, and Participants This was a multicenter, open-label, randomized phase II/III clinical trial with parallel group design. Patients were recruited at 7 study sites in Sweden and 2 sites in Norway between January 2017 and November 2020. Eligible patients were 18 years or older, had a first recurrence of glioblastoma, and indication for treatment with alkylating chemotherapy. Patients were followed up until death or a maximum of 24 months. The date of final follow-up was January 15, 2021. Data analysis was performed from February to September 2022. Interventions Patients were randomized 1:1 to receive either standard-of-care (SOC) alkylating chemotherapy alone, or SOC with the addition of disulfiram (400 mg daily) and copper (2.5 mg daily). Main Outcomes and Measures The primary end point was survival at 6 months. Secondary end points included overall survival, progression-free survival, adverse events, and patient-reported quality of life. Results Among the 88 patients randomized to either SOC (n = 45) or SOC plus disulfiram and copper (n = 43), 63 (72%) were male; the mean (SD) age was 55.4 (11.5) years. There was no significant difference between the study groups (SOC vs SOC plus disulfiram and copper) in 6 months survival (62% [26 of 42] vs 44% [19 of 43]; P = .10). Median overall survival was 8.2 months (95% CI, 5.4-10.2 months) with SOC and 5.5 months (95% CI, 3.9-9.3 months) with SOC plus disulfiram and copper, and median progression-free survival was 2.6 months (95% CI, 2.4-4.6 months) vs 2.3 months (95% CI, 1.7-2.6 months), respectively. More patients in the SOC plus disulfiram and copper group had adverse events grade 3 or higher (34% [14 of 41] vs 11% [5 of 44]; P = .02) and serious adverse events (41% [17 of 41] vs 16% [7 of 44]; P = .02), and 10 patients (24%) discontinued disulfiram treatment because of adverse effects. Conclusions and Relevance This randomized clinical trial found that among patients with recurrent glioblastoma, the addition of disulfiram and copper to chemotherapy, compared with chemotherapy alone, resulted in significantly increased toxic effects, but no significant difference in survival. These findings suggest that disulfiram and copper is without benefit in patients with recurrent glioblastoma. Trial Registration ClinicalTrials.gov Identifier: NCT02678975; EUDRACT Identifier: 2016-000167-16.
Collapse
Affiliation(s)
- Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Kinhult
- Department of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Tora Skeidsvoll Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Cancer Clinic, St Olavs Hospital, Trondheim, Norway
| | | | - David Löfgren
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Munila Mudaisi
- Department of Oncology, Linköping University Hospital, Linköping, Sweden
- The Finnmark Hospital, Hammerfest, Norway
| | - Sofia Hylin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Magnus Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Pelvic Cancer, Section of Genitourinary Oncology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Louise Carstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sasha Gulati
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Øyvind Salvesen
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
| |
Collapse
|
8
|
Zhong S, Shengyu Liu, Xin Shi, Zhang X, Li K, Liu G, Li L, Tao S, Zheng B, Sheng W, Ye Z, Xing Q, Zhai Q, Ren L, Wu Y, Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front Pharmacol 2022; 13:933655. [PMID: 36091753 PMCID: PMC9448899 DOI: 10.3389/fphar.2022.933655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.
Collapse
|
9
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
10
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Mishukov A, Lomovskaya Y, Pavlik L, Mikheeva I, Holmuhamedov E, Akatov V. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim Biophys Acta Gen Subj 2022; 1866:130184. [PMID: 35660414 DOI: 10.1016/j.bbagen.2022.130184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dithiocarbamates and derivatives (including disulfiram, DSF) are currently investigated as antineoplastic agents. We have revealed earlier the ability of hydroxocobalamin (vitamin В12b) combined with diethyldithiocarbamate (DDC) to catalyze the formation of highly cytotoxic oxidized derivatives of DSF (DSFoxy, sulfones and sulfoxides). METHODS Electron and fluorescent confocal microscopy, molecular biology and conventional biochemical techniques were used to study the morphological and functional responses of MCF-7 human breast cancer cells to treatment with DDC and B12b alone or in combination. RESULTS DDC induces unfolded protein response in MCF-7 cells. The combined use of DDC and B12b causes MCF-7 cell death. Electron microscopy revealed the separation of ER and nuclear membranes, leading to the formation of both cytoplasmic and perinuclear vacuoles, with many fibers inside. The process of vacuolization coincided with the appearance of ER stress markers, a marked damage to mitochondria, a significant inhibition of 20S proteasome, and actin depolimerization at later stages. Specific inhibitors of apoptosis, necroptosis, autophagy, and ferroptosis did not prevent cell death. A short- time (6-h) exposure to DSFoxy caused a significant increase in the number of entotic cells. CONCLUSIONS These observations indicate that MCF-7 cells treated with a mixture of DDC and B12b die by the mechanism of paraptosis. A short- time exposure to DSFoxy caused, along with paraptosis, a significant activation of the entosis and its final stage, lysosomal cell death. GENERAL SIGNIFICANCE The results obtained open up opportunities for the development of new approaches to induce non-apoptotic death of cancer cells by dithiocarbamates.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Artem Mishukov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Laboratory of Biorheology and Biomechanics, Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russian Federation
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Liubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Ekhson Holmuhamedov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
11
|
Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 2021; 281:121335. [PMID: 34979419 DOI: 10.1016/j.biomaterials.2021.121335] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) has been used as an alcoholism drug for 70 years. Recently, it has attracted increasing attention owing to the distinguished anticancer activity, which can be further potentiated by the supplementation of Cu2+. Although encouraging anticancer results are obtained in lab, the clinical outcomes of oral DSF are not satisfactory, which urges an in-depth understanding of the underlying mechanisms, bottlenecks, and proposal of potential methods to address the dilemma. In this review, a critical summarization of various molecular biological anticancer mechanisms of DSF/Cu2+ is provided and the predicament of orally delivering DSF in clinical oncotherapy is explained by the metabolic barriers. We highlight the recent advances in the DSF/Cu2+ delivery strategies and the emerging treatment regimens for cancer treatment. Last but not the least, we summarize the clinical trials regarding DSF and make a prospect of DSF/Cu-based cancer therapy.
Collapse
|
12
|
Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, Liu W, Feng F, Chen Y, Sun H. Therapeutic strtegies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm Sin B 2021; 12:1781-1804. [PMID: 35847506 PMCID: PMC9279645 DOI: 10.1016/j.apsb.2021.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common aggressive malignant tumor in brain neuroepithelial tumors and remains incurable. A variety of treatment options are currently being explored to improve patient survival, including small molecule inhibitors, viral therapies, cancer vaccines, and monoclonal antibodies. Among them, the unique advantages of small molecule inhibitors have made them a focus of attention in the drug discovery of glioblastoma. Currently, the most used chemotherapeutic agents are small molecule inhibitors that target key dysregulated signaling pathways in glioblastoma, including receptor tyrosine kinase, PI3K/AKT/mTOR pathway, DNA damage response, TP53 and cell cycle inhibitors. This review analyzes the therapeutic benefit and clinical development of novel small molecule inhibitors discovered as promising anti-glioblastoma agents by the related targets of these major pathways. Meanwhile, the recent advances in temozolomide resistance and drug combination are also reviewed. In the last part, due to the constant clinical failure of targeted therapies, this paper reviewed the research progress of other therapeutic methods for glioblastoma, to provide patients and readers with a more comprehensive understanding of the treatment landscape of glioblastoma.
Collapse
|
13
|
Zirjacks L, Stransky N, Klumpp L, Prause L, Eckert F, Zips D, Schleicher S, Handgretinger R, Huber SM, Ganser K. Repurposing Disulfiram for Targeting of Glioblastoma Stem Cells: An In Vitro Study. Biomolecules 2021; 11:1561. [PMID: 34827559 PMCID: PMC8615869 DOI: 10.3390/biom11111561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal glioblastoma stem cells (GSCs), a subpopulation in glioblastoma that are responsible for therapy resistance and tumor spreading in the brain, reportedly upregulate aldehyde dehydrogenase isoform-1A3 (ALDH1A3) which can be inhibited by disulfiram (DSF), an FDA-approved drug formerly prescribed in alcohol use disorder. Reportedly, DSF in combination with Cu2+ ions exerts multiple tumoricidal, chemo- and radio-therapy-sensitizing effects in several tumor entities. The present study aimed to quantify these DSF effects in glioblastoma stem cells in vitro, regarding dependence on ALDH1A3 expression. To this end, two patient-derived GSC cultures with differing ALDH1A3 expression were pretreated (in the presence of CuSO4, 100 nM) with DSF (0 or 100 nM) and the DNA-alkylating agent temozolomide (0 or 30 µM) and then cells were irradiated with a single dose of 0-8 Gy. As read-outs, cell cycle distribution and clonogenic survival were determined by flow cytometry and limited dilution assay, respectively. As a result, DSF modulated cell cycle distribution in both GSC cultures and dramatically decreased clonogenic survival independently of ALDH1A3 expression. This effect was additive to the impairment of clonogenic survival by radiation, but not associated with radiosensitization. Of note, cotreatment with temozolomide blunted the DSF inhibition of clonogenic survival. In conclusion, DSF targets GSCs independent of ALDH1A3 expression, suggesting a therapeutic efficacy also in glioblastomas with low mesenchymal GSC populations. As temozolomide somehow antagonized the DSF effects, strategies for future combination of DSF with the adjuvant standard therapy (fractionated radiotherapy and concomitant temozolomide chemotherapy followed by temozolomide maintenance therapy) are not supported by the present study.
Collapse
Affiliation(s)
- Lisa Zirjacks
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Nicolai Stransky
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Lukas Klumpp
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Lukas Prause
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Franziska Eckert
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Sabine Schleicher
- Department of Hematology and Oncology, University Hospital Tuebingen, Children’s Hospital, 72076 Tuebingen, Germany; (S.S.); (R.H.)
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Hospital Tuebingen, Children’s Hospital, 72076 Tuebingen, Germany; (S.S.); (R.H.)
| | - Stephan M. Huber
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Katrin Ganser
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| |
Collapse
|
14
|
Zheng Z, Zhang J, Jiang J, He Y, Zhang W, Mo X, Kang X, Xu Q, Wang B, Huang Y. Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery. J Immunother Cancer 2021; 8:jitc-2019-000207. [PMID: 32817393 PMCID: PMC7437977 DOI: 10.1136/jitc-2019-000207] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) treatment is undermined by the suppressive tumor immune microenvironment (TIME). Seek for effective methods for brain TIME modulation is a pressing need. However, there are two major challenges against achieving the goal: first, to screen the effective drugs with TIME-remodeling functions and, second, to develop a brain targeting system for delivering the drugs. METHODS In this study, an α7 nicotinic acetylcholine receptors (nAChRs)-binding peptide DCDX was used to modify the codelivery liposomes to achieve a 'three-birds-one-stone' delivery strategy, that is, multi-targeting the glioma vessel endothelium, glioma cells, and tumor-associated macrophages that all overexpressed α7 nAChRs. A brain-targeted liposomal honokiol and disulfiram/copper codelivery system (CDX-LIPO) was developed for combination therapy via regulating mTOR (mammalian target of rapamycin) pathway for remodeling tumor metabolism and TIME. Honokiol can yield a synergistic effect with disulfiram/copper for anti-GBM. RESULTS It was demonstrated that CDX-LIPO remarkably triggered tumor cell autophagy and induced immunogenic cell death, and meanwhile, activated the tumor-infiltrating macrophage and dendritic cells, and primed T and NK (natural killer) cells, resulting in antitumor immunity and tumor regression. Moreover, CDX-LIPO promoted M1-macrophage polarization and facilitated mTOR-mediated reprogramming of glucose metabolism in glioma. CONCLUSION This study developed a potential combinatory therapeutic strategy by regulation of TIME and a 'three-birds-one-stone'-like glioma-targeting drug delivery system.
Collapse
Affiliation(s)
- Zening Zheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Jiaxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China.,Shanghai University of Traditional Chinese Medicine School of Pharmacy, Shanghai, China
| | - Jizong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Wenyuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Mo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Xuejia Kang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China .,NMPA Key Laboratory for Quality Research and Evaluation of PharmaceuticalExcipients, Shanghai, China.,Zhongshan Branch, the Institute of Drug Research and Development, ChineseAcademy of Sciences, Zhongshan, China
| |
Collapse
|
15
|
Babak MV, Ahn D. Modulation of Intracellular Copper Levels as the Mechanism of Action of Anticancer Copper Complexes: Clinical Relevance. Biomedicines 2021; 9:biomedicines9080852. [PMID: 34440056 PMCID: PMC8389626 DOI: 10.3390/biomedicines9080852] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Copper (Cu) is a vital element required for cellular growth and development; however, even slight changes in its homeostasis might lead to severe toxicity and deleterious medical conditions. Cancer patients are typically associated with higher Cu content in serum and tumor tissues, indicating increased demand of cancer cells for this micronutrient. Cu is known to readily cycle between the +1 and +2 oxidation state in biological systems. The mechanism of action of Cu complexes is typically based on their redox activity and induction of reactive oxygen species (ROS), leading to deadly oxidative stress. However, there are a number of other biomolecular mechanisms beyond ROS generation that contribute to the activity of anticancer Cu drug candidates. In this review, we discuss how interfering with intracellular Cu balance via either diet modification or addition of inorganic Cu supplements or Cu-modulating compounds affects tumor development, progression, and sensitivity to treatment modalities. We aim to provide the rationale for the use of Cu-depleting and Cu-overloading conditions to generate the best possible patient outcome with minimal toxicity. We also discuss the advantages of the use of pre-formed Cu complexes, such as Cu-(bis)thiosemicarbazones or Cu-N-heterocyclic thiosemicarbazones, in comparison with the in situ formed Cu complexes with metal-binding ligands. In this review, we summarize available clinical and mechanistic data on clinically relevant anticancer drug candidates, including Cu supplements, Cu chelators, Cu ionophores, and Cu complexes.
Collapse
|
16
|
McBain C, Lawrie TA, Rogozińska E, Kernohan A, Robinson T, Jefferies S. Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. Cochrane Database Syst Rev 2021; 5:CD013579. [PMID: 34559423 PMCID: PMC8121043 DOI: 10.1002/14651858.cd013579.pub2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a highly malignant brain tumour that almost inevitably progresses or recurs after first line standard of care. There is no consensus regarding the best treatment/s to offer people upon disease progression or recurrence. For the purposes of this review, progression and recurrence are considered as one entity. OBJECTIVES To evaluate the effectiveness of further treatment/s for first and subsequent progression or recurrence of glioblastoma (GBM) among people who have received the standard of care (Stupp protocol) for primary treatment of the disease; and to prepare a brief economic commentary on the available evidence. SEARCH METHODS We searched MEDLINE and Embase electronic databases from 2005 to December 2019 and the Cochrane Central Register of Controlled Trials (CENTRAL, in the Cochrane Library; Issue 12, 2019). Economic searches included the National Health Service Economic Evaluation Database (NHS EED) up to 2015 (database closure) and MEDLINE and Embase from 2015 to December 2019. SELECTION CRITERIA Randomised controlled trials (RCTs) and comparative non-randomised studies (NRSs) evaluating effectiveness of treatments for progressive/recurrent GBM. Eligible studies included people with progressive or recurrent GBM who had received first line radiotherapy with concomitant and adjuvant temozolomide (TMZ). DATA COLLECTION AND ANALYSIS Two review authors independently selected studies and extracted data to a pre-designed data extraction form. We conducted network meta-analyses (NMA) and ranked treatments according to effectiveness for each outcome using the random-effects model and Stata software (version 15). We rated the certainty of evidence using the GRADE approach. MAIN RESULTS We included 42 studies: these comprised 34 randomised controlled trials (RCTs) and 8 non-randomised studies (NRSs) involving 5236 participants. We judged most RCTs to be at a low risk of bias and NRSs at high risk of bias. Interventions included chemotherapy, re-operation, re-irradiation and novel therapies either used alone or in combination. For first recurrence, we included 11 interventions in the network meta-analysis (NMA) for overall survival (OS), and eight in the NMA for progression-free survival (PFS). Lomustine (LOM; also known as CCNU) was the most common comparator and was used as the reference treatment. No studies in the NMA evaluated surgery, re-irradiation, PCV (procarbazine, lomustine, vincristine), TMZ re-challenge or best supportive care. We could not perform NMA for second or later recurrence due to insufficient data. Quality-of-life data were sparse. First recurrence (NMA findings) Median OS across included studies in the NMA ranged from 5.5 to 12.6 months and median progression-free survival (PFS) ranged from 1.5 months to 4.2 months. We found no high-certainty evidence that any treatments tested were better than lomustine. These treatments included the following. Bevacizumab plus lomustine: Evidence suggested probably little or no difference in OS between bevacizumab (BEV) combined with lomustine (LOM) and LOM monotherapy (hazard ratio (HR) 0.91, 0.75 to 1.10; moderate-certainty evidence), although BEV + LOM may improve PFS (HR 0.57, 95% confidence interval (CI) 0.44 to 0.74; low-certainty evidence). Bevacizumab monotherapy: Low-certainty evidence suggested there may be little or no difference in OS (HR 1.22, 95% CI 0.84 to 1.76) and PFS (HR 0.90, 95% CI 0.58 to 1.38; low-certainty evidence) between BEV and LOM monotherapies; more evidence on BEV is needed. Regorafenib (REG): REG may improve OS compared with LOM (HR 0.50, 95% CI 0.33 to 0.76; low-certainty evidence). Evidence on PFS was very low certainty and more evidence on REG is needed. Temozolomide (TMZ) plus Depatux-M (ABT414): For OS, low-certainty evidence suggested that TMZ plus ABT414 may be more effective than LOM (HR 0.66, 95% CI 0.47 to 0.92) and may be more effective than BEV (HR 0.54, 95% CI 0.33 to 0.89; low-certainty evidence). This may be due to the TMZ component only and more evidence is needed. Fotemustine (FOM): FOM and LOM may have similar effects on OS (HR 0.89, 95% CI 0.51 to 1.57, low-certainty evidence). Bevacizumab and irinotecan (IRI): Evidence on BEV + irinotecan (IRI) versus LOM for both OS and PFS is very uncertain and there is probably little or no difference between BEV + IRI versus BEV monotherapy (OS: HR 0.95, 95% CI 0.70 to 1.30; moderate-certainty evidence). When treatments were ranked for OS, FOM ranked first, BEV + LOM second, LOM third, BEV + IRI fourth, and BEV fifth. Ranking does not take into account the certainty of the evidence, which also suggests there may be little or no difference between FOM and LOM. Other treatments Three studies evaluated re-operation versus no re-operation, with or without re-irradiation and chemotherapy, and these suggested possible survival advantages with re-operation within the context of being able to select suitable candidates for re-operation. A cannabinoid treatment in the early stages of evaluation, in combination with TMZ, merits further evaluation. Second or later recurrence Limited evidence from three heterogeneous studies suggested that radiotherapy with or without BEV may have a beneficial effect on survival but more evidence is needed. Evidence was insufficient to draw conclusions about the best radiotherapy dosage. Other evidence suggested that there may be little difference in survival with tumour-treating fields compared with physician's best choice of treatment. We found no reliable evidence on best supportive care. Severe adverse events (SAEs) The BEV+LOM combination was associated with significantly greater risk of SAEs than LOM monotherapy (RR 2.51, 95% CI 1.72 to 3.66, high-certainty evidence), and ranked joint worst with cediranib + LOM (RR 2.51, 95% CI 1.29 to 4.90; high-certainty evidence). LOM ranked best and REG ranked second best. Adding novel treatments to BEV was generally associated with a higher risk of severe adverse events compared with BEV alone. AUTHORS' CONCLUSIONS For treatment of first recurrence of GBM, among people previously treated with surgery and standard chemoradiotherapy, the combination treatments evaluated did not improve overall survival compared with LOM monotherapy and were often associated with a higher risk of severe adverse events. Limited evidence suggested that re-operation with or without re-irradiation and chemotherapy may be suitable for selected candidates. Evidence on second recurrence is sparse. Re-irradiation with or without bevacizumab may be of value in selected individuals, but more evidence is needed.
Collapse
Affiliation(s)
- Catherine McBain
- Clinical Oncology, The Christie NHS FT, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester, UK
| | | | | | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
17
|
An Alternative Pipeline for Glioblastoma Therapeutics: A Systematic Review of Drug Repurposing in Glioblastoma. Cancers (Basel) 2021; 13:cancers13081953. [PMID: 33919596 PMCID: PMC8073966 DOI: 10.3390/cancers13081953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma is a devastating malignancy that has continued to prove resistant to a variety of therapeutics. No new systemic therapy has been approved for use against glioblastoma in almost two decades. This observation is particularly disturbing given the amount of money invested in identifying novel therapies for this disease. A relatively rapid and economical pipeline for identification of novel agents is drug repurposing. Here, a comprehensive review detailing the state of drug repurposing in glioblastoma is provided. We reveal details on studies that have examined agents in vitro, in animal models and in patients. While most agents have not progressed beyond the initial stages, several drugs, from a variety of classes, have demonstrated promising results in early phase clinical trials. Abstract The treatment of glioblastoma (GBM) remains a significant challenge, with outcome for most pa-tients remaining poor. Although novel therapies have been developed, several obstacles restrict the incentive of drug developers to continue these efforts including the exorbitant cost, high failure rate and relatively small patient population. Repositioning drugs that have well-characterized mechanistic and safety profiles is an attractive alternative for drug development in GBM. In ad-dition, the relative ease with which repurposed agents can be transitioned to the clinic further supports their potential for examination in patients. Here, a systematic analysis of the literature and clinical trials provides a comprehensive review of primary articles and unpublished trials that use repurposed drugs for the treatment of GBM. The findings demonstrate that numerous drug classes that have a range of initial indications have efficacy against preclinical GBM models and that certain agents have shown significant potential for clinical benefit. With examination in randomized, placebo-controlled trials and the targeting of particular GBM subgroups, it is pos-sible that repurposing can be a cost-effective approach to identify agents for use in multimodal anti-GBM strategies.
Collapse
|
18
|
Guo W, Zhang X, Lin L, Wang H, He E, Wang G, Zhao Q. The disulfiram/copper complex induces apoptosis and inhibits tumor growth in human osteosarcoma by activating the ROS/JNK signaling pathway. J Biochem 2021; 170:275-287. [PMID: 33792698 DOI: 10.1093/jb/mvab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Given the huge cost, long research and development (R&D) time and uncertain side effects of discovering new drugs, drug repositioning of those approved to treat diseases clinically as new drugs for other pathological conditions, especially cancers, is a potential alternative strategy. Disulfiram (DSF), an old drug used to treat alcoholism, has been found to exhibit anticancer activity and improve chemotherapeutic efficacy in cancers by an increasing number of studies. In addition, the combination of DSF and copper may be a more effective therapeutic strategy. In this study, we report the toxicity of the DSF/Cu complex to human osteosarcoma both in vitro and in vivo. DSF/Cu significantly inhibited the proliferation and clonogenicity of osteosarcoma cell lines. Furthermore, the generation of ROS was triggered by DSF/Cu, and cell arrest, autophagy and apoptosis were induced in a ROS-dependent manner. The underlying mechanism of this process was explored, and DSF/Cu may mainly inhibit osteosarcoma by inducing apoptosis by activating the ROS/JNK pathway. DSF/Cu also inhibited osteosarcoma growth in a xenograft model with low levels of organ-related toxicities. These results suggest that the DSF/Cu complex could be an efficient and safe option for the treatment of osteosarcoma in the clinic.
Collapse
Affiliation(s)
- Weihong Guo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaoxing Zhang
- Department of Orthopedic Surgery, Chongqing University Central Hospital, Chongqing, 400000, China
| | - Longshuai Lin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hongjie Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Enjun He
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
19
|
Yamashita D, Bernstock JD, Elsayed G, Sadahiro H, Mohyeldin A, Chagoya G, Ilyas A, Mooney J, Estevez-Ordonez D, Yamaguchi S, Flanary VL, Hackney JR, Bhat KP, Kornblum HI, Zamboni N, Kim SH, Chiocca EA, Nakano I. Targeting glioma-initiating cells via the tyrosine metabolic pathway. J Neurosurg 2021; 134:721-732. [PMID: 32059178 PMCID: PMC8447888 DOI: 10.3171/2019.11.jns192028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/19/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Despite an aggressive multimodal therapeutic regimen, glioblastoma (GBM) continues to portend a grave prognosis, which is driven in part by tumor heterogeneity at both the molecular and cellular levels. Accordingly, herein the authors sought to identify metabolic differences between GBM tumor core cells and edge cells and, in so doing, elucidate novel actionable therapeutic targets centered on tumor metabolism. METHODS Comprehensive metabolic analyses were performed on 20 high-grade glioma (HGG) tissues and 30 glioma-initiating cell (GIC) sphere culture models. The results of the metabolic analyses were combined with the Ivy GBM data set. Differences in tumor metabolism between GBM tumor tissue derived from within the contrast-enhancing region (i.e., tumor core) and that from the peritumoral brain lesions (i.e., tumor edge) were sought and explored. Such changes were ultimately confirmed at the protein level via immunohistochemistry. RESULTS Metabolic heterogeneity in both HGG tumor tissues and GBM sphere culture models was identified, and analyses suggested that tyrosine metabolism may serve as a possible therapeutic target in GBM, particularly in the tumor core. Furthermore, activation of the enzyme tyrosine aminotransferase (TAT) within the tyrosine metabolic pathway influenced the noted therapeutic resistance of the GBM core. CONCLUSIONS Selective inhibition of the tyrosine metabolism pathway may prove highly beneficial as an adjuvant to multimodal GBM therapies.
Collapse
Affiliation(s)
- Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Hirokazu Sadahiro
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | - Ahmed Mohyeldin
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Adeel Ilyas
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - James Mooney
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | | | - Shinobu Yamaguchi
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | | | - James R. Hackney
- Departments of Pathology, University of Alabama at Birmingham, Alabama
| | - Krishna P. Bhat
- Department of Translational Molecular Pathology and Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harley I. Kornblum
- Departments of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior
- Broad Stem Cell Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Sung-Hak Kim
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Alabama
| |
Collapse
|
20
|
Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid-Based Nanocarriers for The Treatment of Glioblastoma. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000054. [PMID: 33623931 PMCID: PMC7116796 DOI: 10.1002/anbr.202000054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant neoplasia having origin in the brain. The current treatments involve surgery, radiotherapy, and chemotherapy, being complete surgical resection the best option for the patient survival chances. However, in those cases where a complete removal is not possible, radiation and chemotherapy are applied. Herein, the main challenges of chemotherapy, and how they can be overcome with the help of nanomedicine, are approached. Natural pathways to cross the blood-brain barrier (BBB) are detailed, and different in vivo studies where these pathways are mimicked functionalizing the nanomaterial surface are shown. Later, lipid-based nanocarriers, such as liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, are presented. To finish, recent studies that have used lipid-based nanosystems carrying not only therapeutic agents, yet also magnetic nanoparticles, are described. Although the advantages of using these types of nanosystems are explained, including their biocompatibility, the possibility of modifying their surface to enhance the cell targeting, and their intrinsic ability of BBB crossing, it is important to mention that research in this field is still at its early stage, and extensive preclinical and clinical investigations are mandatory in the close future.
Collapse
Affiliation(s)
- Nerea Iturrioz-Rodríguez
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
21
|
Medina-Jiménez AK, Monroy-Torres R. Repurposing Individualized Nutritional Intervention as a Therapeutic Component to Prevent the Adverse Effects of Radiotherapy in Patients With Cervical Cancer. Front Oncol 2020; 10:595351. [PMID: 33364195 PMCID: PMC7754884 DOI: 10.3389/fonc.2020.595351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
Worldwide, cervical cancer was the fourth leading cause of cancer death among women, while in Mexico was the second cause (5.28%). Cancer patients receiving chemotherapy and radiotherapy have a high risk of malnutrition secondary to the disease and treatment, affects the patient's overall, with adverse effects on gastrointestinal symptoms. These use affects the medical therapy. The aim of the present study was to evaluate the benefits on individualized nutritional therapy on decrease weight loss and gastrointestinal adverse effects and to consider these outcomes in pharmacology research, especially in repurposing drugs. We conducted a longitudinal design with two comparation groups with medical diagnosis of cervical cancer and received radiotherapy weekly, 1) the intervention group (nutritional intervention and counseling -INC-) with 20 participants and 2) control group (retrospective cohort -CG-) with 9 participants. Weekly body composition, dietary intake, adverse effects (gastrointestinal symptoms), glucose, hemoglobin, and blood pressure were analyzed during 4 to 5 weeks. Both groups had weight loss weekly (p = 0.013 and p = 0.043 respectively) but the CG vs INC presented loss fat-free mass ≥500g in 67 and of 37% respectively. By the end of the intervention a 25% of the INC group had <10 g/dL of hemoglobin vs 60% for the CG. To compare the dietary intake of vitamins (A and folic acid), fiber (p = 0.006), iron (p = 0.03) and energy (mainly carbohydrates) (p = 0.04) were according to the recommendations in INC group (p>0.05). The number needed to treat was 4 (95% CI, 2 to 13). The nutritional intervention and counseling weekly during radiotherapy in cervical cancer to maintain/improve muscle mass, hemoglobin, and dietary intake above 70% of the recommendations for INC group compared to the evidence. Adequate nutritional status was maintained and decrease the rate of complications, mainly gastrointestinal symptoms, in INC group. The efficacy of drug repurposing can improve through individualized nutritional therapy for preventing adverse effects of radiotherapy in patients with cervical cancer.
Collapse
Affiliation(s)
- Ana Karen Medina-Jiménez
- Laboratory of Environmental Nutrition and Food Safety, Medicine and Nutrition Department, University of Guanajuato, Guanajuato, Mexico
- Observatorio Universitario de Seguridad Alimentaria y Nutricional del Estado de Guanajuato, Guanajuato, Mexico
| | - Rebeca Monroy-Torres
- Laboratory of Environmental Nutrition and Food Safety, Medicine and Nutrition Department, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
22
|
Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biol Int 2020; 45:18-53. [PMID: 33049091 DOI: 10.1002/cbin.11484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant form of adult brain tumor with a high mortality rate and dismal prognosis. The present standard treatment comprising surgical resection followed by radiation and chemotherapy using temozolomide can broaden patient's survival to some extent. However, the advantages are not palliative due to the development of resistance to the drug and tumor recurrence following the multimodal treatment approaches due to both intra- and intertumoral heterogeneity of GBM. One of the major contributors to temozolomide resistance is O6 -methylguanine-DNA methyltransferase. Furthermore, deficiency of mismatch repair, base excision repair, and cytoprotective autophagy adds to temozolomide obstruction. Rising proof additionally showed that a small population of cells displaying certain stem cell markers, known as glioma stem cells, adds on to the resistance and tumor progression. Collectively, these findings necessitate the discovery of novel therapeutic avenues for treating glioblastoma. As of late, after understanding the pathophysiology and biology of GBM, some novel therapeutic discoveries, such as drug repurposing, targeted molecules, immunotherapies, antimitotic therapies, and microRNAs, have been developed as new potential treatments for glioblastoma. To help illustrate, "what are the mechanisms of resistance to temozolomide" and "what kind of alternative therapeutics can be suggested" with this fatal disease, a detailed history of these has been discussed in this review article, all with a hope to develop an effective treatment strategy for GBM.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | |
Collapse
|
23
|
Stylli SS. Novel Treatment Strategies for Glioblastoma. Cancers (Basel) 2020; 12:cancers12102883. [PMID: 33049911 PMCID: PMC7599818 DOI: 10.3390/cancers12102883] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor in adults. It is a highly invasive disease, making it difficult to achieve a complete surgical resection, resulting in poor prognosis with a median survival of 12–15 months after diagnosis, and less than 5% of patients survive more than 5 years. Surgical, instrument technology, diagnostic and radio/chemotherapeutic strategies have slowly evolved over time, but this has not translated into significant increases in patient survival. The current standard of care for GBM patients involving surgery, radiotherapy, and concomitant chemotherapy temozolomide (known as the Stupp protocol), has only provided a modest increase of 2.5 months in median survival, since the landmark publication in 2005. There has been considerable effort in recent years to increase our knowledge of the molecular landscape of GBM through advances in technology such as next-generation sequencing, which has led to the stratification of the disease into several genetic subtypes. Current treatments are far from satisfactory, and studies investigating acquired/inherent resistance to current therapies, restricted drug delivery, inter/intra-tumoral heterogeneity, drug repurposing and a tumor immune-evasive environment have been the focus of intense research over recent years. While the clinical advancement of GBM therapeutics has seen limited progression compared to other cancers, developments in novel treatment strategies that are being investigated are displaying encouraging signs for combating this disease. This aim of this editorial is to provide a brief overview of a select number of these novel therapeutic approaches.
Collapse
Affiliation(s)
- Stanley S. Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; or
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
24
|
Majera D, Skrott Z, Chroma K, Merchut-Maya JM, Mistrik M, Bartek J. Targeting the NPL4 Adaptor of p97/VCP Segregase by Disulfiram as an Emerging Cancer Vulnerability Evokes Replication Stress and DNA Damage while Silencing the ATR Pathway. Cells 2020; 9:cells9020469. [PMID: 32085572 PMCID: PMC7072750 DOI: 10.3390/cells9020469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Research on repurposing the old alcohol-aversion drug disulfiram (DSF) for cancer treatment has identified inhibition of NPL4, an adaptor of the p97/VCP segregase essential for turnover of proteins involved in multiple pathways, as an unsuspected cancer cell vulnerability. While we reported that NPL4 is targeted by the anticancer metabolite of DSF, the bis-diethyldithiocarbamate-copper complex (CuET), the exact, apparently multifaceted mechanism(s) through which the CuET-induced aggregation of NPL4 kills cancer cells remains to be fully elucidated. Given the pronounced sensitivity to CuET in tumor cell lines lacking the genome integrity caretaker proteins BRCA1 and BRCA2, here we investigated the impact of NPL4 targeting by CuET on DNA replication dynamics and DNA damage response pathways in human cancer cell models. Our results show that CuET treatment interferes with DNA replication, slows down replication fork progression and causes accumulation of single-stranded DNA (ssDNA). Such a replication stress (RS) scenario is associated with DNA damage, preferentially in the S phase, and activates the homologous recombination (HR) DNA repair pathway. At the same time, we find that cellular responses to the CuET-triggered RS are seriously impaired due to concomitant malfunction of the ATRIP-ATR-CHK1 signaling pathway that reflects an unorthodox checkpoint silencing mode through ATR (Ataxia telangiectasia and Rad3 related) kinase sequestration within the CuET-evoked NPL4 protein aggregates.
Collapse
Affiliation(s)
- Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Katarina Chroma
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | | | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Correspondence: (M.M.); (J.B.)
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 77 Stockholm, Sweden
- Correspondence: (M.M.); (J.B.)
| |
Collapse
|