1
|
Rossi FM, Pizzorusso T. Neuroproteomics applied to the study of visual cortex plasticity. Neuroscience 2025; 576:8-16. [PMID: 40258567 DOI: 10.1016/j.neuroscience.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
The huge complexity of neuronal circuits arises from a temporarily overlapped influence of genetic and environmental factors (Nature and Nurture). During specific temporal windows of postnatal development, the so-called critical or sensitive periods of plasticity, the brain is particularly susceptible to the effects of experience, though this sensitivity declines with age. The most widely used experimental paradigm for studying critical periods of plasticity is the ocular dominance model in the mammalian visual cortex. Recent advancements in large-scale methodological approaches have enabled the analysis of the cellular and molecular factors regulating plasticity, highlighting the complex interaction among various metabolic and regulatory pathways. Traditionally, genomic and transcriptomic techniques have been employed to investigate the Central Nervous System in a comprehensive manner, including studies on critical period plasticity in the visual cortex. However, it is the technical advancements in proteomic approaches that have established neuroproteomics as a powerful tool for investigating both normal and pathological brain states. Despite its potential, proteomics has been underutilized in studying visual cortical plasticity. Here, we review existing studies and emphasize the importance of exploiting neuroproteomics, and of integrating with other complementary "omic" approaches, to accurately identify the true active cellular agents and ultimate mediators of brain functions.
Collapse
Affiliation(s)
- Francesco Mattia Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Tommaso Pizzorusso
- BIO@SNS Laboratory, Scuola Normale Superiore/Institute of Neuroscience, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Terrinoni A, Micheloni G, Moretti V, Caporali S, Bernardini S, Minieri M, Pieri M, Giaroni C, Acquati F, Costantino L, Ferrara F, Valli R, Porta G. OTX Genes in Adult Tissues. Int J Mol Sci 2023; 24:16962. [PMID: 38069286 PMCID: PMC10707059 DOI: 10.3390/ijms242316962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
OTX homeobox genes have been extensively studied for their role in development, especially in neuroectoderm formation. Recently, their expression has also been reported in adult physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli. Reactivation of OTX genes in adult tissues supports the notion of the evolutionary amplification of functions of genes by varying their temporal expression, with the selection of homeobox genes from the "toolbox" to drive or contribute to different processes at different stages of life. OTX involvement in pathologies points toward these genes as potential diagnostic and/or prognostic markers as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giovanni Micheloni
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Vittoria Moretti
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cristina Giaroni
- Department of Medicina e Innovazione Tecnologica, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Francesco Acquati
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
- Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Lucy Costantino
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Fulvio Ferrara
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Roberto Valli
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Giovanni Porta
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| |
Collapse
|
3
|
Planques A, Oliveira Moreira V, Benacom D, Bernard C, Jourdren L, Blugeon C, Dingli F, Masson V, Loew D, Prochiantz A, Di Nardo AA. OTX2 Homeoprotein Functions in Adult Choroid Plexus. Int J Mol Sci 2021; 22:8951. [PMID: 34445655 PMCID: PMC8396604 DOI: 10.3390/ijms22168951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
The choroid plexus is an important blood barrier that secretes cerebrospinal fluid, which essential for embryonic brain development and adult brain homeostasis. The OTX2 homeoprotein is a transcription factor that is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative functional roles for OTX2 in adult choroid plexus function, including cell signaling and adhesion, and show that OTX2 regulates the expression of factors that are secreted into the cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and affects splicing, leading to changes in the mRNA isoforms of proteins that are implicated in the oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell-autonomous target regions, such as the visual cortex and subventricular zone, we identify putative targets that are involved in cell adhesion, chromatin structure, and RNA processing. Thus, OTX2 retains important roles for regulating choroid plexus function and brain homeostasis throughout life.
Collapse
Affiliation(s)
- Anabelle Planques
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Vanessa Oliveira Moreira
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - David Benacom
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France; (L.J.); (C.B.)
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France; (L.J.); (C.B.)
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Vanessa Masson
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
- Institute of Neurosciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ariel A. Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| |
Collapse
|
4
|
Coles C, Lasek AW. Binge-Like Ethanol Drinking Increases Otx2, Wnt1, and Mdk Gene Expression in the Ventral Tegmental Area of Adult Mice. Neurosci Insights 2021; 16:26331055211009850. [PMID: 33954290 PMCID: PMC8058803 DOI: 10.1177/26331055211009850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Alcohol use disorder is associated with pathophysiological changes in the dopaminergic system. Orthodenticle homeobox 2 (OTX2) is a transcription factor important for the development of dopaminergic neurons residing in the ventral tegmental area (VTA), a critical region of the brain involved in drug reinforcement. Previous studies have demonstrated that ethanol exposure during embryonic development reduces Otx2 mRNA levels in the central nervous system. We hypothesized that levels of OTX2 would be altered by binge-like ethanol consumption in adult animals. To test this, Otx2 mRNA and protein levels in the mouse VTA were measured by quantitative real-time PCR and western blotting, respectively, after mice drank ethanol for 4 days in a procedure that elicits binge levels of ethanol consumption (drinking in the dark). Expression of known and putative OTX2 transcriptional target genes (Sema3c, Wnt1, and Mdk) were also measured in the VTA after ethanol drinking. Otx2 mRNA and protein levels were elevated in the VTA 24 hours after the fourth drinking session and there was a corresponding increase in the expression of Mdk transcript. Interestingly, Wnt1 transcript was elevated in the VTA immediately after the fourth drinking session but returned to control levels 24 hours later. We next investigated if viral-mediated reduction of Otx2 in the mouse VTA would alter ethanol or sucrose intake. Lentiviral vectors expressing a shRNA targeting Otx2 or a control shRNA were injected into the VTA and mice were tested in the drinking in the dark protocol for ethanol and sucrose drinking. Reducing levels of OTX2 in the VTA did not alter ethanol or sucrose consumption. One limitation is that the extent of OTX2 reduction may not have been sufficient. Although OTX2 in the VTA may not play a role in binge-like drinking in adult mice, OTX2 could contribute to ethanol-induced transcriptional changes in this region.
Collapse
Affiliation(s)
- Cassandre Coles
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Apulei J, Kim N, Testa D, Ribot J, Morizet D, Bernard C, Jourdren L, Blugeon C, Di Nardo AA, Prochiantz A. Non-cell Autonomous OTX2 Homeoprotein Regulates Visual Cortex Plasticity Through Gadd45b/g. Cereb Cortex 2020; 29:2384-2395. [PMID: 29771284 DOI: 10.1093/cercor/bhy108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/19/2018] [Indexed: 11/14/2022] Open
Abstract
The non-cell autonomous transfer of OTX2 homeoprotein transcription factor into juvenile mouse cerebral cortex regulates parvalbumin interneuron maturation and critical period timing. By analyzing gene expression in primary visual cortex of wild-type and Otx2+/GFP mice at plastic and nonplastic ages, we identified several putative genes implicated in Otx2-dependent visual cortex plasticity for ocular dominance. Cortical OTX2 infusion in juvenile mice induced Gadd45b/g expression through direct regulation of transcription. Intriguingly, a reverse effect was found in the adult, where reducing cortical OTX2 resulted in Gadd45b/g upregulation. Viral expression of Gadd45b in adult visual cortex directly induced ocular dominance plasticity with concomitant changes in MeCP2 foci within parvalbumin interneurons and in methylation states of several plasticity gene promoters, suggesting epigenetic regulation. This interaction provides a molecular mechanism for OTX2 to trigger critical period plasticity yet suppress adult plasticity.
Collapse
Affiliation(s)
- Jessica Apulei
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Namsuk Kim
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Damien Testa
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Jérôme Ribot
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - David Morizet
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Laurent Jourdren
- Genomic Core Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Corinne Blugeon
- Genomic Core Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| |
Collapse
|
6
|
Maheu ME, Ressler KJ. Developmental pathway genes and neural plasticity underlying emotional learning and stress-related disorders. Learn Mem 2017; 24:492-501. [PMID: 28814475 PMCID: PMC5580529 DOI: 10.1101/lm.044271.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 11/24/2022]
Abstract
The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk for illnesses like depression and post-traumatic stress disorder, some have turned their attention instead to focusing on so-called "master regulators" of plasticity that may provide a means of controlling these potentially impaired processes in psychiatric illnesses. The mammalian homolog of Tailless (TLX), Wnt, and the homeoprotein Otx2 have all been proposed to constitute master regulators of different forms of plasticity which have, in turn, each been implicated in learning and stress-related disorders. In the present review, we provide an overview of the changing distribution of these genes and their roles both during development and in the adult brain. We further discuss how their distinct expression profiles provide clues as to their function, and may inform their suitability as candidate drug targets in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Marissa E Maheu
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| |
Collapse
|
7
|
Otx2-PNN Interaction to Regulate Cortical Plasticity. Neural Plast 2016; 2016:7931693. [PMID: 26881132 PMCID: PMC4736602 DOI: 10.1155/2016/7931693] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/13/2015] [Indexed: 01/31/2023] Open
Abstract
The ability of the environment to shape cortical function is at its highest during critical periods of postnatal development. In the visual cortex, critical period onset is triggered by the maturation of parvalbumin inhibitory interneurons, which gradually become surrounded by a specialized glycosaminoglycan-rich extracellular matrix: the perineuronal nets. Among the identified factors regulating cortical plasticity in the visual cortex, extracortical homeoprotein Otx2 is transferred specifically into parvalbumin interneurons and this transfer regulates both the onset and the closure of the critical period of plasticity for binocular vision. Here, we review the interaction between the complex sugars of the perineuronal nets and homeoprotein Otx2 and how this interaction regulates cortical plasticity during critical period and in adulthood.
Collapse
|
8
|
Liu X, Wang J, Wang H, Yin G, Liu Y, Lei X, Xiang M. REG3A accelerates pancreatic cancer cell growth under IL-6-associated inflammatory condition: Involvement of a REG3A-JAK2/STAT3 positive feedback loop. Cancer Lett 2015; 362:45-60. [PMID: 25779676 DOI: 10.1016/j.canlet.2015.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/20/2022]
Abstract
Regenerating gene protein (REG) 3A is a 19 kD secretory pancreas protein with pro-growth function. Previously we demonstrated that overexpression of REG3A, acting as a key molecule for up-regulation of the JAK2/STAT3 pathway, contributed to inflammation-related pancreatic cancer (PaC) development. However the exact network associated with REG3A signaling still remains unclear. Here we determined that exposure of human PaC cells to cytokine IL-6 activated the oncogenic JAK2/STAT3 pathway, which directly upregulated REG3A expression, accelerated cell cycle progression by promoting CyclinD1 expression, and enhancing the expression of the anti-apoptosis Bcl family. Importantly, the activation of REG3A would instead enhance the JAK2/STAT3 pathway to constitute a REG3A-JAK2/STAT3 positive feedback loop, which leads to the amplification of the oncogenic effects of IL-6/JAK2/STAT3, a classic pathway linking to inflammation-related tumorigenesis, ultimately resulting in PaC cell over-proliferation and tumor formation both in vitro and in vivo. Moreover, EGFR was found to mediate the REG3A signal for PaC cell growth and JAK2/STAT3 activation, thus functioning as a REG3A receptor. Collectively, our results provide the first evidence for the presence of the synergistic effect of REG3A and IL-6 on PaC development via a REG3A-JAK2/STAT3 positive feedback loop.
Collapse
Affiliation(s)
- Xiulan Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430030, China
| | - Hongjie Wang
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, USA
| | - Guoxiao Yin
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Xiang Lei
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Kim N, Acampora D, Dingli F, Loew D, Simeone A, Prochiantz A, Di Nardo AA. Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex. F1000Res 2014; 3:178. [PMID: 25165539 PMCID: PMC4133762 DOI: 10.12688/f1000research.4869.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2014] [Indexed: 11/20/2022] Open
Abstract
Plasticity in the visual cerebral cortex is regulated by the internalization of Otx2 homeoprotein into parvalbumin neurons in cortical layers II/III and IV. However the Otx2 locus is not active in these neurons and the protein is imported from external sources, including the choroid plexus. Because Otx1 and Otx2 may have redundant functions, we wanted to verify if part of the staining in parvalbumin neurons corresponds to Otx1 transported from cortical layer V neurons. It is demonstrated here that Otx staining in layer IV cells is maintained in Otx1-null mice. The immunoprecipitation of extracts from finely dissected granular and supragranular cortex (layers I-IV) gave immunoblots with a band corresponding to Otx2 and not Otx1. Moreover, high-resolution mass spectrometry analysis after immunoprecipitation identifies two peptides within the Otx2 homeodomain. One of these peptides is specific for Otx2 and is not found in Otx1. These results unambiguously establish that the staining in parvalbumin neurons revealed with the anti-Otx2 antibodies used in our previous studies identifies non-cell autonomous Otx2.
Collapse
Affiliation(s)
- Namsuk Kim
- CIRB, CNRS UMR 7241 / INSERM U1050, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Dario Acampora
- Institute of Genetics and Biophysics, Via Pietro Castellino 111, 80131 Napoli, Italy ; IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Antonio Simeone
- Institute of Genetics and Biophysics, Via Pietro Castellino 111, 80131 Napoli, Italy ; IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Alain Prochiantz
- CIRB, CNRS UMR 7241 / INSERM U1050, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ariel A Di Nardo
- CIRB, CNRS UMR 7241 / INSERM U1050, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|