1
|
Balakrishnan A, Mishra SK, Georrge JJ. Insight into Protein Engineering: From In silico Modelling to In vitro Synthesis. Curr Pharm Des 2025; 31:179-202. [PMID: 39354773 DOI: 10.2174/0113816128349577240927071706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
Protein engineering alters the polypeptide chain to obtain a novel protein with improved functional properties. This field constantly evolves with advanced in silico tools and techniques to design novel proteins and peptides. Rational incorporating mutations, unnatural amino acids, and post-translational modifications increases the applications of engineered proteins and peptides. It aids in developing drugs with maximum efficacy and minimum side effects. Currently, the engineering of peptides is gaining attention due to their high stability, binding specificity, less immunogenic, and reduced toxicity properties. Engineered peptides are potent candidates for drug development due to their high specificity and low cost of production compared with other biologics, including proteins and antibodies. Therefore, understanding the current perception of designing and engineering peptides with the help of currently available in silico tools is crucial. This review extensively studies various in silico tools available for protein engineering in the prospect of designing peptides as therapeutics, followed by in vitro aspects. Moreover, a discussion on the chemical synthesis and purification of peptides, a case study, and challenges are also incorporated.
Collapse
Affiliation(s)
- Anagha Balakrishnan
- Department of Bioinformatics, University of North Bengal, Siliguri, District-Darjeeling, West Bengal 734013, India
| | - Saurav K Mishra
- Department of Bioinformatics, University of North Bengal, Siliguri, District-Darjeeling, West Bengal 734013, India
| | - John J Georrge
- Department of Bioinformatics, University of North Bengal, Siliguri, District-Darjeeling, West Bengal 734013, India
| |
Collapse
|
2
|
Ahmad M, Jha B, Bose S, Tiwari S, Dwivedy A, Kar D, Pal R, Mariadasse R, Parish T, Jeyakanthan J, Vinothkumar KR, Biswal BK. Structural snapshots of Mycobacterium tuberculosis enolase reveal dual mode of 2PG binding and its implication in enzyme catalysis. IUCRJ 2023; 10:738-753. [PMID: 37860976 PMCID: PMC10619443 DOI: 10.1107/s2052252523008485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Enolase, a ubiquitous enzyme, catalyzes the reversible conversion of 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the glycolytic pathway of organisms of all three domains of life. The underlying mechanism of the 2PG to PEP conversion has been studied in great detail in previous work, however that of the reverse reaction remains to be explored. Here we present structural snapshots of Mycobacterium tuberculosis (Mtb) enolase in apo, PEP-bound and two 2PG-bound forms as it catalyzes the conversion of PEP to 2PG. The two 2PG-bound complex structures differed in the conformation of the bound product (2PG) viz the widely reported canonical conformation and a novel binding pose, which we refer to here as the alternate conformation. Notably, we observed two major differences compared with the forward reaction: the presence of MgB is non-obligatory for the reaction and 2PG assumes an alternate conformation that is likely to facilitate its dissociation from the active site. Molecular dynamics studies and binding free energy calculations further substantiate that the alternate conformation of 2PG causes distortions in both metal ion coordination and hydrogen-bonding interactions, resulting in an increased flexibility of the active-site loops and aiding product release. Taken together, this study presents a probable mechanism involved in PEP to 2PG catalysis that is likely to be mediated by the conformational change of 2PG at the active site.
Collapse
Affiliation(s)
- Mohammed Ahmad
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhavya Jha
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Zoology, GDM Mahavidyalaya, Patliputra University, Patna 800020, India
| | - Sucharita Bose
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Satish Tiwari
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhisek Dwivedy
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepshikha Kar
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ravikant Pal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Richard Mariadasse
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Tanya Parish
- Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, WA 98102, USA
- Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Jeyaraman Jeyakanthan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Kutti R. Vinothkumar
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Bichitra Kumar Biswal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
3
|
Abuyaman O, Hatmal MM, Hijjawi N, Deeb AA, Abuothman M, Taha M. Vitamin B12 binding to mutated human transcobalamin, in-silico study of TCN2 alanine scanning and ClinVar missense mutations/SNPs. J Biomol Struct Dyn 2023; 41:3222-3233. [PMID: 35261335 DOI: 10.1080/07391102.2022.2046638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
Abstract
Many missense mutations/SNPs of the TCN2 gene (which yield Transcobalamin (TC)) were reported in the literature but no study is available about their effect on binding to vitamin B12(B12) at the structural level experimentally nor computationally. Predict the effect of TC missense mutations/SNPs on binding affinity to B12 and characterize their contacts to B12 at the structural level. TC-B12 binding energy difference from the wildtype (ΔΔGmut) was calculated for 378 alanine scanning mutations and 76 ClinVar missense mutations, repeated on two distinct X-ray structures of holoTC namely 2BB5 and 4ZRP. Destabilizing mutations then went through 100 ns molecular dynamics simulation to study their effect on TC-B12 binding at the structural level employing 2BB5 structure. Out of the studied 454 mutations (378 alanine mutations + 76 ClinVar mutations), 19 were destabilizing representing 17 amino acid locations. Mutation energy results show a neutral effect on B12 binding of several missense SNPs reported in the literature including I23V, G94S, R215W, P259R, S348F, L376S, and R399Q. Compared to the wildtype, all the destabilizing mutations have higher average RMSD-Ligand in the last 25% of the MD simulation trajectories and lower average hydrogen bond count while the other parameters vary. Previously reported TCN2 SNPs with an unknown effect on TC-B12 binding were found to have a neutral effect in the current study based on mutation energy calculations. Also, we reported 17 possible amino acids that destabilize TC-B12 binding upon mutation (four listed in ClinVar) and studied their structural effect computationally.
Collapse
Affiliation(s)
- Omar Abuyaman
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Ahmad A Deeb
- Faculty of Pharmacy, Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | | | - Mutasem Taha
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Leitzke M. Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration? Bioelectron Med 2023; 9:2. [PMID: 36650574 PMCID: PMC9845100 DOI: 10.1186/s42234-023-00104-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Following a SARS-CoV-2 infection, many individuals suffer from post-COVID-19 syndrome. It makes them unable to proceed with common everyday activities due to weakness, memory lapses, pain, dyspnea and other unspecific physical complaints. Several investigators could demonstrate that the SARS-CoV-2 related spike glycoprotein (SGP) attaches not only to ACE-2 receptors but also shows DNA sections highly affine to nicotinic acetylcholine receptors (nAChRs). The nAChR is the principal structure of cholinergic neuromodulation and is responsible for coordinated neuronal network interaction. Non-intrinsic viral nAChR attachment compromises integrative interneuronal communication substantially. This explains the cognitive, neuromuscular and mood impairment, as well as the vegetative symptoms, characterizing post-COVID-19 syndrome. The agonist ligand nicotine shows an up to 30-fold higher affinity to nACHRs than acetylcholine (ACh). We therefore hypothesize that this molecule could displace the virus from nAChR attachment and pave the way for unimpaired cholinergic signal transmission. Treating several individuals suffering from post-COVID-19 syndrome with a nicotine patch application, we witnessed improvements ranging from immediate and substantial to complete remission in a matter of days.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Anesthesiology, Helios Clinics, Colditzer Straße 48, 04703, Leisnig, Germany.
| |
Collapse
|
5
|
Heilmann E, Costacurta F, Moghadasi SA, Ye C, Pavan M, Bassani D, Volland A, Ascher C, Weiss AKH, Bante D, Harris RS, Moro S, Rupp B, Martinez-Sobrido L, von Laer D. SARS-CoV-2 3CL pro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Sci Transl Med 2023; 15:eabq7360. [PMID: 36194133 PMCID: PMC9765458 DOI: 10.1126/scitranslmed.abq7360] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Protease inhibitors are among the most powerful antiviral drugs. Nirmatrelvir is the first protease inhibitor specifically developed against the SARS-CoV-2 protease 3CLpro that has been licensed for clinical use. To identify mutations that confer resistance to this protease inhibitor, we engineered a chimeric vesicular stomatitis virus (VSV) that expressed a polyprotein composed of the VSV glycoprotein (G), the SARS-CoV-2 3CLpro, and the VSV polymerase (L). Viral replication was thus dependent on the autocatalytic processing of this precursor protein by 3CLpro and release of the functional viral proteins G and L, and replication of this chimeric VSV was effectively inhibited by nirmatrelvir. Using this system, we applied nirmatrelvir to select for resistance mutations. Resistance was confirmed by retesting nirmatrelvir against the selected mutations in additional VSV-based systems, in an independently developed cellular system, in a biochemical assay, and in a recombinant SARS-CoV-2 system. We demonstrate that some mutants are cross-resistant to ensitrelvir and GC376, whereas others are less resistant to these compounds. Furthermore, we found that most of these resistance mutations already existed in SARS-CoV-2 sequences that have been deposited in the NCBI and GISAID databases, indicating that these mutations were present in circulating SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78229, USA
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Andre Volland
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Claudia Ascher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, 6020, Austria
| | | | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, 6020, Austria
- k.-k. Hofkristallamt, San Diego, CA 92084, United States
| | | | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| |
Collapse
|
6
|
Cuong NM, Son NT, Nhan NT, Fukuyama Y, Ahmed A, Saponara S, Trezza A, Gianibbi B, Vigni G, Spiga O, Fusi F. Vietnamese Dalbergia tonkinensis: A Promising Source of Mono- and Bifunctional Vasodilators. Molecules 2022; 27:molecules27144505. [PMID: 35889386 PMCID: PMC9324545 DOI: 10.3390/molecules27144505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Hypertension is a risk factor for cardiovascular diseases, which are the main cause of morbidity and mortality in the world. In the search for new molecules capable of targeting KCa1.1 and CaV1.2 channels, the expression of which is altered in hypertension, the in vitro vascular effects of a series of flavonoids extracted from the heartwoods, roots, and leaves of Dalbergia tonkinensis Prain, widely used in traditional medicine, were assessed. Rat aorta rings, tail artery myocytes, and docking and molecular dynamics simulations were used to analyse their effect on these channels. Formononetin, orobol, pinocembrin, and biochanin A showed a marked myorelaxant activity, particularly in rings stimulated by moderate rather than high KCl concentrations. Ba2+ currents through CaV1.2 channels (IBa1.2) were blocked in a concentration-dependent manner by sativanone, 3′-O-methylviolanone, pinocembrin, and biochanin A, while it was stimulated by ambocin. Sativanone, dalsissooside, and eriodictyol inhibited, while tectorigenin 7-O-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside], ambocin, butin, and biochanin A increased IKCa1.1. In silico analyses showed that biochanin A, sativanone, and pinocembrin bound with high affinity in target-sensing regions of both channels, providing insight into their potential mechanism of action. In conclusion, Dalbergia tonkinensis is a valuable source of mono- and bifunctional, vasoactive scaffolds for the development of novel antihypertensive drugs.
Collapse
Affiliation(s)
- Nguyen Manh Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 122100, Vietnam
- Correspondence: (N.M.C.); (F.F.)
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 122100, Vietnam;
| | - Ngu Truong Nhan
- Faculty of Science and Technology, Tay Nguyen University, 567 Le Duan, Ea Tam, Buon Ma Thuot 630000, Vietnam;
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan;
| | - Amer Ahmed
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.A.); (S.S.)
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.A.); (S.S.)
| | - Alfonso Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.T.); (B.G.); (G.V.); (O.S.)
| | - Beatrice Gianibbi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.T.); (B.G.); (G.V.); (O.S.)
| | - Ginevra Vigni
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.T.); (B.G.); (G.V.); (O.S.)
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.T.); (B.G.); (G.V.); (O.S.)
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.T.); (B.G.); (G.V.); (O.S.)
- Correspondence: (N.M.C.); (F.F.)
| |
Collapse
|
7
|
Charupanit K, Tipmanee V, Sutthibutpong T, Limsakul P. In Silico Identification of Potential Sites for a Plastic-Degrading Enzyme by a Reverse Screening through the Protein Sequence Space and Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103353. [PMID: 35630830 PMCID: PMC9143596 DOI: 10.3390/molecules27103353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The accumulation of polyethylene terephthalate (PET) seriously harms the environment because of its high resistance to degradation. The recent discovery of the bacteria-secreted biodegradation enzyme, PETase, sheds light on PET recycling; however, the degradation efficiency is far from practical use. Here, in silico alanine scanning mutagenesis (ASM) and site-saturation mutagenesis (SSM) were employed to construct the protein sequence space from binding energy of the PETase–PET interaction to identify the number and position of mutation sites and their appropriate side-chain properties that could improve the PETase–PET interaction. The binding mechanisms of the potential PETase variant were investigated through atomistic molecular dynamics simulations. The results show that up to two mutation sites of PETase are preferable for use in protein engineering to enhance the PETase activity, and the proper side chain property depends on the mutation sites. The predicted variants agree well with prior experimental studies. Particularly, the PETase variants with S238C or Q119F could be a potential candidate for improving PETase. Our combination of in silico ASM and SSM could serve as an alternative protocol for protein engineering because of its simplicity and reliability. In addition, our findings could lead to PETase improvement, offering an important contribution towards a sustainable future.
Collapse
Affiliation(s)
- Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.C.); (V.T.)
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.C.); (V.T.)
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand;
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Praopim Limsakul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Excellence for Trace Analysis and Biosensor (TAB-CoE), Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Correspondence:
| |
Collapse
|
8
|
Anju VT, Busi S, Kumar S, Suchiang K, Kumavath R, Ranganathan S, Ampasala DR, Dyavaiah M. Alantolactone modulates the production of quorum sensing mediated virulence factors and biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2022; 38:331-347. [PMID: 35469529 DOI: 10.1080/08927014.2022.2064747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen in immunocompromised patients and accounts for mortality worldwide. Quorum sensing (QS) and QS mediated biofilm formation of P. aeruginosa increase the severity of infection in the host. New and effective therapeutics are in high demand to eliminate Pseudomonas infections. The current study investigated the quorum quenching and biofilm inhibition properties of alantolactone (ATL) against P. aeruginosa PAO1. The production of key virulence factors and biofilm components were affected in bacteria when treated with sub-MIC of ATL and further validated by qRT-PCR studies. The anti-infective potential of ATL was corroborated in an in vivo model with improved survival of infected Caenorhabditis elegans and reduced bacterial colonization. In silico studies suggested the molecular interactions of ATL to QS proteins as stable. Finally, ATL was explored in the present study to inhibit QS pathways and holds the potential to develop into an effective anti-infective agent against P. aeruginosa.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sandeep Kumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Sampathkumar Ranganathan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Dinakara Rao Ampasala
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
9
|
Neto RDAM, Santos CBR, Henriques SVC, Machado LDO, Cruz JN, da Silva CHTDP, Federico LB, Oliveira EHCD, de Souza MPC, da Silva PNB, Taft CA, Ferreira IM, Gomes MRF. Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:2204-2216. [DOI: 10.1080/07391102.2020.1839562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Raimundo de A. M. Neto
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | - Cleydson B. R. Santos
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | | | - Letícia de O. Machado
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | - Jorddy N. Cruz
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| | | | - Leonardo B. Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | | | | | | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Físicas, Urca, Rio de Janeiro, Brasil
| | | | - Madson R. F. Gomes
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brasil
| |
Collapse
|
10
|
Lima ADM, Siqueira AS, Möller MLS, Souza RCD, Cruz JN, Lima ARJ, Silva RCD, Aguiar DCF, Junior JLDSGV, Gonçalves EC. In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J Biomol Struct Dyn 2020; 40:1064-1073. [PMID: 32990187 DOI: 10.1080/07391102.2020.1821782] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lectins that bind to HIV envelope glycoprotein can inhibit virus-cell fusion and be used for rational drug design. This paper presents the results of an in silico approach to improve affinity interaction between the cyanobacterial lectin microvirin and its ligand Manα(1-2)Man. Comparative modeling and molecular dynamics tools were used. Additionally, the alanine scanning webserver was used to study the importance of protein residues in the binding site and to guide mutant production. The model obtained presented two homologous domains designated as domains A and B, each consisting of a single strand with triple and antiparallel β-sheets of (β1-β3 and β6-β8). Disulfide bonds between the cysteines (Cys60-Cys80, Cys63-Cys78 and Cys8-Cys24) were also found. The highly conserved binding site, including residues Asn44, Ile45, Asp46, Gln54, Asn55, Glu58, Thr59, Gln81, Thr82 and Met83. The RMSD values of the di-mannose and the interaction site were very stable during the molecular dynamics. Calculations of the occupation time of the hydrogen bonds were made for the residues that showed interaction in the complex lectin and ligand. The residue that contributed most to the interaction with Manα(1-2)Man was Asn55. After validation, the model generated remained stable during the entire simulation. Despite its structural similarity with the template we used, our mutant (Thr82Arg) showed a higher affinity interaction with Manα(1-2)Man. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adonis de Melo Lima
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marina Luiza Saraiva Möller
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Jorddy Neves Cruz
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Alex Ranieri Jerônimo Lima
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Ronaldo Correia da Silva
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Evonnildo Costa Gonçalves
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
11
|
Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur J Med Chem 2020; 207:112764. [PMID: 32871340 DOI: 10.1016/j.ejmech.2020.112764] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) play a pivotal role in extensive biological processes and are thus crucial to human health and the development of disease states. Due to their critical implications, PPIs have been spotlighted as promising drug targets of broad-spectrum therapeutic interests. However, owing to the general properties of PPIs, such as flat surfaces, featureless conformations, difficult topologies, and shallow pockets, previous attempts were faced with serious obstacles when targeting PPIs and almost portrayed them as "intractable" for decades. To date, rapid progress in computational chemistry and structural biology methods has promoted the exploitation of PPIs in drug discovery. These techniques boost their cost-effective and high-throughput traits, and enable the study of dynamic PPI interfaces. Thus, computational methods represent an alternative strategy to target "undruggable" PPI interfaces and have attracted intense pharmaceutical interest in recent years, as exemplified by the accumulating number of successful cases. In this review, we first introduce a diverse set of computational methods used to design PPI modulators. Herein, we focus on the recent progress in computational strategies and provide a comprehensive overview covering various methodologies. Importantly, a list of recently-reported successful examples is highlighted to verify the feasibility of these computational approaches. Finally, we conclude the general role of computational methods in targeting PPIs, and also discuss future perspectives on the development of such aids.
Collapse
|
12
|
Andrade BC, Timmers LFSM, Renard G, Volpato G, Souza CFV. Microbial β‐Galactosidases of industrial importance: Computational studies on the effects of point mutations on the lactose hydrolysis reaction. Biotechnol Prog 2020; 36:e2982. [DOI: 10.1002/btpr.2982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/18/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Bruna C. Andrade
- Laboratório de Biotecnologia de AlimentosUniversidade do Vale do Taquari – Univates Lajeado Rio Grande do Sul Brazil
- Programa de Pós‐Graduação em BiotecnologiaUniversidade do Vale do Taquari – Univates Lajeado Rio Grande do Sul Brazil
| | - Luis F. S. M. Timmers
- Programa de Pós‐Graduação em BiotecnologiaUniversidade do Vale do Taquari – Univates Lajeado Rio Grande do Sul Brazil
| | - Gaby Renard
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Giandra Volpato
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul ‐ IFRS, Campus Porto Alegre Porto Alegre Rio Grande do Sul Brazil
| | - Claucia F. V. Souza
- Laboratório de Biotecnologia de AlimentosUniversidade do Vale do Taquari – Univates Lajeado Rio Grande do Sul Brazil
- Programa de Pós‐Graduação em BiotecnologiaUniversidade do Vale do Taquari – Univates Lajeado Rio Grande do Sul Brazil
| |
Collapse
|
13
|
Molecular Simulation Elaborating the Mechanism of 1β-Hydroxy Alantolactone Inhibiting Ubiquitin-Conjugating Enzyme UbcH5s. Sci Rep 2020; 10:141. [PMID: 31924820 PMCID: PMC6954291 DOI: 10.1038/s41598-019-57104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023] Open
Abstract
1β-hydroxy alantolactone, a sesquiterpene lactone, exhibits potent anti-inflammatory and anticancer activities. Recently, it has been found to target UbcH5s by covalently bonding with Cys85 specifically, but the exact molecular basis remains unclear. Here, we analyzed the structural specificity of the catalytic site of UbcH5s by comparing them with other E2 proteins. Molecular dynamics was performed to detect the structural stability of the catalytic site. Docking method was then used to predict conformations of ligand docked at the catalytic site of UbcH5s. The electrostatic surface and charge distribution of ligand and proteins were analyzed by quantitative calculation. Molecular dynamics was used to detect the stability of docking complexes of 1β-hydroxy alantolactone and UbcH5s, the covalently bonded intermediates and the products. The QM/MM methodology was used to calculate the free energy barrier of hydrogen transfer and formation of covalent bond between 15-position carbon of ligand and Cys85. Results revealed that the structure of the catalytic site is stable, and 1β-hydroxy alantolactone can dock at the catalytic site with correct conformation. Molecular dynamics further demonstrates that 1β-hydroxy alantolactone can steadily combine with UbcH5s. Intermediate and product of catalytic reaction are also certified to be stable. Besides, Asp112 and Asn114 function as anchors to fix ligand, ensuring it steadily docked at catalytic site to complete covalent reaction. More importantly, we have found that Cys85 of UbcH5c is more efficient to form a covalent bond with the ligand in comparison with UbcH5a and UbcH5b. Our results successfully explained the mechanism of 1β-hydroxy alantolactone covalently bonding with UbcH5s. Such molecular mechanism may provide a better insight into the molecular development or modification for ubiquitin-related drugs.
Collapse
|
14
|
Joshi R, Trinkl J, Haugeneder A, Härtl K, Franz-Oberdorf K, Giri A, Hoffmann T, Schwab W. Semirational design and engineering of grapevine glucosyltransferases for enhanced activity and modified product selectivity. Glycobiology 2019; 29:765-775. [PMID: 31361022 PMCID: PMC6835047 DOI: 10.1093/glycob/cwz056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022] Open
Abstract
Uridine diphosphate-dependent glycosyltransferases (UGTs) catalyze the transfer of a diversity of sugars to several acceptor molecules and often exhibit distinct substrate specificity. Modulation of glycosyltransferases for increased catalytic activity and altered substrate or product specificity are the key manipulations for the biotechnological use of glycosyltransferases in various biosynthetic processes. Here, we have engineered the binding pocket of three previously characterized Vitis vinifera glycosyltransferases, UGT88F12, UGT72B27 and UGT92G6, by structure-guided in silico mutagenesis to facilitate the interactions of active site residues with flavonol glucosides and thus modify substrate specificity and activity. Site-directed mutagenesis at selected sites, followed with liquid chromatography-mass spectrometry based activity assays, exhibited that mutant UGTs were altered in product selectivity and activity as compared to the wild-type enzymes. Mutant UGTs produced larger amounts of flavonol di-monosaccharide glucosides, which imply that the mutations led to structural changes that increased the volume of the binding pocket to accommodate a larger substrate and to release larger products at ease. Mutants showed increased activity and modified product specificity. Thus, structure-based systematic mutations of the amino acid residues in the binding pocket can be explored for the generation of engineered UGTs for diverse biotechnological applications.
Collapse
Affiliation(s)
- Rakesh Joshi
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind Road, Pune 411007, Maharashtra, India.,Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Liesel-Beckmann-Str. 1, Germany.,Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Johanna Trinkl
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Liesel-Beckmann-Str. 1, Germany
| | - Annika Haugeneder
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Liesel-Beckmann-Str. 1, Germany
| | - Katja Härtl
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Liesel-Beckmann-Str. 1, Germany
| | - Katrin Franz-Oberdorf
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Liesel-Beckmann-Str. 1, Germany
| | - Ashok Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Liesel-Beckmann-Str. 1, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Liesel-Beckmann-Str. 1, Germany
| |
Collapse
|
15
|
Solivio B, Yu N, Addepalli B, Limbach PA. Improving RNA modification mapping sequence coverage by LC-MS through a nonspecific RNase U2-E49A mutant. Anal Chim Acta 2018; 1036:73-79. [PMID: 30253839 PMCID: PMC6214470 DOI: 10.1016/j.aca.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022]
Abstract
We report the identification and use of a mutant of the purine selective ribonuclease RNase U2 that randomly cleaves RNA in a manner that is directly compatible with RNA modification mapping by mass spectrometry. A number of RNase U2 mutants were generated using site-saturation mutagenesis. The enzyme activity and specificity were tested using oligonucleotide substrates, which revealed an RNase U2 E49A mutant with limited specificity and a tendency to undercut RNA. Using this mutant, RNA digestion conditions were optimized to yield long, overlapping digestion products, which improve sequence coverage in RNA modification mapping experiments. The analytical utility of this mutant was demonstrated by liquid chromatography tandem mass spectrometry (LC-MS/MS) mapping of several modified RNAs where 100% sequence coverage could be obtained using only a single enzymatic digestion. This new mutant facilitates more accurate and efficient RNA modification mapping than traditional highly base-specific RNases that are currently used.
Collapse
Affiliation(s)
- Beulah Solivio
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, United States
| | - Ningxi Yu
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, United States
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, United States.
| |
Collapse
|
16
|
Nagarajan D, Sukumaran S, Deka G, Krishnamurthy K, Atreya HS, Chandra N. Design of a heme-binding peptide motif adopting a β-hairpin conformation. J Biol Chem 2018; 293:9412-9422. [PMID: 29695501 DOI: 10.1074/jbc.ra118.001768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
Heme-binding proteins constitute a large family of catalytic and transport proteins. Their widespread presence as globins and as essential oxygen and electron transporters, along with their diverse enzymatic functions, have made them targets for protein design. Most previously reported designs involved the use of α-helical scaffolds, and natural peptides also exhibit a strong preference for these scaffolds. However, the reason for this preference is not well-understood, in part because alternative protein designs, such as those with β-sheets or hairpins, are challenging to perform. Here, we report the computational design and experimental validation of a water-soluble heme-binding peptide, Pincer-1, composed of predominantly β-scaffold secondary structures. Such heme-binding proteins are rarely observed in nature, and by designing such a scaffold, we simultaneously increase the known fold space of heme-binding proteins and expand the limits of computational design methods. For a β-scaffold, two tryptophan zipper β-hairpins sandwiching a heme molecule were linked through an N-terminal cysteine disulfide bond. β-Hairpin orientations and residue selection were performed computationally. Heme binding was confirmed through absorbance experiments and surface plasmon resonance experiments (KD = 730 ± 160 nm). CD and NMR experiments validated the β-hairpin topology of the designed peptide. Our results indicate that a helical scaffold is not essential for heme binding and reveal the first designed water-soluble, heme-binding β-hairpin peptide. This peptide could help expand the search for and design space to cytoplasmic heme-binding proteins.
Collapse
Affiliation(s)
| | | | - Geeta Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
17
|
Bhagavat R, Srinivasan N, Chandra N. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites. Proteins 2017; 85:1699-1712. [PMID: 28547747 DOI: 10.1002/prot.25328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022]
Abstract
Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raghu Bhagavat
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Narayanaswamy Srinivasan
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
18
|
Almeida FAD, Pinto UM, Vanetti MCD. Novel insights from molecular docking of SdiA from Salmonella Enteritidis and Escherichia coli with quorum sensing and quorum quenching molecules. Microb Pathog 2016; 99:178-190. [PMID: 27565088 DOI: 10.1016/j.micpath.2016.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
Quorum sensing is a cell-to-cell communication mechanism leading to differential gene expression in response to high population density. The autoinducer-1 (AI-1) type quorum sensing system is incomplete in Escherichia coli and Salmonella due to the lack of the AI-1 synthase (LuxI homolog) responsible for acyl homoserine lactone (AHL) synthesis. However, these bacteria encode the AHL receptor SdiA (a LuxR homolog) leading to gene regulation in response to AI-1 produced by other bacteria. This study aimed to model the SdiA protein of Salmonella enterica serovar Enteritidis PT4 578 based on three crystallized SdiA structures from Enterohemorrhagic E. coli (EHEC) with different ligands. Molecular docking of these predicted structures with AHLs, furanones and 1-octanoyl-rac-glycerol were also performed. The available EHEC SdiA structures provided good prototypes for modeling SdiA from Salmonella. The molecular docking of these proteins showed that residues Y63, W67, Y71, D80 and S134 are common binding sites for different quorum modulating signals, besides being conserved among other LuxR type proteins. We also show that AHLs with twelve carbons presented better binding affinity to SdiA than AHLs with smaller side chains in our docking analysis, regardless of the protein structures used. Interestingly, the conformational changes provided by AHL binding resulted in structural models with increased affinities to brominated furanones. These results suggest that the use of brominated furanones to inhibit phenotypes controlled by quorum sensing in Salmonella and EHEC may present a good strategy since these inhibitors seem to specifically compete with AHLs for binding to SdiA in both pathogens.
Collapse
Affiliation(s)
- Felipe Alves de Almeida
- Department of Microbiology, Laboratory of Food Microbiology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Dantas Vanetti
- Department of Microbiology, Laboratory of Food Microbiology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
19
|
Pires DEV, Blundell TL, Ascher DB. mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep 2016; 6:29575. [PMID: 27384129 PMCID: PMC4935856 DOI: 10.1038/srep29575] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
The ability to predict how a mutation affects ligand binding is an essential step in understanding, anticipating and improving the design of new treatments for drug resistance, and in understanding genetic diseases. Here we present mCSM-lig, a structure-guided computational approach for quantifying the effects of single-point missense mutations on affinities of small molecules for proteins. mCSM-lig uses graph-based signatures to represent the wild-type environment of mutations, and small-molecule chemical features and changes in protein stability as evidence to train a predictive model using a representative set of protein-ligand complexes from the Platinum database. We show our method provides a very good correlation with experimental data (up to ρ = 0.67) and is effective in predicting a range of chemotherapeutic, antiviral and antibiotic resistance mutations, providing useful insights for genotypic screening and to guide drug development. mCSM-lig also provides insights into understanding Mendelian disease mutations and as a tool for guiding protein design. mCSM-lig is freely available as a web server at http://structure.bioc.cam.ac.uk/mcsm_lig.
Collapse
Affiliation(s)
- Douglas E V Pires
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.,Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, Brazil
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - David B Ascher
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
20
|
Saponara S, Durante M, Spiga O, Mugnai P, Sgaragli G, Huong TT, Khanh PN, Son NT, Cuong NM, Fusi F. Functional, electrophysiological and molecular docking analysis of the modulation of Cav 1.2 channels in rat vascular myocytes by murrayafoline A. Br J Pharmacol 2015; 173:292-304. [PMID: 26493241 DOI: 10.1111/bph.13369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The carbazole alkaloid murrayafoline A (MuA) enhances contractility and the Ca(2+) currents carried by the Cav 1.2 channels [ICa1.2 ] of rat cardiomyocytes. As only few drugs stimulate ICa1.2 , this study was designed to analyse the effects of MuA on vascular Cav 1.2 channels. EXPERIMENTAL APPROACH Vascular activity was assessed on rat aorta rings mounted in organ baths. Cav 1.2 Ba(2+) current [IBa1.2 ] was recorded in single rat aorta and tail artery myocytes by the patch-clamp technique. Docking at a 3D model of the rat, α1c central pore subunit of the Cav 1.2 channel was simulated in silico. KEY RESULTS In rat aorta rings MuA, at concentrations ≤14.2 μM, increased 30 mM K(+) -induced tone and shifted the concentration-response curve to K(+) to the left. Conversely, at concentrations >14.2 μM, it relaxed high K(+) depolarized rings and antagonized Bay K 8644-induced contraction. In single myocytes, MuA stimulated IBa1.2 in a concentration-dependent, bell-shaped manner; stimulation was stable, incompletely reversible upon drug washout and accompanied by a leftward shift of the voltage-dependent activation curve. MuA docked at the α1C subunit central pore differently from nifedipine and Bay K 8644, although apparently interacting with the same amino acids of the pocket. Neither Bay K 8644-induced stimulation nor nifedipine-induced block of IBa1.2 was modified by MuA. CONCLUSIONS AND IMPLICATIONS Murrayafoline A is a naturally occurring vasoactive agent able to modulate Cav 1.2 channels and dock at the α1C subunit central pore in a manner that differed from that of dihydropyridines.
Collapse
Affiliation(s)
- S Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - M Durante
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - O Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - P Mugnai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - G Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - T T Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - P N Khanh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - N T Son
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - N M Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - F Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
21
|
Prediction of protein targets of kinetin using in silico and in vitro methods: a case study on spinach seed germination mechanism. J Chem Biol 2015; 8:95-105. [PMID: 26101551 DOI: 10.1007/s12154-015-0135-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Kinetin, a cytokinin which promotes seed germination by inhibiting the action of abscisic acid, is an important molecule known to trigger various molecular mechanisms by interacting with an array of proteins shown from experimental observations in various model organisms. We report here the prediction of most probable protein targets of kinetin from spinach proteome using in silico approaches. Inverse docking and ligand-based similarity search was performed using kinetin as molecule. The former method prioritized six spinach proteins, whereas the latter method provided a list of protein targets retrieved from several model organisms. The most probable protein targets were selected by comparing the rank list of docking and ligand similarity methods. Both of these methods prioritized chitinase as the most probable protein target (ΔG pred = 5.064 kcal/mol) supported by the experimental structure of yeast chitinase 1 complex with kinetin (PDB: 2UY5) and Gliocladium roseum chitinase complex with 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione (caffeine; 3G6M) which bears a 3D similarity of 0.43 with kinetin. An in vitro study to evaluate the effect of kinetin on spinach seed germination indicated that a very low concentration of kinetin (0.5 mg/l) did not show a significant effect compared to control in inducing seed germination process. Further, higher levels of kinetin (>0.5 mg/l) constituted an antagonist effect on spinach seed germination. It is anticipated that kinetin may have a molecular interaction with prioritized protein targets synthesized during the seed germination process and reduces growth. Thus, it appears that kinetin may not be a suitable hormone for enhancing spinach seed germination in vitro.
Collapse
|