1
|
Lakes T, Schmitz T, Füller H. Pathogenic built environment? Reflections on modeling spatial determinants of health in urban settings considering the example of COVID-19 studies. Front Public Health 2025; 13:1502897. [PMID: 40165988 PMCID: PMC11955651 DOI: 10.3389/fpubh.2025.1502897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
The triad of host, agent, and environment has become a widely accepted framework for understanding infectious diseases and human health. While modern medicine has traditionally focused on the individual, there is a renewed interest in the role of the environment. Recent studies have shifted from an early-twentieth-century emphasis on individual factors to a broader consideration of contextual factors, including environmental, climatic, and social settings as spatial determinants of health. This shifted focus has been particularly relevant in the context of the COVID-19 pandemic, where the built environment in urban settings is increasingly recognized as a crucial factor influencing disease transmission. However, operationalizing the complexity of associations between the built environment and health for empirical analyses presents significant challenges. This study aims to identify key caveats in the operationalization of spatial determinants of health for empirical analysis and proposes guiding principles for future research. We focus on how the built environment in urban settings was studied in recent literature on COVID-19. Based on a set of criteria, we analyze 23 studies and identify explicit and implicit assumptions regarding the health-related dimensions of the built environment. Our findings highlight the complexities and potential pitfalls, referred to as the 'spatial trap,' in the current approaches to spatial epidemiology concerning COVID-19. We conclude with recommendations and guiding questions for future studies to avoid falsely attributing a built environment impact on health outcomes and to clarify explicit and implicit assumptions regarding the health-related dimensions.
Collapse
Affiliation(s)
- Tobia Lakes
- Department of Geography, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Integrative Research Institute on Transformations of Human Environment Systems (IRI THESys), Berlin, Germany
| | - Tillman Schmitz
- Department of Geography, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Henning Füller
- Department of Geography, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Zhao Z, Liu R, Bi B, Li S. The evaluation criteria of community protection on children's medical care in major pandemics. Aten Primaria 2024; 57:103174. [PMID: 39705884 PMCID: PMC11730845 DOI: 10.1016/j.aprim.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/27/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024] Open
Affiliation(s)
- Zhuo Zhao
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ruitong Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bingqing Bi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shugang Li
- School of General Practice and Continuing Education, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Käding N, Waldeck F, Meier B, Boutin S, Borsche M, Balck A, Föh B, Kramer J, Klein C, Katalinic A, Rupp J. Influence of non-pharmaceutical interventions during the COVID-19 pandemic on respiratory viral infections - a prospective population-based cohort study. Front Public Health 2024; 12:1415778. [PMID: 38979040 PMCID: PMC11228307 DOI: 10.3389/fpubh.2024.1415778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Non-pharmaceutical interventions (NPI) have been proven successful in a population-based approach to protect from SARS-CoV-2 transmission during the COVID-19 pandemic. As a consequential-effect, a reduction in the spread of all respiratory viruses has been observed, but the primary factors behind this phenomenon have yet to be identified. We conducted a subgroup analysis of participants from the ELISA study, a prospective longitudinal cohort study on SARS-CoV-2 transmission, at four timepoints from November 2020 - September 2022. The aim was to provide a detailed overview of the circulation of respiratory viruses over 2 years and to identify potential personal risk factors of virus distribution. All participants were screened using qPCR for respiratory viral infections from nasopharyngeal swabs and answered a questionnaire regarding behavioral factors. Several categories of risk factors for the transmission of respiratory viruses were evaluated using a scoring system. In total, 1,124 participants were included in the study, showing high adherence to governmental-introduced NPI. The overall number of respiratory virus infections was low (0-4.9% of participants), with adenovirus (1.7%), rhino-/enterovirus (3.2%) and SARS-CoV-2 (1.2%) being the most abundant. We detected an inverse correlation between the number and intensity of NPI and the number of detected respiratory viruses. More precisely, the attendance of social events and household size was associated with rhino-/enterovirus infection while social contacts were associated with being positive for any virus. NPI introduced during the COVID-19 pandemic reduced the occurrence of seasonal respiratory viruses in our study, showing different risk-factors for enhanced transmission between viruses. Trial registration DRKS.de, German Clinical Trials Register (DRKS), Identifier: DRKS00023418, Registered on 28 October 2020.
Collapse
Affiliation(s)
- Nadja Käding
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frederike Waldeck
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Bjarne Meier
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Alexander Balck
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Bandik Föh
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jan Kramer
- LADR Laboratory Group Dr. Kramer and Colleagues, Geesthacht, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Alexander Katalinic
- Institute of Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
4
|
Shifera N, Aydiko A, Yosef T. Knowledge and Preventive Measures of COVID-19 Among Prison and Detention Center Staffs in Bench-Sheko Zone, Southwest Ethiopia. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231212054. [PMID: 38021106 PMCID: PMC10664421 DOI: 10.1177/11786302231212054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Background The coronavirus has developed into a global public emergency. Different preventive measures like handwashing stations, isolation chambers, and personal protective equipment are frequently insufficient in prisons and detention facilities. Furthermore, there were significant dangers of infection from close contact with incarcerated people and prison and detention center staff. The purpose of this study was to evaluate the awareness of COVID-19 prevention strategies among correctional facility staff in the Bench-Sheko Zone, southwest Ethiopia. Methods Between May and June 2020, an institutional-based cross-sectional study was carried out among selected individuals who were correctional facility staff located in the Bench-Sheko zone at the time the data were collected. The study participants were chosen using a stratified systematic random sampling technique. Epi-data 3.1 was used to enter the data, and SPSS version 22 was used to analyze it. To find a candidate and an independent factor, respectively, bivariate and multivariable logistic regression analyses were utilized. Results The levels of knowledge and practice toward COVID-19 were 41.5% and 39.5% respectively. Working in detention [AOR: 4.7, 95% CI: 2.1-10.5)] was also a risk factor for poor knowledge, and among the population working in detention, rural residence [AOR: 5.6, 95% CI: 2.2-14.3)], and lower educational level [AOR: 9.4, 95% CI: 3.3-26.9)] were additional risk factors for poor knowledge. Furthermore, for people working in detention, lower education levels [AOR: 4.3, 95% CI: 1.3-14)], poor knowledge [AOR: 3.3, 95% CI: 1.6-6.8)], and poor attitude [AOR: 9.1, 95% CI: 1.9-43.7)], were associated with poor preventive practice. Conclusion and recommendation Prison and detention center staff had poor knowledge and preventive measures toward COVID-19. An upcoming educational intervention is recommended to raise awareness of the diseases. Moreover, the decarcerating strategy also needs to be considered to mitigate COVID.
Collapse
Affiliation(s)
- Nigusie Shifera
- School of Public Health, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan Teferi, Ethiopia
| | - Alemseged Aydiko
- Department of Midwifery, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan Teferi, Ethiopia
| | - Tewodros Yosef
- School of Public Health, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan Teferi, Ethiopia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
5
|
Jimenez JL, Marr LC, Randall K, Ewing ET, Tufekci Z, Greenhalgh T, Tellier R, Tang JW, Li Y, Morawska L, Mesiano‐Crookston J, Fisman D, Hegarty O, Dancer SJ, Bluyssen PM, Buonanno G, Loomans MGLC, Bahnfleth WP, Yao M, Sekhar C, Wargocki P, Melikov AK, Prather KA. What were the historical reasons for the resistance to recognizing airborne transmission during the COVID-19 pandemic? INDOOR AIR 2022; 32:e13070. [PMID: 36040283 PMCID: PMC9538841 DOI: 10.1111/ina.13070] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 05/05/2023]
Abstract
The question of whether SARS-CoV-2 is mainly transmitted by droplets or aerosols has been highly controversial. We sought to explain this controversy through a historical analysis of transmission research in other diseases. For most of human history, the dominant paradigm was that many diseases were carried by the air, often over long distances and in a phantasmagorical way. This miasmatic paradigm was challenged in the mid to late 19th century with the rise of germ theory, and as diseases such as cholera, puerperal fever, and malaria were found to actually transmit in other ways. Motivated by his views on the importance of contact/droplet infection, and the resistance he encountered from the remaining influence of miasma theory, prominent public health official Charles Chapin in 1910 helped initiate a successful paradigm shift, deeming airborne transmission most unlikely. This new paradigm became dominant. However, the lack of understanding of aerosols led to systematic errors in the interpretation of research evidence on transmission pathways. For the next five decades, airborne transmission was considered of negligible or minor importance for all major respiratory diseases, until a demonstration of airborne transmission of tuberculosis (which had been mistakenly thought to be transmitted by droplets) in 1962. The contact/droplet paradigm remained dominant, and only a few diseases were widely accepted as airborne before COVID-19: those that were clearly transmitted to people not in the same room. The acceleration of interdisciplinary research inspired by the COVID-19 pandemic has shown that airborne transmission is a major mode of transmission for this disease, and is likely to be significant for many respiratory infectious diseases.
Collapse
Affiliation(s)
- Jose L. Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderColoradoUSA
| | - Linsey C. Marr
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVirginiaUSA
| | | | | | - Zeynep Tufekci
- School of JournalismColumbia UniversityNew YorkNew YorkUSA
| | - Trish Greenhalgh
- Department of Primary Care Health SciencesMedical Sciences DivisionUniversity of OxfordOxfordUK
| | | | - Julian W. Tang
- Department of Respiratory SciencesUniversity of LeicesterLeicesterUK
| | - Yuguo Li
- Department of Mechanical EngineeringUniversity of Hong KongHong KongChina
| | - Lidia Morawska
- International Laboratory for Air Quality and HeathQueensland University of TechnologyBrisbaneQueenslandAustralia
| | | | - David Fisman
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Orla Hegarty
- School of Architecture, Planning & Environmental PolicyUniversity College DublinDublinIreland
| | - Stephanie J. Dancer
- Department of MicrobiologyHairmyres Hospital, Glasgow, and Edinburgh Napier UniversityGlasgowUK
| | - Philomena M. Bluyssen
- Faculty of Architecture and the Built EnvironmentDelft University of TechnologyDelftThe Netherlands
| | - Giorgio Buonanno
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly
| | - Marcel G. L. C. Loomans
- Department of the Built EnvironmentEindhoven University of Technology (TU/e)EindhovenThe Netherlands
| | - William P. Bahnfleth
- Department of Architectural EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Maosheng Yao
- College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
| | - Chandra Sekhar
- Department of the Built EnvironmentNational University of SingaporeSingaporeSingapore
| | - Pawel Wargocki
- Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Arsen K. Melikov
- Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Kimberly A. Prather
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Jefferson T, Heneghan CJ, Spencer E, Brassey J, Plüddemann A, Onakpoya I, Evans D, Conly J. A Hierarchical Framework for Assessing Transmission Causality of Respiratory Viruses. Viruses 2022; 14:1605. [PMID: 35893670 PMCID: PMC9332164 DOI: 10.3390/v14081605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 01/03/2023] Open
Abstract
Systematic reviews of 591 primary studies of the modes of transmission for SARS-CoV-2 show significant methodological shortcomings and heterogeneity in the design, conduct, testing, and reporting of SARS-CoV-2 transmission. While this is partly understandable at the outset of a pandemic, evidence rules of proof for assessing the transmission of this virus are needed for present and future pandemics of viral respiratory pathogens. We review the history of causality assessment related to microbial etiologies with a focus on respiratory viruses and suggest a hierarchy of evidence to integrate clinical, epidemiologic, molecular, and laboratory perspectives on transmission. The hierarchy, if applied to future studies, should narrow the uncertainty over the twin concepts of causality and transmission of human respiratory viruses. We attempt to address the translational gap between the current research evidence and the assessment of causality in the transmission of respiratory viruses with a focus on SARS-CoV-2. Experimentation, consistency, and independent replication of research alongside our proposed framework provide a chain of evidence that can reduce the uncertainty over the transmission of respiratory viruses and increase the level of confidence in specific modes of transmission, informing the measures that should be undertaken to prevent transmission.
Collapse
Affiliation(s)
- Tom Jefferson
- Department for Continuing Education, University of Oxford, Rewley House, 1 Wellington Square, Oxford OX1 2JA, UK;
| | - Carl J. Heneghan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; (C.J.H.); (E.S.); (A.P.)
| | - Elizabeth Spencer
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; (C.J.H.); (E.S.); (A.P.)
| | - Jon Brassey
- Trip Database Ltd., Little Maristowe, Glasllwch Lane, Newport NP20 3PS, UK;
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; (C.J.H.); (E.S.); (A.P.)
| | - Igho Onakpoya
- Department for Continuing Education, University of Oxford, Rewley House, 1 Wellington Square, Oxford OX1 2JA, UK;
| | - David Evans
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - John Conly
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|