1
|
Wang SY, Wu JX, An X, Yuan Z, Ren YF, Yu XF, Tian XD, Wei W. Structural and temporal dynamics analysis on immune response in low-dose radiation: History, research hotspots and emerging trends. World J Radiol 2025; 17:101636. [PMID: 40309477 PMCID: PMC12038408 DOI: 10.4329/wjr.v17.i4.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 03/27/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Radiotherapy (RT) is a cornerstone of cancer treatment. Compared with conventional high-dose radiation, low-dose radiation (LDR) causes less damage to normal tissues while potentially modulating immune responses and inhibiting tumor growth. LDR stimulates both innate and adaptive immunity, enhancing the activity of natural killer cells, dendritic cells, and T cells. However, the mechanisms underlying the effects of LDR on the immune system remain unclear. AIM To explore the history, research hotspots, and emerging trends in immune response to LDR literature over the past two decades. METHODS Publications on immune responses to LDR were retrieved from the Web of Science Core Collection. Bibliometric tools, including CiteSpace and HistCite, were used to identify historical features, active topics, and emerging trends in this field. RESULTS Analysis of 1244 publications over the past two decades revealed a significant surge in research on immune responses to LDR, particularly in the last decade. Key journals such as INR J Radiat Biol, Cancers, and Radiat Res published pivotal studies. Citation networks identified key studies by authors like Twyman-Saint Victor C (2015) and Vanpouille-Box C (2017). Keyword analysis revealed hotspots such as ipilimumab, stereotactic body RT, and targeted therapy, possibly identifying future research directions. Temporal variations in keyword clusters and alluvial flow maps illustrate the evolution of research themes over time. CONCLUSION This bibliometric analysis provides valuable insights into the evolution of studies on responses to LDR, highlights research trends, and identifies emerging areas for further investigation.
Collapse
Affiliation(s)
- Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia-Xing Wu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xian An
- Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi-Fan Ren
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiu-Feng Yu
- Department of General Medicine, Tuberculosis Hospital of Shaanxi Province, Xi’an 710105, Shaanxi Province, China
| | - Xiao-Dong Tian
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Wei
- Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Vaiasicca S, James DW, Melone G, Saeed O, Francis LW, Corradetti B. Amniotic fluid-derived mesenchymal stem cells as a therapeutic tool against cytokine storm: a comparison with umbilical cord counterparts. Stem Cell Res Ther 2025; 16:151. [PMID: 40156072 PMCID: PMC11951844 DOI: 10.1186/s13287-025-04262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Several immunosuppressive therapies have been proposed as key treatment options for critically ill patients since the first appearance of severe acute respiratory syndrome coronavirus 2. Mesenchymal stem cells (MSCs) from different sources have been considered for their potential to attenuate the cytokine storm associated to COVID-19 and the consequent multi-organ failure, providing evidence for safe and efficacious treatments. Among them, administration of umbilical cord-derived MSCs (UC-MSCs) has demonstrated a significant increase in survival rates, largely due to their potent immunosuppressive properties. METHODS We applied next-generation sequencing (NGS) analysis to compare the transcriptomic profiles of MSCs isolated from two gestational sources: amniotic fluid (AF) obtained during prenatal diagnosis and their clinically relevant umbilical cord counterparts, for which datasets were publicly available. A full meta-analysis was performed to identify suitable GEO and NGS datasets for comparison between AF- and UC-MSC samples. RESULTS Transcriptome analysis revelaed significant differences between groups, despite both cell lines being strongly involved in the tissue development, crucial to achieve the complex task of wound healing. Significantly enriched hallmark genes suggest AF-MSC superior immunomodulatory features against signaling pathways actively involved in the cytokine storm (i.e., IL-2/STAT, TNF-a/NFkB, IL-2/STAT5, PI3K/AKT/mTOR). CONCLUSIONS The data presented here suggest that AF-MSCs hold significant promise for treating not only COVID-19-associated cytokine storms but also a variety of other inflammatory syndromes (i.e., those induced by bacterial infections, autoimmune disorders, and therapeutic interventions). Realizing the full potential of AF-MSCs as a comprehensive therapeutic approach in inflammatory disease management will require more extensive clinical trials and in-depth mechanistic studies.
Collapse
Affiliation(s)
- Salvatore Vaiasicca
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
- Department of Life and Environmental Life, Polytechnic University of Marche, Ancona, Italy
| | - David W James
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Gianmarco Melone
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Omar Saeed
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Lewis W Francis
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Bruna Corradetti
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Section Oncology/Hematology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Thariat J, Little MP, Zablotska LB, Samson P, O’Banion MK, Leuraud K, Bergom C, Girault G, Azimzadeh O, Bouffler S, Hamada N. Radiotherapy for non-cancer diseases: benefits and long-term risks. Int J Radiat Biol 2024; 100:505-526. [PMID: 38180039 PMCID: PMC11039429 DOI: 10.1080/09553002.2023.2295966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The discovery of X-rays was followed by a variety of attempts to treat infectious diseases and various other non-cancer diseases with ionizing radiation, in addition to cancer. There has been a recent resurgence of interest in the use of such radiotherapy for non-cancer diseases. Non-cancer diseases for which use of radiotherapy has currently been proposed include refractory ventricular tachycardia, neurodegenerative diseases (e.g. Alzheimer's disease and dementia), and Coronavirus Disease 2019 (COVID-19) pneumonia, all with ongoing clinical studies that deliver radiation doses of 0.5-25 Gy in a single fraction or in multiple daily fractions. In addition to such non-cancer effects, historical indications predominantly used in some countries (e.g. Germany) include osteoarthritis and degenerative diseases of the bones and joints. This narrative review gives an overview of the biological rationale and ongoing preclinical and clinical studies for radiotherapy proposed for various non-cancer diseases, discusses the plausibility of the proposed biological rationale, and considers the long-term radiation risks of cancer and non-cancer diseases. CONCLUSIONS A growing body of evidence has suggested that radiation represents a double-edged sword, not only for cancer, but also for non-cancer diseases. At present, clinical evidence has shown some beneficial effects of radiotherapy for ventricular tachycardia, but there is little or no such evidence of radiotherapy for other newly proposed non-cancer diseases (e.g. Alzheimer's disease, COVID-19 pneumonia). Patients with ventricular tachycardia and COVID-19 pneumonia have thus far been treated with radiotherapy when they are an urgent life threat with no efficient alternative treatment, but some survivors may encounter a paradoxical situation where patients were rescued by radiotherapy but then get harmed by radiotherapy. Further studies are needed to justify the clinical use of radiotherapy for non-cancer diseases, and optimize dose to diseased tissue while minimizing dose to healthy tissue.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Comprehensive Cancer Centre François Baclesse, Caen, France
- Laboratoire de Physique Corpusculaire IN2P3, ENSICAEN/CNRS UMR 6534, Normandie Université, Caen, France
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Pamela Samson
- Department of Radiation Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - M. Kerry O’Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Klervi Leuraud
- Research Department on Biological and Health Effects of Ionizing Radiation (SESANE), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Carmen Bergom
- Department of Radiation Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardio-Oncology Center of Excellence, Washington University, St. Louis, Missouri, USA
| | - Gilles Girault
- Comprehensive Cancer Centre François Baclesse, Medical Library, Caen, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | - Simon Bouffler
- Radiation Protection Sciences Division, UK Health Security Agency (UKHSA), Chilton, Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Abiko, Chiba, Japan
| |
Collapse
|
4
|
Arenas M, Piqué B, Torres-Royo L, Acosta JC, Rodríguez-Tomàs E, De Febrer G, Vasco C, Araguas P, Gómez JA, Malave B, Árquez M, Algara M, Montero A, Montero M, Simó JM, Gabaldó X, Parada D, Riu F, Sabater S, Camps J, Joven J. Treatment of COVID-19 pneumonia with low-dose radiotherapy plus standard of care versus standard of care alone in frail patients : The SEOR-GICOR IPACOVID comparative cohort trial. Strahlenther Onkol 2023; 199:847-856. [PMID: 37000224 PMCID: PMC10064634 DOI: 10.1007/s00066-023-02067-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/19/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE To assess the efficacy of lung low-dose radiotherapy (LD-RT) in the treatment of patients with COVID-19 pneumonia. MATERIALS AND METHODS Ambispective study with two cohorts to compare treatment with standard of care (SoC) plus a single dose of 0.5 Gy to the whole thorax (experimental prospective cohort) with SoC alone (control retrospective cohort) for patients with COVID-19 pneumonia not candidates for admission to the intensive care unit (ICU) for mechanical ventilation. RESULTS Fifty patients treated with LD-RT were compared with 50 matched controls. Mean age was 85 years in both groups. An increase in arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (PAFI) in the experimental LD-RT-treated group compared to the control group could not be found at 48 h after LD-RT, which was the primary endpoint of the study. However, PAFI values significantly improved after 1 month (473 vs. 302 mm Hg; p < 0.0001). Pulse oxymetric saturation/fraction of inspired oxygen (SAFI) values were also significantly higher in LD-RT-treated patients than in control patients at 1 week (405 vs. 334 mm Hg; p = 0.0157) and 1 month after LD-RT (462 vs. 326 mm Hg; p < 0.0001). All other timepoint measurements of the respiratory parameters were similar across groups. Patients in the experimental group were discharged from the hospital significantly earlier (23 vs. 31 days; p = 0.047). Fifteen and 26 patients died due to COVID-19 pneumonia in the experimental and control cohorts, respectively (30% vs. 48%; p = 0.1). LD-RT was associated with a decreased odds ratio (OR) for 1‑month COVID-19 mortality (OR = 0.302 [0.106-0.859]; p = 0.025) when adjusted for potentially confounding factors. Overall survival was significantly prolonged in the LD-RT group compared to the control group (log-rank p = 0.027). No adverse events related to radiation treatment were observed. CONCLUSION Treatment of frail patients with COVID-19 pneumonia with SoC plus single-dose LD-RT of 0.5 Gy improved respiratory parameters, reduced the period of hospitalization, decreased the rate of 1‑month mortality, and prolonged actuarial overall survival compared to SoC alone.
Collapse
Affiliation(s)
- M. Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - B. Piqué
- Department of Pathology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - L. Torres-Royo
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - J. C. Acosta
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - E. Rodríguez-Tomàs
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
- Unitat de Recerca Biomèdica, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - G. De Febrer
- Department of Geriatric and Palliative care, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - C. Vasco
- Department of Geriatric and Palliative care, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - P. Araguas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - J. A. Gómez
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - B. Malave
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - M. Árquez
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - M. Algara
- Department of Radiation Oncology, Hospital del Mar, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Mèdiques, Barcelona, Spain
| | - A. Montero
- Department of Radiation Oncology, HM Hospitales, Madrid, Spain
| | - M. Montero
- Department of Radiology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - J. M. Simó
- Laboratori de Referència Sud, Hospital Universitari de Sant Joan, Tarragona, Spain
| | - X. Gabaldó
- Laboratori de Referència Sud, Hospital Universitari de Sant Joan, Tarragona, Spain
| | - D. Parada
- Department of Pathology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - F. Riu
- Department of Pathology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - S. Sabater
- Department of Radiation Oncology, Complejo Hospitalario de Albacete, Albacete, Spain
| | - J. Camps
- Unitat de Recerca Biomèdica, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| | - J. Joven
- Unitat de Recerca Biomèdica, Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
| |
Collapse
|
5
|
Jiang B, Schmitt MJ, Rand U, Company C, Dramaretska Y, Grossmann M, Serresi M, Čičin-Šain L, Gargiulo G. Pharmacological modulators of epithelial immunity uncovered by synthetic genetic tracing of SARS-CoV-2 infection responses. SCIENCE ADVANCES 2023; 9:eadf4975. [PMID: 37343108 PMCID: PMC10284557 DOI: 10.1126/sciadv.adf4975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Epithelial immune responses govern tissue homeostasis and offer drug targets against maladaptation. Here, we report a framework to generate drug discovery-ready reporters of cellular responses to viral infection. We reverse-engineered epithelial cell responses to SARS-CoV-2, the viral agent fueling the ongoing COVID-19 pandemic, and designed synthetic transcriptional reporters whose molecular logic comprises interferon-α/β/γ and NF-κB pathways. Such regulatory potential reflected single-cell data from experimental models to severe COVID-19 patient epithelial cells infected by SARS-CoV-2. SARS-CoV-2, type I interferons, and RIG-I drive reporter activation. Live-cell image-based phenotypic drug screens identified JAK inhibitors and DNA damage inducers as antagonistic modulators of epithelial cell response to interferons, RIG-I stimulation, and SARS-CoV-2. Synergistic or antagonistic modulation of the reporter by drugs underscored their mechanism of action and convergence on endogenous transcriptional programs. Our study describes a tool for dissecting antiviral responses to infection and sterile cues and rapidly discovering rational drug combinations for emerging viruses of concern.
Collapse
Affiliation(s)
- Ben Jiang
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ulfert Rand
- Helmholtz-Zentrum für Infektionsforschung GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Carlos Company
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Melanie Grossmann
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Luka Čičin-Šain
- Helmholtz-Zentrum für Infektionsforschung GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| |
Collapse
|
6
|
Song HY, Chen F, Park HR, Han JM, Ji HJ, Byun EB, Kwon Y, Kim MK, Ahn KB, Seo HS. Low-dose radiation therapy suppresses viral pneumonia by enhancing broad-spectrum anti-inflammatory responses via transforming growth factor-β production. Front Immunol 2023; 14:1182927. [PMID: 37304302 PMCID: PMC10248130 DOI: 10.3389/fimmu.2023.1182927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Low-dose radiation therapy (LDRT) can suppress intractable inflammation, such as that in rheumatoid arthritis, and is used for treating more than 10,000 rheumatoid arthritis patients annually in Europe. Several recent clinical trials have reported that LDRT can effectively reduce the severity of coronavirus disease (COVID-19) and other cases of viral pneumonia. However, the therapeutic mechanism of LDRT remains unelucidated. Therefore, in the current study, we aimed to investigate the molecular mechanism underlying immunological alterations in influenza pneumonia after LDRT. Mice were irradiated to the whole lung 1 day post-infection. The changes in levels of inflammatory mediators (cytokines and chemokines) and immune cell populations in the bronchoalveolar lavage (BALF), lungs, and serum were examined. LDRT-treated mice displayed markedly increased survival rates and reduced lung edema and airway and vascular inflammation in the lung; however, the viral titers in the lungs were unaffected. Levels of primary inflammatory cytokines were reduced after LDRT, and transforming growth factor-β (TGF-β) levels increased significantly on day 1 following LDRT. Levels of chemokines increased from day 3 following LDRT. Additionally, M2 macrophage polarization or recruitment was increased following LDRT. We found that LDRT-induced TGF-β reduced the levels of cytokines and polarized M2 cells and blocked immune cell infiltration, including neutrophils, in BALF. LDRT-induced early TGF-β production was shown to be a key regulator involved in broad-spectrum anti-inflammatory activity in virus-infected lungs. Therefore, LDRT or TGF-β may be an alternative therapy for viral pneumonia.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Fengjia Chen
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Hae Ran Park
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jeong Moo Han
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyun Jung Ji
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Oral Microbiology and Immunology, Dental Research Institute (DRI), and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Eui-Baek Byun
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yeongkag Kwon
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Min-Kyu Kim
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Animal Production and Health Laboratory, Joint Food and Agricultural Organization/International Atomic Energy Agency (FAO/IAEA) Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Seibersdorf, Austria
| | - Ho Seong Seo
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Little MP, Zhang W, van Dusen R, Hamada N, Bugden M, Cao M, Thomas K, Li D, Wang Y, Chandrashekhar M, Khan MK, Coleman CN. Low-dose radiotherapy for COVID-19 pneumonia and cancer: summary of a recent symposium and future perspectives. Int J Radiat Biol 2022; 99:357-371. [PMID: 35511152 PMCID: PMC11270648 DOI: 10.1080/09553002.2022.2074165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 04/24/2022] [Indexed: 02/03/2023]
Abstract
The lessons learned from the Coronavirus Disease 2019 (COVID-19) pandemic are numerous. Low dose radiotherapy (LDRT) was used in the pre-antibiotic era as treatment for bacterially/virally associated pneumonia. Motivated in part by these historic clinical and radiobiological data, LDRT for treatment of COVID-19-associated pneumonia was proposed in early 2020. Although there is a large body of epidemiological and experimental data pointing to effects such as cancer at low doses, there is some evidence of beneficial health effects at low doses. It has been hypothesized that low dose radiation could be combined with immune checkpoint therapy to treat cancer. We shall review here some of these old radiobiological and epidemiological data, as well as the newer data on low dose radiation and stimulated immune response and other relevant emerging data. The paper includes a summary of several oral presentations given in a Symposium on "Low dose RT for COVID and other inflammatory diseases" as part of the 67th Annual Meeting of the Radiation Research Society, held virtually 3-6 October 2021.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, 9609 Medical Center Drive, Rockville, MD 20892-9778, USA
| | - Wei Zhang
- Radiation Effects Department, UK Health Security Agency (UKHSA), Chilton, Didcot, OX11 0RQ, UK
| | - Roy van Dusen
- Information Management Services, Silver Spring, MD 20904, USA
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Michelle Bugden
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Meiyun Cao
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Kiersten Thomas
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Deyang Li
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Yi Wang
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Ontario, Canada
| | - Megha Chandrashekhar
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Mohammad K Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30345, USA
| | - C. Norman Coleman
- Radiation Research Program, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, DHHS, 9609 Medical Center Drive, Rockville, MD 20892-9727, Rockville, MD, USA
| |
Collapse
|