1
|
Kamau A, Musau M, Mtanje G, Mataza C, Bejon P, Snow RW. OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:966-970. [PMID: 35415749 PMCID: PMC9526839 DOI: 10.1093/trstmh/trac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alice Kamau
- Corresponding author: Tel: +254-722 203417; E-mail:
| | - Moses Musau
- KEMRI-Wellcome Trust Research Programme, P.O. Box 43640-00100, Nairobi, Kenya
| | - Grace Mtanje
- KEMRI-Wellcome Trust Research Programme, P.O. Box 43640-00100, Nairobi, Kenya
| | - Christine Mataza
- KEMRI-Wellcome Trust Research Programme, P.O. Box 43640-00100, Nairobi, Kenya
- Ministry of Health, Kilifi County Government, P.O. Box 519-80108, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, P.O. Box 43640-00100, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, OX3 7LG, Oxford, UK
| | - Robert W Snow
- KEMRI-Wellcome Trust Research Programme, P.O. Box 43640-00100, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, OX3 7LG, Oxford, UK
| |
Collapse
|
2
|
Makhanthisa TI, Braack L, Lutermann H. The effect of cattle-administered ivermectin and fipronil on the mortality and fecundity of Anopheles arabiensis Patton. Parasit Vectors 2021; 14:349. [PMID: 34215295 PMCID: PMC8254271 DOI: 10.1186/s13071-021-04846-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Malaria control primarily depends on two vector control strategies: indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs). Both IRS and LLIN target indoor-biting mosquitoes. However, some of the most important malaria vectors have developed resistance against the chemical compounds used in IRS and LLINs. Insecticide-induced behavioural changes in vectors, such as increased outdoor feeding on cattle and other animals, also limit the effectiveness of these strategies. Novel vector control strategies must therefore be found to complement IRS and LLINs. A promising tool is the use of cattle-applied endectocides. Endectocides are broad-spectrum systemic drugs that are effective against a range of internal nematodes parasites and blood-feeding arthropods. The aim of this study was to investigate the effect of two endectocide drugs, injectable ivermectin and topical fipronil, on the survival and fecundity of zoophilic Anopheles arabiensis. Methods Laboratory-reared mosquitoes were allowed to feed on cattle treated with either injectable ivermectin (0.2 mg/kg), topical fipronil (1.0 mg/kg) or saline (control) on days 0, 1, 4, 7, 13, 21 and 25 post-treatment, and mortality and egg production were recorded daily. Results Compared to controls, the mortality of An. arabiensis increased by 3.52- and 2.43-fold with injectable ivermectin and topical fipronil, respectively. The overall fecundity of mosquitoes that fed on both ivermectin- and fipronil-treated cattle was significantly reduced by up to 90 and 60%, respectively, compared to the control group. The effects of both drugs attenuated over a period of 3 weeks. Injectable ivermectin was more effective than topical fipronil and increased mosquito mortality by a risk factor of 1.51 higher than fipronil. Similarly, both drugs significantly reduced the fecundity of An. arabiensis. Conclusions This study demonstrates that injectable ivermectin and topical fipronil are able to suppress An. arabiensis density and could help to reduce outdoor malaria transmission. Data from the present study as well as from other similar studies suggest that current-generation endectocides have a limited duration of action and are expensive. However, new-generation, sustained-release formulations of ivermectin have a multi-week, high mortality impact on vector populations, thus holding promise of an effective reduction of outdoor malaria transmission. Graphical abstract ![]()
Collapse
Affiliation(s)
- Takalani I Makhanthisa
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa.,UP Institute for Sustainable Malaria Control, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Faculty of Tropical Medicine, Malaria Consortium, Mahidol University, Bangkok, Thailand
| | - Heike Lutermann
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Bamou R, Rono M, Degefa T, Midega J, Mbogo C, Ingosi P, Kamau A, Ambelu A, Birhanu Z, Tushune K, Kopya E, Awono-Ambene P, Tchuinkam T, Njiokou F, Yewhalaw D, Antonio Nkondjio C, Mwangangi J. Entomological and Anthropological Factors Contributing to Persistent Malaria Transmission in Kenya, Ethiopia, and Cameroon. J Infect Dis 2021; 223:S155-S170. [PMID: 33906217 PMCID: PMC8079137 DOI: 10.1093/infdis/jiaa774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction In order to improve our understanding of the fundamental limits of core interventions and guide efforts based on prioritization and identification of effective/novel interventions with great potentials to interrupt persistent malaria transmission in the context of high vector control coverage, the drivers of persistent disease transmission were investigated in three eco-epidemiological settings; forested areas in Cameroon, coastal area in Kenya and highland areas in Ethiopia. Methods Mosquitoes were sampled in three eco-epidemiological settings using different entomological sampling techniques and analysed for Plasmodium infection status and blood meal origin in blood-fed specimens. Human behavioural surveys were conducted to assess the knowledge and attitude of the population on malaria and preventive measures, their night activities, and sleeping pattern. The parasitological analysis was conducted to determine the prevalence of Plasmodium infection in the population using rapid diagnostic tests. Results Despite the diversity in the mosquito fauna, their biting behaviour was found to be closely associated to human behaviour in the three settings. People in Kenya and Ethiopia were found to be more exposed to mosquito bites during the early hours of the evening (18-21h) while it was in the early morning (4-6 am) in Cameroon. Malaria transmission was high in Cameroon compared to Kenya and Ethiopia with over 50% of the infected bites recorded outdoors. The non-users of LLINs were 2.5 to 3 times more likely to be exposed to the risk of acquiring malaria compared to LLINs users. Malaria prevalence was high (42%) in Cameroon, and more than half of the households visited had at least one individual infected with Plasmodium parasites. Conclusions The study suggests high outdoor malaria transmission occurring in the three sites with however different determinants driving residual malaria transmission in these areas.
Collapse
Affiliation(s)
- Roland Bamou
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaounde, Cameroon.,Vector-Borne Diseases Laboratory, Applied Biology and Ecology Research Unit, Department of Animal Biology, Faculty of Science, University of Dschang, Yaounde, Cameroon
| | - Martin Rono
- Kenya Medical Research Institute-Wellcome Trust Research Program, Kilifi,Kenya.,Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Kilifi, Kenya
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Janet Midega
- Kenya Medical Research Institute-Wellcome Trust Research Program, Kilifi,Kenya.,Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Charles Mbogo
- Kenya Medical Research Institute-Wellcome Trust Research Program, Kilifi,Kenya.,Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Prophet Ingosi
- Pwani University Bioscience Research Centre, Kilifi, Kenya
| | - Alice Kamau
- Kenya Medical Research Institute-Wellcome Trust Research Program, Kilifi,Kenya
| | - Argaw Ambelu
- Department of Environmental Health Sciences and Technology, Public Health Faculty, Jimma University, Jimma, Ethiopia
| | - Zewdie Birhanu
- Department of Health, Behavior and Society, Faculty of Public Health, Jimma University, Jimma, Ethiopia
| | - Kora Tushune
- Department of Health Management, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Edmond Kopya
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaounde, Cameroon.,Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaounde, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory, Applied Biology and Ecology Research Unit, Department of Animal Biology, Faculty of Science, University of Dschang, Yaounde, Cameroon
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Christophe Antonio Nkondjio
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaounde, Cameroon.,Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph Mwangangi
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Kilifi, Kenya.,Centre for Vector Disease Control, Kenya Medical Research Institute, Kwale,Kenya
| |
Collapse
|
4
|
Monroe A, Msaky D, Kiware S, Tarimo BB, Moore S, Haji K, Koenker H, Harvey S, Finda M, Ngowo H, Mihayo K, Greer G, Ali A, Okumu F. Patterns of human exposure to malaria vectors in Zanzibar and implications for malaria elimination efforts. Malar J 2020; 19:212. [PMID: 32571338 PMCID: PMC7310102 DOI: 10.1186/s12936-020-03266-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background Zanzibar provides a good case study for malaria elimination. The islands have experienced a dramatic reduction in malaria burden since the introduction of effective vector control interventions and case management. Malaria prevalence has now been maintained below 1% for the past decade and the islands can feasibly aim for elimination. Methods To better understand factors that may contribute to remaining low-level malaria transmission in Zanzibar, layered human behavioural and entomological research was conducted between December 2016 and December 2017 in 135 randomly selected households across six administrative wards. The study included: (1) household surveys, (2) structured household observations of nighttime activity and sleeping patterns, and (3) paired indoor and outdoor mosquito collections. Entomological and human behavioural data were integrated to provide weighted estimates of exposure to vector bites, accounting for proportions of people indoors or outdoors, and protected by insecticide-treated nets (ITNs) each hour of the night. Results Overall, 92% of female Anopheles mosquitoes were caught in the rainy season compared to 8% in the dry season and 72% were caught outdoors compared to 28% indoors. For individual ITN users, ITNs prevented an estimated two-thirds (66%) of exposure to vector bites and nearly three quarters (73%) of residual exposure was estimated to occur outdoors. Based on observed levels of ITN use in the study sites, the population-wide mean personal protection provided by ITNs was 42%. Discussion/conclusions This study identified gaps in malaria prevention in Zanzibar with results directly applicable for improving ongoing programme activities. While overall biting risk was low, the most notable finding was that current levels of ITN use are estimated to prevent less than half of exposure to malaria vector bites. Variation in ITN use across sites and seasons suggests that additional gains could be made through targeted social and behaviour change interventions. However, even for ITN users, gaps in protection remain, with a majority of exposure to vector bites occurring outdoors before going to sleep. Supplemental interventions targeting outdoor exposure to malaria vectors, and groups that may be at increased risk of exposure to malaria vectors, should be explored.
Collapse
Affiliation(s)
- April Monroe
- PMI VectorWorks Project, Johns Hopkins Center for Communication Programs, Baltimore, MD, USA. .,University of Basel, Basel, Switzerland. .,Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - Dickson Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Samson Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Brian B Tarimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Sarah Moore
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Khamis Haji
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | - Hannah Koenker
- PMI VectorWorks Project, Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Steven Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marceline Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Halfan Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kimberly Mihayo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - George Greer
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar Es Salaam, Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Monroe A, Moore S, Okumu F, Kiware S, Lobo NF, Koenker H, Sherrard-Smith E, Gimnig J, Killeen GF. Methods and indicators for measuring patterns of human exposure to malaria vectors. Malar J 2020; 19:207. [PMID: 32546166 PMCID: PMC7296719 DOI: 10.1186/s12936-020-03271-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Effective targeting and evaluation of interventions that protect against adult malaria vectors requires an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets (ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protection effects of ITNs. MAIN TEXT A small number of human behavioural variables capturing the distribution of human populations indoors and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance is available on what data should be collected, what indicators should be reported, or how they should be calculated. This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical entomological and human behavioural data elements required to quantify human-vector interactions, and recommendations for collecting and analysing such data. CONCLUSIONS If collected and used consistently, this information can contribute to an improved understanding of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change as new vector control tools are introduced, and the potential impact and limitations of these tools. This article is intended to consolidate understanding around work on this topic to date and provide a consistent framework for building upon it. Additional work is needed to address remaining questions, including further development and validation of methods for entomological and human behavioural data collection and analysis.
Collapse
Affiliation(s)
- April Monroe
- Johns Hopkins Center for Communication Programs, PMI VectorWorks Project, Baltimore, MD, USA.
- University of Basel, Basel, Switzerland.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - Sarah Moore
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Samson Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Hannah Koenker
- Johns Hopkins Center for Communication Programs, PMI VectorWorks Project, Baltimore, MD, USA
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - John Gimnig
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| |
Collapse
|