1
|
McPherson MT, Holub AS, Husbands AY, Petreaca RC. Mutation Spectra of the MRN (MRE11, RAD50, NBS1/NBN) Break Sensor in Cancer Cells. Cancers (Basel) 2020; 12:cancers12123794. [PMID: 33339169 PMCID: PMC7765586 DOI: 10.3390/cancers12123794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A DNA double strand break cuts a chromosome in two and is one of the most dangerous forms of DNA damage. Improper repair can lead to various chromosomal re-arrangements that have been detected in almost all cancer cells. A complex of three proteins (MRE11, RAD50, NBS1 or NBN) detects chromosome breaks and orchestrates repair processes. Mutations in these “break sensor” genes have been described in a multitude of cancers. Here, we provide a comprehensive analysis of reported mutations from data deposited on the Catalogue of Somatic Mutations in Cancer (COSMIC) archive. We also undertake an evolutionary analysis of these genes with the aim to understand whether these mutations preferentially accumulate in conserved residues. Interestingly, we find that mutations are overrepresented in evolutionarily conserved residues of RAD50 and NBS1/NBN but not MRE11. Abstract The MRN complex (MRE11, RAD50, NBS1/NBN) is a DNA double strand break sensor in eukaryotes. The complex directly participates in, or coordinates, several activities at the break such as DNA resection, activation of the DNA damage checkpoint, chromatin remodeling and recruitment of the repair machinery. Mutations in components of the MRN complex have been described in cancer cells for several decades. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) database, we characterized all the reported MRN mutations. This analysis revealed several hotspot frameshift mutations in all three genes that introduce premature stop codons and truncate large regions of the C-termini. We also found through evolutionary analyses that COSMIC mutations are enriched in conserved residues of NBS1/NBN and RAD50 but not in MRE11. Given that all three genes are important to carcinogenesis, we propose these differential enrichment patterns may reflect a more severe pleiotropic role for MRE11.
Collapse
|
2
|
Zhen Y, Xiao R, Chen X, Yuan C, Sun Y, Li J. A non-synonymous polymorphism in NBS1 is associated with progression from chronic hepatitis B virus infection to hepatocellular carcinoma in a Chinese population. Onco Targets Ther 2018; 11:563-569. [PMID: 29416357 PMCID: PMC5790086 DOI: 10.2147/ott.s153538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Nijmegen breakage syndrome 1 (NBS1) has a vital role in DNA double-strand break (DSB) repair, functioning as a sensor to identify and repair DNA damage and maintaining genomic stability by participating in the intra-S-phase checkpoint. Polymorphisms of NBS1 have been investigated in multiple cancers with variable results. To our best knowledge, no previous study has focused on the association between NBS1 single-nucleotide polymorphisms (SNPs) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). PATIENTS AND METHODS Five NBS1 SNPs were selected based on their potential functional impact. A hospital-based cohort, comprising 481 patients with HBV-related HCC, 508 patients with chronic hepatitis B virus infection (CHB), and 581 healthy controls, was recruited for genotyping analysis. RESULTS After quality control, four SNPs were successfully genotyped (rs10464867, rs1063053, rs1805794, and rs709816), none of which were significantly associated with HCC or CHB compared with those of healthy controls. Similarly, the combined HBV-infected group (including the HCC and CHB groups) exhibited no significant associations with these SNPs compared with healthy controls. In contrast, comparison of the frequency of rs1805794 between patients with CHB and those with HCC identified a significant association (P=2.99E-03, odds ratio =1.31, 95% confidence interval =1.10-1.56). CONCLUSION These findings suggest that, as a non-synonymous SNP, the rs1805794 C/G polymorphism may play a role in the progression from CHB to HCC.
Collapse
Affiliation(s)
- Ya’nan Zhen
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan
- Department of General Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Ruixue Xiao
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Xing Chen
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan
| | - Changjin Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Yanlai Sun
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan
| |
Collapse
|
3
|
Kudo H, Tokonami S, Omori Y, Ishikawa T, Iwaoka K, Sahoo SK, Akata N, Hosoda M, Wanabongse P, Pornnumpa C, Sun Q, Li X, Akiba S. Comparative dosimetry for radon and thoron in high background radiation areas in China. RADIATION PROTECTION DOSIMETRY 2015; 167:155-159. [PMID: 25935013 DOI: 10.1093/rpd/ncv235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study focuses on internal exposure caused by the inhalation of radon and thoron progenies because the internal exposures have not yet been clarified. For their dose assessment, radon, thoron and thoron progeny concentrations were measured by passive monitors over a long period (for 6 months). Consequently, radon, thoron and equilibrium equivalent thoron concentrations were given as 124 ± 78, 1247 ± 1189 and 7.8 ± 9.1 Bq m(-3), respectively. Annual effective doses are estimated to be 3.1 ± 2.0 mSv for radon and 2.2 ± 2.5 mSv for thoron. Total dose are estimated to be 5.3 ± 3.5 mSv a(-1). The present study has revealed that the radon dose was comparable with the thoron dose, and the total dose was ∼2 times higher than the worldwide average.
Collapse
Affiliation(s)
- H Kudo
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - S Tokonami
- Institute of Radiation Emergency Medicine Hirosaki University, Hirosaki, Japan
| | - Y Omori
- Fukushima Medical University, Fukushima, Japan
| | - T Ishikawa
- Fukushima Medical University, Fukushima, Japan
| | - K Iwaoka
- Institute of Radiation Emergency Medicine Hirosaki University, Hirosaki, Japan
| | - S K Sahoo
- National Institute of Radiological Sciences, Chiba, Japan
| | - N Akata
- National Institute for Fusion Science, Toki, Japan
| | - M Hosoda
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - P Wanabongse
- Institute of Radiation Emergency Medicine Hirosaki University, Hirosaki, Japan
| | - C Pornnumpa
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Q Sun
- National Institute of Radiological Protection, Beijing, China
| | - X Li
- National Institute of Radiological Protection, Beijing, China
| | - S Akiba
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Jiang YH, Xu XL, Ruan HH, Xu WZ, Li D, Feng JG, Han QB, Mao WM. The impact of functional LIG4 polymorphism on platinum-based chemotherapy response and survival in non-small cell lung cancer. Med Oncol 2014; 31:959. [PMID: 24722796 DOI: 10.1007/s12032-014-0959-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
DNA repair capacity is correlated with the sensitivity of cancer cells toward platinum-based chemotherapy. The aim of this study was to investigate whether single-nucleotide polymorphisms (SNPs) in DNA repair genes NBS1, LIG4, and RAD51 were correlated with tumor response in advanced non-small cell lung cancer (NSCLC) patients in a Chinese population who received platinum-based chemotherapy. The treatment outcomes of 146 advanced NSCLC patients who were treated with platinum-based chemotherapy were evaluated. The polymorphic status of three SNPs was determined by genotyping via the polymerase chain reaction-restriction fragment length polymorphism method. Forty-five patients in the group with the CC genotype (45/90) showed a good response to treatment, while only 18 patients in the CT+TT group (18/55) showed a good response, indicating a substantial differences in the chemotherapy response rate based on the LIG4 Thr9Ile polymorphism (P = 0.042). Patients with the GG genotype for the NSB1 Glu185Gln polymorphism were more sensitive to platinum-based chemotherapy compared with patients with either the CG or CC genotype (P = 0.001). Kaplan-Meier analysis of all patients showed a significant association between the LIG4 Thr9Ile CC polymorphism and superior progression-free survival and overall survival (log-rank P = 0.045 and 0.031, respectively). However, there were no significant differences in survival based on the LIG4 Thr9Ile or the RAD51 135G>C polymorphisms. Polymorphisms in the NSB1 and LIG4 genes may be a predictive marker for treatment response and for advanced NSCLC patients in stage IIIB + IV. The CC genotype of the LIG4 Thr9Ile polymorphism may also serve as an independent prognosis factor.
Collapse
Affiliation(s)
- You-Hua Jiang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang M, Chu H, Zhang Z, Wei Q. Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer. J Biomed Res 2013; 27:179-92. [PMID: 23720673 PMCID: PMC3664724 DOI: 10.7555/jbr.27.20130034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022] Open
Abstract
Although tobacco and alcohol consumption are two common risk factors of head and neck cancer (HNC), other specific etiologic causes, such as viral infection and genetic susceptibility factors, remain to be understood. Human DNA is often damaged by numerous endogenous and exogenous mutagens or carcinogens, and genetic variants in interaction with environmental exposure to these agents may explain interindividual differences in HNC risk. Single nucleotide polymorphisms (SNPs) in genes involved in the DNA damage-repair response are reported to be risk factors for various cancer types, including HNC. Here, we reviewed epidemiological studies that have assessed the associations between HNC risk and SNPs in DNA repair genes involved in base-excision repair, nucleotide-excision repair, mismatch repair, double-strand break repair and direct reversion repair pathways. We found, however, that only a few SNPs in DNA repair genes were found to be associated with significantly increased or decreased risk of HNC, and, in most cases, the effects were moderate, depending upon locus-locus interactions among the risk SNPs in the pathways. We believe that, in the presence of exposure, additional pathway-based analyses of DNA repair genes derived from genome-wide association studies (GWASs) in HNC are needed.
Collapse
Affiliation(s)
- Meilin Wang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; ; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | | | | | | |
Collapse
|
6
|
NBS1 rs1805794G>C polymorphism is associated with decreased risk of acute myeloid leukemia in a Chinese population. Mol Biol Rep 2013; 40:3749-56. [PMID: 23283743 DOI: 10.1007/s11033-012-2451-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 12/18/2012] [Indexed: 01/29/2023]
Abstract
As a key encoding protein gene of MRN (MRE11-RAD50-NBS1) complex, NBS1 plays a crucial role in maintaining genomic stability and preventing cell apoptosis, inflammation and tumorgenesis. Single nucleotide polymorphisms (rs2735383 and rs1805794) in NBS1 have been frequently studied in some cancers with discordant results in previous case-control studies. However, the relationship between these two functional polymorphisms and the susceptibility to acute myeloid leukemia (AML) in Chinese population has not been investigated. We performed a case-control study with 428 patients and 600 controls to detect the association between the two polymorphisms of NBS1 and the risk of AML in a Chinese population. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was carried out to determine the genotypes of potential functional SNPs in NBS1 gene. The results showed that compared with the homozygous carriers rs1805794CC, rs1805794GC genotype was significantly associated with decreased risk of AML in total subjects (adjusted odds ratio (OR) = 0.50; 95% CI = 0.37-0.67), the risk decreased even further in those carrying rs1805794GG genotype (OR = 0.23; 95% CI = 0.16-0.34). No significant association was found between rs2735383C>G polymorphism and the risk of AML (OR = 0.93; 95% CI = 0.71-1.22 for GC; OR = 0.78; 95% CI = 0.53-1.13 for CC, P = 0.152). These findings indicated that rs1805794G/C polymorphism in NBS1 may play a protective role in mediating the risk of AML.
Collapse
|
7
|
Lu M, Lu J, Yang X, Yang M, Tan H, Yun B, Shi L. Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis. BMC Cancer 2009; 9:124. [PMID: 19393077 PMCID: PMC2680905 DOI: 10.1186/1471-2407-9-124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/24/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND NBS1 is a key DNA repair protein in the homologous recombination repair pathway and a signal modifier in the intra-S phase checkpoint that plays important roles in maintaining genomic stability. The NBS1 8360G>C (Glu185Gln) is one of the most commonly studied polymorphisms of the gene for their association with risk of cancers, but the results are conflicting. METHODS We performed a meta-analysis using 16 eligible case-control studies (including 17 data sets) with a total of 9,734 patients and 10,325 controls to summarize the data on the association between the NBS1 8360G>C (E185Q) polymorphism and cancer risk. RESULTS Compared with the common 8360GG genotype, the carriers of variant genotypes (i.e., 8360 GC/CC) had a 1.06-fold elevated risk of cancer (95% CI = 1.00-1.12, P = 0.05) in a dominant genetic model as estimated in a fixed effect model. However, the association was not found in an additive genetic model (CC vs GG) (odds ratio, OR = 0.98, 95% CI = 0.85-1.13, P = 0.78) nor in a recessive genetic model (CC vs GC +GG) (OR = 0.94, 95% CI = 0.82-1.07, P = 0.36). The effect of the 8360G>C (E185Q) polymorphism was further evaluated in stratification analysis. It was demonstrated that the increased risk of cancer associated with 8360G>C variant genotypes was more pronounced in the Caucasians (OR = 1.07, 95% CI = 1.01-1.14, P = 0.03). CONCLUSION Our meta-analysis suggests that the NBS1 E185Q variant genotypes (8360 GC/CC) might be associated with an increased risk of cancer, especially in Caucasians.
Collapse
Affiliation(s)
- Meixia Lu
- Department of Epidemiology and Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical College, Guangzhou 510182, PR China
| | - Xiaobo Yang
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Miao Yang
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hao Tan
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bai Yun
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Luyuan Shi
- Department of Epidemiology and Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| |
Collapse
|
8
|
Mutational inactivation of the nijmegen breakage syndrome gene (NBS1) in glioblastomas is associated with multiple TP53 mutations. J Neuropathol Exp Neurol 2009; 68:210-5. [PMID: 19151620 DOI: 10.1097/nen.0b013e31819724c2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nijmegen breakage syndrome caused by NBS1 germline mutations is a rare autosomal recessive disease with clinical features that include microcephaly, increased radiosensitivity, and predisposition to cancer. NBS1 plays a key role in DNA double-strand break repair and the maintenance of genomic stability. We screened 87 glioblastomas for NBS1 mutations (all 16 exons). Single-strand conformation polymorphism followed by direct DNA sequencing revealed 12 NBS1 mutations (8 missense and 4 intronic mutations) in 9 (32%) of 28 primary (de novo) glioblastomas carrying 2 or more TP53 mutations. None of the NBS1 mutations has been previously reported as a germline mutation in Nijmegen breakage syndrome patients. NBS1 mutations were not detected in 19 primary glioblastomas with 1 TP53 mutation or in 21 primary glioblastomas without TP53 mutations. Secondary glioblastomas that developed through progression from low-grade or anaplastic astrocytoma had TP53 mutations in 16 (84%) of 19 cases, but none contained mutations of the NBS1 gene. These results suggest that multiple TP53 mutations in glioblastomas are due to deficient repair of DNA double-strand breaks caused by mutational inactivation of the NBS1 gene.
Collapse
|
9
|
Sagan D, Mörtl S, Müller I, Eckardt-Schupp F, Eichholtz-Wirth H. Enhanced CD95-mediated apoptosis contributes to radiation hypersensitivity of NBS lymphoblasts. Apoptosis 2008; 12:753-67. [PMID: 17219051 DOI: 10.1007/s10495-006-0021-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The molecular causes for enhanced radiosensitivity of Nijmegen Breakage Syndrome cells are unclear, especially as repair of DNA damage is hardly impeded in these cells. We clearly demonstrate that radiation hypersensitivity is accompanied by enhanced gamma-radiation-induced apoptosis in NBS1 deficient lymphoblastoid cell lines. Differences in the apoptotic behavior of NBS1 (-/-) and NBS1 (+/-) cells are not due to an altered p53 stabilization or phosphorylation in NBS1 (-/-) cells. gamma-radiation-induced caspase-8 activity is increased and visualization of CD95 clustering by laser scanning microscopy shows a significant higher activation of the death receptor in NBS1 (-/-) cells. Further investigation of the molecular mechanisms reveals a role for reactive oxygen species-triggered activation of CD95. These results demonstrate that NBS1 suppresses the CD95 death receptor-dependent apoptotic pathway after gamma-irradiation and evidence is given that this is achieved by regulation of the PI3-K/AKT survival pathway.
Collapse
Affiliation(s)
- Daniel Sagan
- Institute of Radiobiology, GSF-National Research Center for Environment and Health, 85758 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Knowledge of the genetic mutations of primary immune deficiency syndromes has grown significantly over the last 30 years. In this article the authors present an overview of the clinical aspects, laboratory evaluation, and genetic defects of primary immunodeficiencies, with an emphasis on the pathophysiology of the known molecular defects. This article is designed to give the primary pediatrician a general knowledge of this rapidly expanding field.
Collapse
Affiliation(s)
- James W Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
11
|
Teng SC, Wu KJ, Tseng SF, Wong CW, Kao L. Importin KPNA2, NBS1, DNA Repair and Tumorigenesis. J Mol Histol 2006; 37:293-9. [PMID: 16752129 DOI: 10.1007/s10735-006-9032-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/10/2006] [Indexed: 01/26/2023]
Abstract
During the past 20 years, the MRE11-RAD50-NBS1 complex has become an increasingly important focus in basic and clinical cancer research. One main conceptual step forward was made with the discovery of NBS1 and the understanding of its critical pathophysiological role in Nijmegen breakage syndrome. Major efforts were carried out to define the role in DNA repair of this complex. Recently, basic research has continuously extended our understanding of the complexity of the NBS1 complex. MRE11-RAD50-NBS1 complex can no longer be viewed as having a single role in DNA damage repair since it also serves as a sensor and a mediator in cell cycle checkpoint signaling. Meanwhile, studies have challenged the concept that NBS1 only functions as a tumor suppressor in preserving genome integrity in the nucleus. It may also provide an oncogenic role in the cytoplasm which is associated with the PI3-kinase/AKT-activation pathway. Consistent with this aspect, a growing body of clinical evidence suggests that NBS1 contains a deleterious character that depends on its subcellular localization. This review focuses on recent experimental evidences demonstrating how NBS1 is translocated into the nucleus by an importin KPNA2 which mediates NBS1 subcellular localization and the functions of the NBS1 complex in tumorigenesis.
Collapse
Affiliation(s)
- Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1 Sec. 1 Jen-Ai Road, Taipei 10063, Taiwan.
| | | | | | | | | |
Collapse
|
12
|
Tseng SF, Chang CY, Wu KJ, Teng SC. Importin KPNA2 Is Required for Proper Nuclear Localization and Multiple Functions of NBS1. J Biol Chem 2005; 280:39594-600. [PMID: 16188882 DOI: 10.1074/jbc.m508425200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product, NBS1, is a component of the MRE11-RAD50-NBS1 (MRN) complex, a central player associated with double strand break (DSB) repair. In response to radiation, NBS1 is phosphorylated by ATM, and the MRN complex relocalizes to form punctate nuclear foci for DNA repair. NBS1 controls both the nuclear localization of the MRN complexes and radiation-induced focus formation. We report here that the KPNA2 (importin alpha1) is important for the normal nuclear localization of the MRN complex and its proper formation of the nuclear foci. KPNA2 is the only member of the importin alpha family that physically interacts with NBS1, and the KPNA2-mediated nucleus localization sequence (NLS) is mapped to amino acid residues 461-467 of NBS1 that is sufficient for both the interaction with KPNA2 and the proper nuclear localization. Inhibition of KPNA2 or blockage of the KPNA2 interaction with NBS1 results in a reduction of radiation-induced nuclear focus accumulation, DSB repair, and cell cycle checkpoint signaling of NBS1. Collectively, our results strongly suggest that an interaction with KPNA2 contributes to nuclear localization and multiple tumor suppression functions of the NBS1 complex.
Collapse
Affiliation(s)
- Shun-Fu Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 10018, Taiwan
| | | | | | | |
Collapse
|
13
|
Kobayashi J. Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma-H2AX through FHA/BRCT domain. JOURNAL OF RADIATION RESEARCH 2004; 45:473-8. [PMID: 15635255 DOI: 10.1269/jrr.45.473] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
DNA double-strand breaks represent the most potentially serious damage to a genome, and hence, many repair proteins are recruited to DNA damage sites by as yet poorly characterized sensor mechanisms. We clarified that NBS1 physically interacts with gamma-H2AX to form nuclear foci at DNA damage sites. The fork-head associated (FHA) and the BRCA1 C-terminal domains (BRCT) of NBS1 are essential for this physical interaction and focus formation of NBS1 in response to DNA damage. The inhibition of this interaction by introduction of anti-gamma-H2AX antibody into cells abolishes NBS1 foci formation in response to DNA damage. Consequently, the FHA/BRCT domain is likely to have a crucial role for both binding to histone and for re-localization of the NBS1/hMRE11/hRAD50 complex to the vicinity of DNA damage. Moreover, the foci formation of DNA repair-related proteins containing BRCT domain, such as BRCA1, requires the interaction with gamma-H2AX in response to DNA damage. These findings indicate that the physical interaction between gamma-H2AX and DNA repair-related proteins is indispensable for the recruitment of these proteins. Further, it was recently reported that the NBS1/hMRE11/hRAD50 complex has a crucial role for both the recruitment of ATM to DNA damage sites and the subsequent activation of ATM. Therefore, both gamma-H2AX and the NBS1/hMRE11/hRAD50 complex might function for the initial recognition of DNA damage.
Collapse
Affiliation(s)
- Junya Kobayashi
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Japan.
| |
Collapse
|
14
|
Mohsin Ali M, Kurisu S, Yoshioka Y, Terato H, Ohyama Y, Kubo K, Ide H. Detection of endonuclease III- and 8-oxoguanine glycosylase-sensitive base modifications in gamma-irradiated DNA and cells by the aldehyde reactive probe (ARP) assay. JOURNAL OF RADIATION RESEARCH 2004; 45:229-237. [PMID: 15304965 DOI: 10.1269/jrr.45.229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ionizing radiation generates diverse DNA lesions that differentially induce cell death and mutations. In the present study, calf thymus DNA (400 microg/ml) and HeLa cells were irradiated by (60)Co gamma-rays, and abasic (AP) sites and endonuclease (Endo)III- and 8-oxoguanine glycosylase (hOGG1)-sensitive base modifications in DNA were quantitated by the aldehyde reactive probe (ARP) assay. The irradiation of calf thymus DNA in phosphate buffer generated 91 Endo III- and 100 hOGG1-sensitive base modifications and 110 AP sites per 10(6) base pairs (bp) per Gy. The yield of the lesions in Tris buffer was 41- to 91-fold lower than that in phosphate, demonstrating a radioprotective effect of Tris. The HeLa cell chromosomal DNA contained 12 Endo III- and 3.8 hOGG1-sensitive base modifications and less than 1 AP sites per 10(6) bp as endogenous damage, and their level was increased by irradiation. The yields of the damage at 1 Gy (roughly equivalent to the lethal dose of HeLa cells [1.6-1.8 Gy]) were 0.13 Endo III, 0.091 hOGG1, and 0.065 AP sites per 10(6) bp, showing that irradiation with a lethal dose brought about only a marginal increase in base damage relative to an endogenous one. A comparison of the present data with those reported for DNA strand breaks supports the primary importance of double-strand breaks and clustered lesions as lethal damages formed by ionizing radiation.
Collapse
Affiliation(s)
- Mohammed Mohsin Ali
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|