1
|
Liao J, Zhang Y, Yang J, Chen L, Zhang J, Chen X. Peroxiredoxin 6 in Stress Orchestration and Disease Interplay. Antioxidants (Basel) 2025; 14:379. [PMID: 40298631 PMCID: PMC12024067 DOI: 10.3390/antiox14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
As a moonlighting protein with multiple enzymatic activities, peroxiredoxin 6 (PRDX6) maintains redox homeostasis, regulates phospholipid metabolism, and mediates intra- and inter-cellular signaling transduction. Its expression and activity can be regulated by diverse stressors. However, the roles and relevant mechanisms of these regulators in various conditions have yet to be comprehensively reviewed. In this study, these stressors were systematically reviewed both in vivo and in vitro and classified into chemical, physical, and biological categories. We found that the regulatory effects of these stressors on PRDX6 expression were primarily mediated via key transcriptional factors (e.g., NRF2, HIF-1α, SP1, and NF-κB), micro-RNAs, and receptor- or kinase-dependent signaling pathways. Additionally, certain stressors, including reactive oxygen species, pH fluctuations, and post-translational modifications, induced the structure-based functional switches in the PRDX6 enzyme. We further reviewed the altered expression of PRDX6 under various disease conditions, with a particular focus on neuropsychiatric disorders and cancers, and proposed the concept of PRDX6-related disorders (PRD), which refers to a spectrum of diseases mediated by or associated with dysregulated PRDX6 expression. Finally, we found that an exogenous supplementation of PRDX6 protein provided preventive and therapeutic potentials for oxidative stress-related injuries in both in vivo and in vitro models. Taken together, this review underscores the critical role of PRDX6 as a cellular orchestrator in response to various stressors, highlighting its clinical potential for disease monitoring and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Yusi Zhang
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Jianwei Yang
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Longfei Chen
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jing Zhang
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Xiaochun Chen
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| |
Collapse
|
2
|
Sharapov MG, Gudkov SV, Lankin VZ, Novoselov VI. Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1418-1433. [PMID: 34906041 DOI: 10.1134/s0006297921110067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we discuss the pathogenesis of some socially significant diseases associated with the development of oxidative stress, such as atherosclerosis, diabetes, and radiation sickness, as well as the possibilities of the therapeutic application of low-molecular-weight natural and synthetic antioxidants for the correction of free radical-induced pathologies. The main focus of this review is the role of two phylogenetically close families of hydroperoxide-reducing antioxidant enzymes peroxiredoxins and glutathione peroxidases - in counteracting oxidative stress. We also present examples of the application of exogenous recombinant antioxidant enzymes as therapeutic agents in the treatment of pathologies associated with free-radical processes and discuss the prospects of the therapeutic use of exogenous antioxidant enzymes, as well as the ways to improve their therapeutic properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey V Gudkov
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, 603022, Russia.,All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, 143050, Russia
| | - Vadim Z Lankin
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, 121552, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Sharapov MG, Glushkova OV, Parfenyuk SB, Gudkov SV, Lunin SM, Novoselova EG. The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6. Arch Biochem Biophys 2021; 702:108830. [PMID: 33727039 DOI: 10.1016/j.abb.2021.108830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/11/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown. The present study was aimed to test the hypothesis that the radioprotective effect of Prdx6 and Prdx6-C47S may be mediated through the TLR4/NF-κB signaling pathway. It was demonstrated that exogenously applied Prdx6 protected 3T3 fibroblast cells against LD50 X-ray radiation in vitro. Pretreatment with Prdx6 increased cell survival, stimulated proliferation, normalized the level of reactive oxygen species in culture, and suppressed apoptosis and necrosis. Wild-type Prdx6 and, to a lesser degree, the Prdx6-C47S mutant proteins promoted a significant increase in NF-κB activation in irradiated cells, which likely contributes to the antiapoptotic effect. Pretreatment with TLR4 inhibitors, especially those directed to the extracellular part of the receptor, significantly reduced the radioprotective effect, and this supports the role of TLR4 signaling in the protective effects of Prdx6. Therefore, the radioprotective effect of Prdx6 was related not only to its antioxidant properties, but also to its ability to trigger cellular defense mechanisms through interaction with the TLR4 receptor and subsequent activation of the NF-κB pathway. Recombinant Prdx6 may be useful for the development of a new class of safe radioprotective compounds that have a combination of antioxidant and immunomodulatory properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Elena G Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| |
Collapse
|
4
|
Sharapov MG, Novoselov VI, Gudkov SV. Radioprotective Role of Peroxiredoxin 6. Antioxidants (Basel) 2019; 8:E15. [PMID: 30621289 PMCID: PMC6356814 DOI: 10.3390/antiox8010015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a member of an evolutionary ancient family of peroxidase enzymes with diverse functions in the cell. Prdx6 is an important enzymatic antioxidant. It reduces a wide range of peroxide substrates in the cell, thus playing a leading role in the maintenance of the redox homeostasis in mammalian cells. Beside peroxidase activity, Prdx6 has been shown to possess an activity of phospholipase A2, an enzyme playing an important role in membrane phospholipid metabolism. Moreover, Prdx6 takes part in intercellular and intracellular signal transduction due to its peroxidase and phospholipase activity, thus facilitating the initiation of regenerative processes in the cell, suppression of apoptosis, and activation of cell proliferation. Being an effective and important antioxidant enzyme, Prdx6 plays an essential role in neutralizing oxidative stress caused by various factors, including action of ionizing radiation. Endogenous Prdx6 has been shown to possess a significant radioprotective potential in cellular and animal models. Moreover, intravenous infusion of recombinant Prdx6 to animals before irradiation at lethal or sublethal doses has shown its high radioprotective effect. Exogenous Prdx6 effectively alleviates the severeness of radiation lesions, providing normalization of the functional state of radiosensitive organs and tissues, and leads to a significant elevation of the survival rate of animals. Prdx6 can be considered as a potent and promising radioprotective agent for reducing the pathological effect of ionizing radiation on mammalian organisms. The radioprotective properties and mechanisms of radioprotective action of Prdx6 are discussed in the current review.
Collapse
Affiliation(s)
- Mars G Sharapov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Vladimir I Novoselov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Sergey V Gudkov
- Wave Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
- Department of Experimental Clinical Studies, Moscow Regional Research and Clinical Institute (MONIKI), 129110 Moscow, Russia.
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod, Russia.
| |
Collapse
|
5
|
Chang S, Hu L, Xu Y, Li X, Ma L, Feng X, Wang J, Zhang C, Wang S. Inorganic Nitrate Alleviates Total Body Irradiation-Induced Systemic Damage by Decreasing Reactive Oxygen Species Levels. Int J Radiat Oncol Biol Phys 2018; 103:945-957. [PMID: 30458235 DOI: 10.1016/j.ijrobp.2018.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/26/2018] [Accepted: 11/10/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate the protective effect of inorganic nitrate against systemic damage in a mouse model of total body gamma irradiation (TBI). METHODS AND MATERIALS C57BL/6 mice in the irradiation (IR) + NaNO3 group were pretreated with 2 mmol/L NaNO3 in their drinking water for 1 week before receiving 5 Gy irradiation. Animals that received only 5 Gy irradiation were designated as the IR group. Survival and body weight were monitored. The peripheral blood lymphocytes, heart, liver, lung, and submandibular gland were harvested and assessed. Reactive oxygen species (ROS) were measured in the lung and submandibular gland. We examined phosphorylated histone H2AX (p-H2AX) and p53-binding protein 1 (53BP1) as markers of early-stage DNA damage and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Bax/caspase 3 mRNA expression as markers of apoptosis. RESULTS No improvement of survival was observed in the IR + NaNO3 group after TBI, but body weight loss after 5 Gy TBI was significantly attenuated in the IR + NaNO3 group. The levels of peripheral blood erythrocytes, leukocytes, and platelets at 7 days postirradiation recovered with nitrate treatment; moreover, the p-H2AX level in the peripheral blood lymphocytes was much lower in the IR + NaNO3 group at 2 and 4 hours post irradiation. In the lung and submandibular gland, the levels of p-H2AX, 53BP1 and ROS as well as TUNEL staining were significantly decreased in the IR + NaNO3 group compared with those in the IR group. Gene expression of Bax and caspase 3 was decreased in both the lung and submandibular gland with nitrate treatment, indicating attenuation of apoptosis. CONCLUSION Inorganic nitrate delivery could effectively prevent TBI-induced systemic damage. Nitrate-mediated decreases in ROS levels may contribute to this systemic protective effect.
Collapse
Affiliation(s)
- Shimin Chang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Liang Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yipu Xu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiangchun Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Linsha Ma
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiaoyu Feng
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Jingsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China; Departments of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China; Departments of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Wu SY, Wu ATH, Liu SH. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing. Oncotarget 2018; 7:51482-51493. [PMID: 27285985 PMCID: PMC5239490 DOI: 10.18632/oncotarget.9856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/26/2016] [Indexed: 01/07/2023] Open
Abstract
Betel nut chewing is associated with oral cavity cancer. Radiotherapy is one of the therapeutic approaches. Here, we used miR-17-5p antisense oligonucleotides (AS-ODNs) and human apoptosis protein array to clarify which apoptosis-related proteins are increased or decreased by miR-17-5p in betel nut chewing- oral squamous cell carcinoma OC3 cells. Furthermore, miR-17-5p AS-ODN was used to evaluate the radio-sensitization effects both in vitro and in vivo. An OC3 xenograft tumor model in severe combined immunodeficiency mice was used to determine the effect of miR-17-5p AS ODN on tumor irradiation. We simultaneously detected the relative expressions of 35 apoptosis-related proteins in irradiated OC3 cells that were treated with miR-17-5p AS-ODN or a control ODN. Several proteins, including p21, p53, TNF RI, FADD, cIAP-1, HIF-1α, and TRAIL R1, were found to be up- or downregulated by miR-17-5p in OC3 cells; their expression patterns were also confirmed by Western blotting. We further clarified the role of p53 in irradiated OC3 cells, using a p53 overexpression strategy. The results revealed that the enhancement of p53 expression significantly enhanced radiation-induced G2/M arrest of the OC3 cells. In the in vivo study, treatment of miR-17-5p AS-ODN before irradiation significantly enhanced p53 expression and reduced tumor growth. These results suggest that miR-17-5p increases or decreases apoptosis-related proteins in irradiated OC3 cells; its effect on p53 protein expression contributes to the modulation of the radiosensitivity of the OC3 cells.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Sulpizio M, Falone S, Amicarelli F, Marchisio M, Di Giuseppe F, Eleuterio E, Di Ilio C, Angelucci S. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J Cell Biochem 2011; 112:3797-806. [DOI: 10.1002/jcb.23310] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines. Oncogene 2010; 29:4725-31. [PMID: 20531302 DOI: 10.1038/onc.2010.223] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epigenetic regulation by CpG methylation has an important role in tumorigenesis as well as in the response to cancer therapy. To analyze the mechanism of epigenetic control of radiosensitivity, the CpG methylation profiles of radiosensitive H460 and radioresistant H1299 human non-small cell lung cancer (NSCLC) cell lines were analyzed using microarray profiling. These analyses revealed 1091 differentially methylated genes (DMG) (absolute difference of mean beta-values, |Deltabeta |>0.5), including genes involved in cell adhesion, cell communication, signal transduction and transcriptional regulation. Among the 747 genes hypermethylated in radioresistant H1299 cells, CpG methylation of SERPINB5 and S100A6 in radioresistant H1299 cells was confirmed by methylation-specific PCR. Reverse transcriptase-PCR showed higher expression of these two genes in radiosensitive H460 cells compared with radioresistant H1299 cells. Downregulation of SERPINB5 or S100A6 by small interfering RNA in H460 cells increased the resistance of these cells to ionizing radiation. In contrast, promoter CpG sites of 344 genes, including CAT and BNC1, were hypomethylated in radioresistant H1299 cells. Suppression of CAT or BNC1 mRNA expression in H1299 cells also reduced the resistance of these cells to ionizing radiation. Thus, we identified DMGs by genome-wide CpG methylation profiling in two NSCLC cell lines with different responses to ionizing radiation, and our data indicated that these differences may be critical for epigenetic regulation of radiosensitivity in lung cancer cells.
Collapse
|
9
|
Chung SI, Seong J, Park YN, Kim WW, Oh HJ, Han KH. Identification of proteins indicating radiation-induced hepatic toxicity in cirrhotic rats. JOURNAL OF RADIATION RESEARCH 2010; 51:643-650. [PMID: 21116097 DOI: 10.1269/jrr.09114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Radiation therapy (RT) has been emerging as one of the palliative treatments for locally advanced hepatocellular carcinoma (HCC). However, hepatic toxicity is a major obstacle in radiotherapy for HCC. The purpose of this study is to identify proteins indicating radiation-induced hepatic toxicity in cirrhotic rats, which can be used as possible biomarkers. Liver cirrhosis was induced in Wistar rats with thioacetamide (TAA) 0.3 g/L in drinking water for 9 weeks. The development of liver cirrhosis was observed histologically. Radiation hepatic injury was induced by treating 1/3 of the liver with 10 Gy single dose radiation. To find out commonly expressed proteins, liver tissue and serum were analyzed using two-dimensional electrophoresis and quadrupole time of flight mass spectrometry. Identified proteins were validated using western blotting. Histological examination showed that the degree of hepatic fibrosis increased by radiation in liver cirrhosis. It was associated with a decrease in the proliferation of cell nuclear antigen and an increase of apoptosis. The proteomic analysis of liver tissue and serum identified 60 proteins which showed significant change in expression between the TAA-alone and TAA-plus-radiation groups. Among these, an increase of heparanase precursor and decrease of hepatocyte growth factor were shown commonly in liver tissue and serum following radiation. Hepatic fibrosis increased following radiation in cirrhotic rats. These proteins might be useful in detecting and monitoring radiation-induced hepatic injury.
Collapse
Affiliation(s)
- Sook In Chung
- Liver Cirrhosis Clinical Research Center, Yonsei University Health System, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Zhang B, Wang Y, Su Y. Peroxiredoxins, a novel target in cancer radiotherapy. Cancer Lett 2009; 286:154-60. [PMID: 19500902 DOI: 10.1016/j.canlet.2009.04.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are toxic at high levels in the mammalian cells. Mammalian cells have developed many enzymatic and nonenzymatic antioxidative systems in various cellular compartments to maintain an appropriate level of ROS and regulate their action. Peroxiredoxins (Prxs), a family of peroxidase that reduced intracellular peroxides (one type of ROS) with the thioredoxin system as the electron donor, were highly expressed in various cellular compartments. In this minireview, we discussed the regulation of Prxs expression in cancer cell and its relationship with ionizing radiation. As Prxs could be induced by radiation and its expression status could determine the radiosensitivity of cancer cells, Prxs might be a potential target for radiotherapy in cancer.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Medical Genetics, Third Military Medical University, Chongqing 400038, China
| | | | | |
Collapse
|
11
|
Nakajima T, Taki K, Wang B, Ono T, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M. Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays. JOURNAL OF RADIATION RESEARCH 2008; 49:661-666. [PMID: 18957832 DOI: 10.1269/jrr.08074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The health effects of low-dose radiation exposure are of public concern. Although molecular events in the cellular response to high-dose-rate radiation exposure have been fully investigated, effects of long-term exposure to extremely low-dose-rate radiation remain unclear. Protein expression was analyzed by two-dimensional electrophoresis in livers from mice irradiated for 485 days (22 hr/day) at low-dose-rates of 0.032 microGy/min, 0.65 microGy/min and 13 microGy/min (total doses of 21 mGy, 420 mGy and 8000 mGy, respectively). One of the proteins that showed marked changes in expression was identified as rhodanese (thiosulfate sulfurtransferase). Rhodanese expression was increased after irradiation at 0.65 microGy/min and 13 microGy/min, while its expression was not changed at 0.032 microGy/min. Rhodanese is a detoxification enzyme, probably related to the regulation of antioxidative function. However, antioxidative proteins, such as superoxide dismutase (SOD)1 (also known as Cu,Zn-SOD) and SOD2 (also known as Mn-SOD), which can be induced by high-dose-rate radiation, were not induced at any low-dose-rates tested. These findings indicate that rhodanese is a novel protein induced by low-dose-rate radiation, and further analysis could provide insight into the effects of extremely low-dose-rate radiation exposure.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- Radiation Effect Mechanisms Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Seong J, Oh HJ, Kim J, An JH, Kim W. Identification of proteins that regulate radiation-induced apoptosis in murine tumors with wild type p53. JOURNAL OF RADIATION RESEARCH 2007; 48:435-41. [PMID: 17721044 DOI: 10.1269/jrr.07015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and > 80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1 +/- 0.6% in OCa-I and 0.2 +/- 0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity.
Collapse
Affiliation(s)
- Jinsil Seong
- Department of Radiation Oncology, Yonsei University Medical College, Seoul, Korea.
| | | | | | | | | |
Collapse
|
13
|
Magherini F, Tani C, Gamberi T, Caselli A, Bianchi L, Bini L, Modesti A. Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H2O2. Proteomics 2007; 7:1434-45. [PMID: 17469077 DOI: 10.1002/pmic.200600796] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We identified the proteins involved during apoptosis induced by H2O2 in Saccharomyces cerevisiae, and analyzed the global protein pattern by 2-DE. We analyzed classical parameters of apoptosis such as chromatin condensation, DNA fragmentation, and morphology changes of cells. Exposure of yeast cells to nonphysiological doses of peroxides decreases the expression (or increases degradation) of enzymes involved in protection against oxidative stress. This leads the yeast cells to a reduction of their antioxidant defense and makes the cells more prone to apoptosis. In our data the down expression of peroxiredoxin II and GST I, could induce a perturbation of mitochondrial function with an alteration of permeability of the membrane leading to the mitochondria-mediated apoptosis. Moreover, we identified a new spot of a classical glycolytic enzyme: the glyceraldehyde 3-phosphate dehydrogenase during apoptosis. It is known that GAPDH is an extremely abundant glycolytic enzyme with multiple functions and that its overexpression is evident during apoptosis induced by a variety of stimuli. Our results confirm that it is a major intracellular messenger mediating apoptotic death and that this new spot of GAPDH could be an intracellular sensor of oxidative stress during apoptosis induced by H2O2 in S. cerevisiae.
Collapse
Affiliation(s)
- Francesca Magherini
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|