1
|
Hossain MM, Ahmed S, Alam MS, Hossain A. Adverse effects of heat shock in rice ( Oryza sativa L.) and approaches to mitigate it for sustainable rice production under the changing climate: A comprehensive review. Heliyon 2024; 10:e41072. [PMID: 39735635 PMCID: PMC11681873 DOI: 10.1016/j.heliyon.2024.e41072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/31/2024] Open
Abstract
Heat shock, a transient exposure to high temperatures, is a substantial hazard to rice (Oryza sativa L.) production and sustainability. The objective of this review paper is to summarize the impact of heat shock on rice and explore approaches to mitigate its adverse effects to achieve sustainable production. Rice is a staple food for billions of people globally and is extremely sensitive to heat shock. Higher temperatures disturb various physiological and biochemical processes, resulting in decreased growth, development, and ultimately lower grain yield. Heat shock negatively affects important agronomic traits, such as panicle differentiation, pollen viability, fertilization, grain filling, and, ultimately, grain quality. To manage heat shock and sustain rice production, several strategies have been explored, such as modifications to sowing schedules, the substitution of heat-tolerant cultivars for sensitive genotypes, and the use of growth regulators. To improve rice under heat shock, various approaches could be taken: (1) cultivating cultivars that flower early in the morning by adjusting sowing/planting times, modified irrigation, and fertilization; (2) inducing acclimation via growth regulators and organic stimulants and chemicals; (3) breeding genetically resistant cultivars through the integration of appropriate genes; and (4) genetic modification techniques for heat-shock tolerance. Overall, effectively managing heat-shock stress in rice requires a comprehensive strategy that includes developing and using heat shock-tolerant cultivars, adopting suitable cultural practices, utilizing external substances, and applying biotechnological tools. Implementing these strategies collectively will help achieve sustainable rice production in the face of increasing heat-shock conditions.
Collapse
Affiliation(s)
- Mohammad Mobarak Hossain
- On-Farm Research Division, Bangaldesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| | - Sharif Ahmed
- International Rice Research Institute Bangladesh Office, Banani, Dhaka, 1213, Bangladesh
| | | | - Akbar Hossain
- Soil Science Division, Bangaldesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| |
Collapse
|
2
|
Sahito JH, Zhang H, Gishkori ZGN, Ma C, Wang Z, Ding D, Zhang X, Tang J. Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize. Int J Mol Sci 2024; 25:1918. [PMID: 38339196 PMCID: PMC10855973 DOI: 10.3390/ijms25031918] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Genome-wide association studies (GWAS) have emerged as a powerful tool for unraveling intricate genotype-phenotype association across various species. Maize (Zea mays L.), renowned for its extensive genetic diversity and rapid linkage disequilibrium (LD), stands as an exemplary candidate for GWAS. In maize, GWAS has made significant advancements by pinpointing numerous genetic loci and potential genes associated with complex traits, including responses to both abiotic and biotic stress. These discoveries hold the promise of enhancing adaptability and yield through effective breeding strategies. Nevertheless, the impact of environmental stress on crop growth and yield is evident in various agronomic traits. Therefore, understanding the complex genetic basis of these traits becomes paramount. This review delves into current and future prospectives aimed at yield, quality, and environmental stress resilience in maize and also addresses the challenges encountered during genomic selection and molecular breeding, all facilitated by the utilization of GWAS. Furthermore, the integration of omics, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics has enriched our understanding of intricate traits in maize, thereby enhancing environmental stress tolerance and boosting maize production. Collectively, these insights not only advance our understanding of the genetic mechanism regulating complex traits but also propel the utilization of marker-assisted selection in maize molecular breeding programs, where GWAS plays a pivotal role. Therefore, GWAS provides robust support for delving into the genetic mechanism underlying complex traits in maize and enhancing breeding strategies.
Collapse
Affiliation(s)
- Javed Hussain Sahito
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zeeshan Ghulam Nabi Gishkori
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenhui Ma
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
3
|
Hafeez A, Ali B, Javed MA, Saleem A, Fatima M, Fathi A, Afridi MS, Aydin V, Oral MA, Soudy FA. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding. PLANTA 2023; 258:97. [PMID: 37823963 DOI: 10.1007/s00425-023-04252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system. Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Aroona Saleem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46151, Iran
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Veysel Aydin
- Sason Vocational School, Department of Plant and Animal Production, Batman University, Batman, 72060, Turkey
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Turkey
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
4
|
Gann PJI, Dharwadker D, Cherati SR, Vinzant K, Khodakovskaya M, Srivastava V. Targeted mutagenesis of the vacuolar H + translocating pyrophosphatase gene reduces grain chalkiness in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1261-1276. [PMID: 37256847 DOI: 10.1111/tpj.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Grain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+ translocating pyrophosphatase (V-PPase) is a major quantitative trait locus in indica rice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression of V-PPase could reduce chalkiness is not clear. Furthermore, natural variation in the chalkiness of japonica rice has not been linked with V-PPase. Here, we describe promoter targeting of the japonica V-PPase allele that led to reduced grain chalkiness and the development of more translucent grains. Disruption of a putative GATA element by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 suppressed V-PPase activity, reduced grain chalkiness and impacted post-germination growth that could be rescued by the exogenous supply of sucrose. The mature grains of the targeted lines showed a much lower percentage of large or medium chalk. Interestingly, the targeted lines developed a significantly lower chalk under heat stress, a major inducer of grain chalk. Metabolomic analysis showed that pathways related to starch and sugar metabolism were affected in the developing grains of the targeted lines that correlated with higher inorganic pyrophosphate and starch contents and upregulation of starch biosynthesis genes. In summary, we show a biotechnology approach of reducing grain chalkiness in rice by downregulating the transcriptional activity of V-PPase that presumably leads to altered metabolic rates, including starch biosynthesis, resulting in more compact packing of starch granules and formation of translucent rice grains.
Collapse
Affiliation(s)
- Peter James Icalia Gann
- Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR, 72701, USA
| | - Dominic Dharwadker
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, West Maple Street, AR, 72701, USA
| | - Sajedeh Rezaei Cherati
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Kari Vinzant
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Mariya Khodakovskaya
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Vibha Srivastava
- Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Horticulture, University of Arkansas Division of Agriculture, 315 Plant Science Building, Fayetteville, AR, 72701, USA
| |
Collapse
|
5
|
Reyes VP. Fantastic genes: where and how to find them? Exploiting rice genetic resources for the improvement of yield, tolerance, and resistance to a wide array of stresses in rice. Funct Integr Genomics 2023; 23:238. [PMID: 37439874 DOI: 10.1007/s10142-023-01159-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Rice production is a critical component of global food security. To date, rice is grown in over 100 countries and is the primary source of food for more than 3 billion people. Despite its importance, rice production is facing numerous challenges that threaten its future viability. One of the primary problems is the advent of climate change. The changing climatic conditions greatly affect the growth and productivity of rice crop and the quality of rice yield. Similarly, biotic stresses brought about by pathogen and pest infestations are greatly affecting the productivity of rice. To address these issues, the utilization of rice genetic resources is necessary to map, identify, and understand the genetics of important agronomic traits. This review paper highlights the role of rice genetic resources for developing high-yielding and stress-tolerant rice varieties. The integration of genetic, genomic, and phenomic tools in rice breeding programs has led to the development of high-yielding and stress-tolerant rice varieties. The collaboration of multidisciplinary teams of experts, sustainable farming practices, and extension services for farmers is essential for accelerating the development of high-yielding and stress-tolerant rice varieties.
Collapse
|
6
|
Liu H, Zeng B, Zhao J, Yan S, Wan J, Cao Z. Genetic Research Progress: Heat Tolerance in Rice. Int J Mol Sci 2023; 24:ijms24087140. [PMID: 37108303 PMCID: PMC10138502 DOI: 10.3390/ijms24087140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Heat stress (HS) caused by high-temperature weather seriously threatens international food security. Indeed, as an important food crop in the world, the yield and quality of rice are frequently affected by HS. Therefore, clarifying the molecular mechanism of heat tolerance and cultivating heat-tolerant rice varieties is urgent. Here, we summarized the identified quantitative trait loci (Quantitative Trait Loci, QTL) and cloned rice heat tolerance genes in recent years. We described the plasma membrane (PM) response mechanisms, protein homeostasis, reactive oxygen species (ROS) accumulation, and photosynthesis under HS in rice. We also explained some regulatory mechanisms related to heat tolerance genes. Taken together, we put forward ways to improve heat tolerance in rice, thereby providing new ideas and insights for future research.
Collapse
Affiliation(s)
- Huaqing Liu
- Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
- Jiangxi Research and Development Center of Super Rice, Nanchang 330200, China
| | - Bohong Zeng
- Jiangxi Research and Development Center of Super Rice, Nanchang 330200, China
| | - Jialiang Zhao
- Jiangxi Research and Development Center of Super Rice, Nanchang 330200, China
| | - Song Yan
- Jiangxi Research and Development Center of Super Rice, Nanchang 330200, China
| | - Jianlin Wan
- Jiangxi Research and Development Center of Super Rice, Nanchang 330200, China
| | - Zhibin Cao
- Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
- Jiangxi Research and Development Center of Super Rice, Nanchang 330200, China
| |
Collapse
|
7
|
Raj SRG, Nadarajah K. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals. Int J Mol Sci 2022; 24:6. [PMID: 36613450 PMCID: PMC9820233 DOI: 10.3390/ijms24010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
At least 75% of the world's grain production comes from the three most important cereal crops: rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays). However, abiotic stressors such as heavy metal toxicity, salinity, low temperatures, and drought are all significant hazards to the growth and development of these grains. Quantitative trait locus (QTL) discovery and mapping have enhanced agricultural production and output by enabling plant breeders to better comprehend abiotic stress tolerance processes in cereals. Molecular markers and stable QTL are important for molecular breeding and candidate gene discovery, which may be utilized in transgenic or molecular introgression. Researchers can now study synteny between rice, maize, and wheat to gain a better understanding of the relationships between the QTL or genes that are important for a particular stress adaptation and phenotypic improvement in these cereals from analyzing reports on QTL and candidate genes. An overview of constitutive QTL, adaptive QTL, and significant stable multi-environment and multi-trait QTL is provided in this article as a solid framework for use and knowledge in genetic enhancement. Several QTL, such as DRO1 and Saltol, and other significant success cases are discussed in this review. We have highlighted techniques and advancements for abiotic stress tolerance breeding programs in cereals, the challenges encountered in introgressing beneficial QTL using traditional breeding techniques such as mutation breeding and marker-assisted selection (MAS), and the in roads made by new breeding methods such as genome-wide association studies (GWASs), the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and meta-QTL (MQTL) analysis. A combination of these conventional and modern breeding approaches can be used to apply the QTL and candidate gene information in genetic improvement of cereals against abiotic stresses.
Collapse
Affiliation(s)
| | - Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
8
|
Identification of QTLs for Heat Tolerance at the Flowering Stage Using Chromosome Segment Substitution Lines in Rice. Genes (Basel) 2022; 13:genes13122248. [PMID: 36553515 PMCID: PMC9777623 DOI: 10.3390/genes13122248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
High temperature is a major stress in rice production. Although considerable progress has been made in investigating heat tolerance (HT) in rice, the genetic basis of HT at the heading stage remains largely unknown. In this study, a novel set of chromosome segment substitution lines (CSSLs) consisting of 113 lines derived from a heat-resistant indica variety N22 and a heat-sensitive indica variety 9311 was developed and used for the analysis of the genetic basis of HT. The heat sensitivity index (HSI) calculated based on seed-setting rates under natural and high-temperature environments was used to evaluate the influence of HT at the rice heading stage. In total, five quantitative trait loci (QTLs) associated with HT were detected based on seed-setting rate (SSR) evaluation; these were named qSSR6-1, qSSR7-1, qSSR8-1, qSSR9-1 and qSSR11-1 located on chromosomes 6, 7, 8, 9 and 11, respectively. Heat-tolerant alleles of the QTLs were all derived from N22. Among them, qSSR9-1 overlapped with QTLs identified previously, while the remaining QTLs were found novel. In particular, qSSR7-1 explained a high phenotypic variation of 26.35% with a LOD score of 10.75, thus deserved to be further validated. These findings will increase our understanding of the genetic mechanism underlying HT and facilitate the breeding of heat-tolerant rice varieties.
Collapse
|
9
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
10
|
Hu C, Jiang J, Li Y, Song S, Zou Y, Jing C, Zhang Y, Wang D, He Q, Dang X. QTL mapping and identification of candidate genes using a genome-wide association study for heat tolerance at anthesis in rice (Oryza sativa L.). Front Genet 2022; 13:983525. [PMID: 36186421 PMCID: PMC9520461 DOI: 10.3389/fgene.2022.983525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Heat tolerance (HT) of rice at anthesis is a key trait that ensures high and stable yields under heat stress. Finding the quantitative trait loci (QTLs) and gene loci controlling HT is crucial. We used relative spikelet fertility (RSF) as a measure of HT. The phenotypic values of RSF in 173 rice accessions were investigated in two environments and showed abundant variations. We performed a genome-wide association study on RSF using 1.2 million single nucleotide polymorphisms (SNPs). Five QTLs were significantly associated with RSF were identified, four were found in previously reported QTLs/genes, and one was novel. The novel QTL qRSF9.2 was mapped into the 22,059,984-22,259,984 bp region, which had 38 positional candidate genes. By combining the linkage disequilibrium analysis, the QTL region was narrowed to 22,110,508–22,187,677 bp, which contained 16 candidate genes. Among them, only gene LOC_Os09g38500 contained nonsynonymous SNPs that were significantly associated with RSF. In addition, accessions with large and small RSF values had corresponding respective high and low gene expression levels. Furthermore, the RSF of the CC allele was significantly higher than that of the TT allele. Hap 2 and Hap 3 can increase heat tolerance by 7.9 and 11.3%, respectively. Our results provide useful information that recommends further cloning of qRSF9.2 and breeding heat-tolerant rice varieties by marker-assisted selection.
Collapse
Affiliation(s)
- Changmin Hu
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianhua Jiang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yulong Li
- Institute of Crop Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shaojie Song
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu Zou
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chunyu Jing
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ying Zhang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dezheng Wang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qiang He
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- *Correspondence: Qiang He, ; Xiaojing Dang,
| | - Xiaojing Dang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
- *Correspondence: Qiang He, ; Xiaojing Dang,
| |
Collapse
|
11
|
Stephen K, Beena R, Kiran AG, Shanija S, Saravanan R. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech 2022; 12:183. [PMID: 35875179 PMCID: PMC9300813 DOI: 10.1007/s13205-022-03242-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Efficient assimilate partitioning between the source and sink organs to achieve increased grain weight is coordinated by the sugar signaling mechanism. The expression of the genes involved in sugar signaling mainly hexokinases 2 (OsHXK2), Sucrose-nonfermentation1-related protein kinase1 (OsSnRK1), trehalose-6-phosphate synthase 1 (OsTPS1) and target of rapamycin (OsTOR) under high temperature stress was examined in tolerant (NL-44) and susceptible (Vandana) varieties of rice. The photosynthetic rate, stomatal conductance, water-use efficiency, photochemical efficiency (Fv/Fm), quantum yield (ϕPSII), pollen viability, spikelet fertility and 1000 grain weight were significantly higher in NL-44 compared to Vandana under stress. The difference in the gene expression levels in the vegetative and grain-filling phases as well as between the tolerant and susceptible varieties, revealed unique pathways of sugar signaling under heat stress. In the vegetative phase, the expression of OsTOR seems to be the difference between NL-44 and Vandana for their differed heat stress tolerance whereas, in the grain-filling phase, the difference between the varieties lay in the regulation of OsHXK2. The comparative changes in the expression levels between the genes under the varying conditions indicate the sugar status in the source and sink organs that are available for translocation or remobilization.
Collapse
Affiliation(s)
- K. Stephen
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A. G. Kiran
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - S. Shanija
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Saravanan
- ICAR-CTCRI, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
12
|
Ashfaq M, Rasheed A, Sajjad M, Ali M, Rasool B, Javed MA, Allah SU, Shaheen S, Anwar A, Ahmad MS, Mubashar U. Genome wide association mapping of yield and various desirable agronomic traits in Rice. Mol Biol Rep 2022; 49:11371-11383. [PMID: 35939183 DOI: 10.1007/s11033-022-07687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the staple foods worldwide. To feed the growing population, the improvement of rice cultivars is important. To make the improvement in the rice breeding program, it is imperative to understand the similarities and differences of the existing rice accessions to find out the genetic diversity. Previous studies demonstrated the existence of abundant elite genes in rice landraces. A genome-wide association study (GWAS) was performed for yield and yield related traits to find the genetic diversity. DESIGN Experimental study. METHODS AND RESULTS A total of 204 SSRs markers were used among 17 SSRs found to be located on each chromosome in the rice genome. The diversity was analyzed using different genetic characters i.e., the total number of alleles (TNA), polymorphic information content (PIC), and gene diversity by Power markers, and the values for each genetic character per marker ranged from 2 to 9, 0.332 to 0.887 and 0.423 to 0.900 respectively across the whole genome. The results of population structure identified four main groups. MTA identified several markers associated with many agronomically important traits. These results will be very useful for the selection of potential parents, recombinants, and MTAs that govern the improvements and developments of new high yielding rice varieties. CONCLUSIONS Analysis of diversity in germplasm is important for the improvement of cultivars in the breeding program. In the present study, the diversity was analyzed with different methods and found that enormous diversity was present in the studied rice germplasm. The structure analysis found the presence of 4 genetic groups in the existing germplasm. A total of 129 marker-trait associations (MTAs) have been found in this study.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Abdul Rasheed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, 45550, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Entomology Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.,Department of Biosciences, COMSAT University, Islamabad, Pakistan
| | - Bilal Rasool
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sami Ul Allah
- Department of Plant Breeding and Genetics, Bahuddin Zakaria University Bahudar Campus Layyah, Bahudar, Pakistan
| | - Shabnum Shaheen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Alia Anwar
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq Ahmad
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Urooj Mubashar
- Government Training Education Academy, Gujranwala, Pakistan
| |
Collapse
|
13
|
Cao Z, Tang H, Cai Y, Zeng B, Zhao J, Tang X, Lu M, Wang H, Zhu X, Wu X, Yuan L, Wan J. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1591-1605. [PMID: 35514030 PMCID: PMC9342620 DOI: 10.1111/pbi.13835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 05/13/2023]
Abstract
Global warming is a major abiotic stress factor, which limit rice production. Exploiting the genetic basis of the natural variation in heat resistance at different reproductive stages among diverse exotic Oryza germplasms can help breeding heat-resistant rice cultivars. Here, we identified a stable quantitative trait locus (QTL) for heat tolerance at the heading stage on chromosome 5 (qHTH5) in O. rufipogon Griff. The corresponding gene, HTH5, pertains to the pyridoxal phosphate-binding protein PLPBP (formerly called PROSC) family, which is predicted to encode pyridoxal phosphate homeostasis protein (PLPHP) localized to the mitochondrion. Overexpression of HTH5 increased the seed-setting rate of rice plants under heat stress at the heading stage, whereas suppression of HTH5 resulted in greater susceptibility to heat stress. Further investigation indicated that HTH5 reduces reactive oxygen species accumulation at high temperatures by increasing the heat-induced pyridoxal 5'-phosphate (PLP) content. Moreover, we found that two SNPs located in the HTH5 promoter region are involved with its expression level and associated with heat tolerance diversity. These findings suggest that the novel gene HTH5 might have great potential value for heightening rice tolerance to heat stress to the on-going threat of global warming.
Collapse
Affiliation(s)
- Zhibin Cao
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Huiwu Tang
- College of Agriculture and BiologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Yaohui Cai
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Bohong Zeng
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Jialiang Zhao
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Xiuying Tang
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Ming Lu
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Huimin Wang
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Xuejing Zhu
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Xiaofeng Wu
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Linfeng Yuan
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| | - Jianlin Wan
- Rice National Engineering Research Center (Nanchang)Jiangxi Research and Development Center of Super RiceJiangxi Academy of Agricultural SciencesNanchangChina
| |
Collapse
|
14
|
Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs. Genes (Basel) 2022; 13:genes13081353. [PMID: 36011264 PMCID: PMC9407402 DOI: 10.3390/genes13081353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/04/2023] Open
Abstract
The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice.
Collapse
|
15
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
16
|
Zhang B, Ma L, Wu B, Xing Y, Qiu X. Introgression Lines: Valuable Resources for Functional Genomics Research and Breeding in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:863789. [PMID: 35557720 PMCID: PMC9087921 DOI: 10.3389/fpls.2022.863789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
The narrow base of genetic diversity of modern rice varieties is mainly attributed to the overuse of the common backbone parents that leads to the lack of varied favorable alleles in the process of breeding new varieties. Introgression lines (ILs) developed by a backcross strategy combined with marker-assisted selection (MAS) are powerful prebreeding tools for broadening the genetic base of existing cultivars. They have high power for mapping quantitative trait loci (QTLs) either with major or minor effects, and are used for precisely evaluating the genetic effects of QTLs and detecting the gene-by-gene or gene-by-environment interactions due to their low genetic background noise. ILs developed from multiple donors in a fixed background can be used as an IL platform to identify the best alleles or allele combinations for breeding by design. In the present paper, we reviewed the recent achievements from ILs in rice functional genomics research and breeding, including the genetic dissection of complex traits, identification of elite alleles and background-independent and epistatic QTLs, analysis of genetic interaction, and genetic improvement of single and multiple target traits. We also discussed how to develop ILs for further identification of new elite alleles, and how to utilize IL platforms for rice genetic improvement.
Collapse
Affiliation(s)
- Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
17
|
Kumar A, Gupta C, Thomas J, Pereira A. Genetic Dissection of Grain Yield Component Traits Under High Nighttime Temperature Stress in a Rice Diversity Panel. FRONTIERS IN PLANT SCIENCE 2021; 12:712167. [PMID: 34650575 PMCID: PMC8508263 DOI: 10.3389/fpls.2021.712167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
To dissect the genetic complexity of rice grain yield (GY) and quality in response to heat stress at the reproductive stage, a diverse panel of 190 rice accessions in the United States Department of Agriculture (USDA) rice mini-core collection (URMC) diversity panel were treated with high nighttime temperature (HNT) stress at the reproductive stage of panicle initiation. The quantifiable yield component response traits were then measured. The traits, panicle length (PL), and number of spikelets per panicle (NSP) were evaluated in subsets of the panel comprising the rice subspecies Oryza sativa ssp. Indica and ssp. Japonica. Under HNT stress, the Japonica ssp. exhibited lower reductions in PL and NSP and a higher level of genetic variation compared with the other subpopulations. Whole genome sequencing identified 6.5 million single nucleotide polymorphisms (SNPs) that were used for the genome-wide association studies (GWASs) of the PL and NSP traits. The GWAS analysis in the Combined, Indica, and Japonica populations under HNT stress identified 83, 60, and 803 highly significant SNPs associated with PL, compared to the 30, 30, and 11 highly significant SNPs associated with NSP. Among these trait-associated SNPs, 140 were coincident with genomic regions previously reported for major GY component quantitative trait loci (QTLs) under heat stress. Using extents of linkage disequilibrium in the rice populations, Venn diagram analysis showed that the highest number of putative candidate genes were identified in the Japonica population, with 20 putative candidate genes being common in the Combined, Indica and Japonica populations. Network analysis of the genes linked to significant SNPs associated with PL and NSP identified modules that were involved in primary and secondary metabolisms. The findings in this study could be useful to understand the pathways/mechanisms involved in rice GY and its components under HNT stress for the acceleration of rice-breeding programs and further functional analysis by molecular geneticists.
Collapse
Affiliation(s)
| | | | | | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, Untied States
| |
Collapse
|
18
|
Wei Z, Yuan Q, Lin H, Li X, Zhang C, Gao H, Zhang B, He H, Liu T, Jie Z, Gao X, Shi S, Wang B, Gao Z, Kong L, Qian Q, Shang L. Linkage analysis, GWAS, transcriptome analysis to identify candidate genes for rice seedlings in response to high temperature stress. BMC PLANT BIOLOGY 2021; 21:85. [PMID: 33563229 DOI: 10.1186/s12870-021-02857-2852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/26/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Rice plants suffer from the rising temperature which is becoming more and more prominent. Mining heat-resistant genes and applying them to rice breeding is a feasible and effective way to solve the problem. RESULT Three main biomass traits, including shoot length, dry weight, and fresh weight, changed after abnormally high-temperature treatment in the rice seedling stage of a recombinant inbred lines and the natural indica germplasm population. Based on a comparison of the results of linkage analysis and genome-wide association analysis, two loci with lengths of 57 kb and 69 kb in qDW7 and qFW6, respectively, were associated with the rice response to abnormally high temperatures at the seedling stage. Meanwhile, based on integrated transcriptome analysis, some genes are considered as important candidate genes. Combining with known genes and analysis of homologous genes, it was found that there are eight genes in candidate intervals that need to be focused on in subsequent research. CONCLUSIONS The results indicated several relevant loci, which would help researchers to further discover beneficial heat-resistant genes that can be applied to rice heat-resistant breeding.
Collapse
Affiliation(s)
- Zhaoran Wei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hai Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chao Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongsheng Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tianjiao Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhang Jie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shandang Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
19
|
Wei Z, Yuan Q, Lin H, Li X, Zhang C, Gao H, Zhang B, He H, Liu T, Jie Z, Gao X, Shi S, Wang B, Gao Z, Kong L, Qian Q, Shang L. Linkage analysis, GWAS, transcriptome analysis to identify candidate genes for rice seedlings in response to high temperature stress. BMC PLANT BIOLOGY 2021; 21:85. [PMID: 33563229 PMCID: PMC7874481 DOI: 10.1186/s12870-021-02857-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/26/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rice plants suffer from the rising temperature which is becoming more and more prominent. Mining heat-resistant genes and applying them to rice breeding is a feasible and effective way to solve the problem. RESULT Three main biomass traits, including shoot length, dry weight, and fresh weight, changed after abnormally high-temperature treatment in the rice seedling stage of a recombinant inbred lines and the natural indica germplasm population. Based on a comparison of the results of linkage analysis and genome-wide association analysis, two loci with lengths of 57 kb and 69 kb in qDW7 and qFW6, respectively, were associated with the rice response to abnormally high temperatures at the seedling stage. Meanwhile, based on integrated transcriptome analysis, some genes are considered as important candidate genes. Combining with known genes and analysis of homologous genes, it was found that there are eight genes in candidate intervals that need to be focused on in subsequent research. CONCLUSIONS The results indicated several relevant loci, which would help researchers to further discover beneficial heat-resistant genes that can be applied to rice heat-resistant breeding.
Collapse
Affiliation(s)
- Zhaoran Wei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hai Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chao Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongsheng Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tianjiao Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhang Jie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shandang Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
20
|
Chen L, Wang Q, Tang M, Zhang X, Pan Y, Yang X, Gao G, Lv R, Tao W, Jiang L, Liang T. QTL Mapping and Identification of Candidate Genes for Heat Tolerance at the Flowering Stage in Rice. Front Genet 2021; 11:621871. [PMID: 33552136 PMCID: PMC7862774 DOI: 10.3389/fgene.2020.621871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/29/2020] [Indexed: 01/21/2023] Open
Abstract
High-temperature stress can cause serious abiotic damage that limits the yield and quality of rice. Heat tolerance (HT) during the flowering stage of rice is a key trait that can guarantee a high and stable yield under heat stress. HT is a complex trait that is regulated by multiple quantitative trait loci (QTLs); however, few underlying genes have been fine mapped and cloned. In this study, the F2:3 population derived from a cross between Huanghuazhan (HHZ), a heat-tolerant cultivar, and 9311, a heat-sensitive variety, was used to map HT QTLs during the flowering stage in rice. A new major QTL, qHTT8, controlling HT was identified on chromosome 8 using the bulked-segregant analysis (BSA)-seq method. The QTL qHTT8 was mapped into the 3,555,000–4,520,000 bp, which had a size of 0.965 Mb. The candidate region of qHTT8 on chromosome 8 contained 65 predicted genes, and 10 putative predicted genes were found to be associated with abiotic stress tolerance. Furthermore, qRT-PCR was performed to analyze the differential expression of these 10 genes between HHZ and 9311 under high temperature conditions. LOC_Os08g07010 and LOC_Os08g07440 were highly induced in HHZ compared with 9311 under heat stress. Orthologous genes of LOC_Os08g07010 and LOC_Os08g07440 in plants played a role in abiotic stress, suggesting that they may be the candidate genes of qHTT8. Generally, the results of this study will prove useful for future efforts to clone qHTT8 and breed heat-tolerant varieties of rice using marker-assisted selection.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Crop Cultivation and Farming System, College of Agriculture, Guangxi University, Nanning, China.,Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Qiang Wang
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Maoyan Tang
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Xiaoli Zhang
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Yinghua Pan
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Xinghai Yang
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Guoqing Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Ronghua Lv
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Wei Tao
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Farming System, College of Agriculture, Guangxi University, Nanning, China
| | - Tianfeng Liang
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| |
Collapse
|
21
|
Raza Q, Riaz A, Bashir K, Sabar M. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. PLANT MOLECULAR BIOLOGY 2020; 104:97-112. [PMID: 32643113 DOI: 10.1007/s11103-020-01027-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
By integrating genetics and genomics data, reproductive tissues-specific and heat stress responsive 35 meta-QTLs and 45 candidate genes were identified, which could be exploited through marker-assisted breeding for fast-track development of heat-tolerant rice cultivars. Rice holds the key to future food security. In rice-growing areas, temperature has already reached an optimum level for growth, hence, any further increase due to global climate change could significantly reduce rice yield. Several mapping studies have identified a plethora of reproductive tissue-specific and heat stress associated inconsistent quantitative trait loci (QTL), which could be exploited for improvement of heat tolerance. In this study, we performed a meta-analysis on previously reported QTLs and identified 35 most consistent meta-QTLs (MQTLs) across diverse genetic backgrounds and environments. Genetic and physical intervals of nearly 66% MQTLs were narrower than 5 cM and 2 Mb respectively, indicating hotspot genomic regions for heat tolerance. Comparative analyses of MQTLs underlying genes with microarray and RNA-seq based transcriptomic data sets revealed a core set of 45 heat-responsive genes, among which 24 were reproductive tissue-specific and have not been studied in detail before. Remarkably, all these genes corresponded to various stress associated functions, ranging from abiotic stress sensing to regulating plant stress responses, and included heat-shock genes (OsBiP2, OsMed37_1), transcription factors (OsNAS3, OsTEF1, OsWRKY10, OsWRKY21), transmembrane transporters (OsAAP7A, OsAMT2;1), sugar metabolizing (OsSUS4, α-Gal III) and abiotic stress (OsRCI2-7, SRWD1) genes. Functional data evidences from Arabidopsis heat-shock genes also suggest that OsBIP2 may be associated with thermotolerance of pollen tubes under heat stress conditions. Furthermore, promoters of identified genes were enriched with heat, dehydration, pollen and sugar responsive cis-acting regulatory elements, proposing a common regulatory mechanism might exist in rice for mitigating reproductive stage heat stress. These findings strongly support our results and provide new candidate genes for fast-track development of heat-tolerant rice cultivars.
Collapse
Affiliation(s)
- Qasim Raza
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan.
| | - Awais Riaz
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan
| | - Khurram Bashir
- Plant Genomic Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, Yokohama, Japan
| | - Muhammad Sabar
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan
| |
Collapse
|
22
|
Identification of a Novel Gene, Osbht, in Response to High Temperature Tolerance at Booting Stage in Rice. Int J Mol Sci 2020; 21:ijms21165862. [PMID: 32824161 PMCID: PMC7461545 DOI: 10.3390/ijms21165862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Rice is one of the world’s leading food crops, and over 90% of the world’s rice production stems from Asia. In particular, an increase of 1 °C in the minimum temperature reduces the quantity of rice by 10%. Therefore, the development of rice varieties that can stably maintain the yield and quality of the rice even under these rapid climate changes is indispensable. In this study, we performed quantitative trait loci (QTL) mapping after treatment with heat stress during the booting stage in rice. We performed a QTL analysis using the Cheongcheong/Nagdong double haploid (CNDH) line and identified 19 QTLs during the 2 year analysis. Of these QTL regions, the 2.2 cM region of RM3709–RM11694 on chromosome 1 was shared among the six traits (heading date; culm length; panicle length; number of tiller; 1000 grain weight; and content of chlorophyll) examined. Rice Microsatellite (RM) 3709–RM11694 contained 27 high-temperature-tolerance candidate genes. Among the candidate genes, OsBHT showed a different gene expression level between CNDH75, which is a high-temperature tolerant line, and CNDH11 which is a susceptible line. Although some existing high-temperature-tolerant genes have been reported, OsBHT can be used more effectively for the development of heat tolerance in rice.
Collapse
|
23
|
Kumar A, Sandhu N, Venkateshwarlu C, Priyadarshi R, Yadav S, Majumder RR, Singh VK. Development of introgression lines in high yielding, semi-dwarf genetic backgrounds to enable improvement of modern rice varieties for tolerance to multiple abiotic stresses free from undesirable linkage drag. Sci Rep 2020; 10:13073. [PMID: 32753648 PMCID: PMC7403580 DOI: 10.1038/s41598-020-70132-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Occurrence of multiple abiotic stresses in a single crop season has become more frequent than before. Most of the traditional donors possessing tolerance to abiotic stresses are tall, low-yielding with poor grain quality. To facilitate efficient use of complex polygenic traits in rice molecular breeding research, we undertook development of introgression lines in background of high-yielding, semi-dwarf varieties with good grain quality. The study reports the development and evaluations of over 25,000 introgression lines in eleven elite rice genetic backgrounds for improvement of yield under multiple abiotic-stresses such as drought, flood, high/low temperature. The developed introgression lines within each genetic background are near isogenic/recombinant inbred lines to their recipient recurrent parent with 50 to 98% background recovery and additionally carry QTLs/genes for abiotic stresses. The multiple-stress tolerant pyramided breeding lines combining high yield under normal situation and good yield under moderate to severe reproductive-stage drought, semi-dwarf plant type with good grain quality traits have been developed. The introgression lines in dwarf backgrounds open new opportunity to improve other varieties without any linkage drag as well as facilitate cloning of QTLs, identification and functional characterization of candidate genes, mechanisms associated with targeted QTLs and the genetic networks underlying complex polygenic traits.
Collapse
Affiliation(s)
- Arvind Kumar
- International Rice Research Institute, Metro Manila, Philippines. .,IRRI South Asia Regional Centre (ISARC), Varanasi, Uttar Pradesh, India.
| | - Nitika Sandhu
- International Rice Research Institute, Metro Manila, Philippines.,Punjab Agricultural University, Ludhiana, India
| | - Challa Venkateshwarlu
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| | - Rahul Priyadarshi
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India.,International Rice Research Institute, Guwahati, Assam, India
| | - Shailesh Yadav
- International Rice Research Institute, Metro Manila, Philippines
| | | | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| |
Collapse
|
24
|
Xu J, Henry A, Sreenivasulu N. Rice yield formation under high day and night temperatures-A prerequisite to ensure future food security. PLANT, CELL & ENVIRONMENT 2020; 43:1595-1608. [PMID: 32112422 DOI: 10.1111/pce.13748] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/18/2020] [Indexed: 05/13/2023]
Abstract
Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation. Hence improving rice crop tolerance to heat stress in terms of sustaining yield stability under high day temperature (HDT), high night temperature (HNT), or combined high day and night temperature (HDNT) will bolster future food security. In this review article, we highlight the phenological alterations caused by heat and the underlying molecular-physiological and genetic mechanisms operating under different types of heat conditions (HDT, HNT, and HDNT) to understand heat tolerance. Based on our synthesis of HDT, HNT, and HDNT effects on rice yield components, we outline future breeding strategies to contribute to sustained food security under climate change.
Collapse
Affiliation(s)
- Jiemeng Xu
- International Rice Research Institute, Los Baños, Philippines
| | - Amelia Henry
- International Rice Research Institute, Los Baños, Philippines
| | | |
Collapse
|
25
|
Cao Z, Li Y, Tang H, Zeng B, Tang X, Long Q, Wu X, Cai Y, Yuan L, Wan J. Fine mapping of the qHTB1-1QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1161-1175. [PMID: 31989206 DOI: 10.1007/s00122-020-03539-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/07/2020] [Indexed: 05/27/2023]
Abstract
The qHTB1-1 QTL, controlling heat tolerance at the booting stage in rice, was fine mapped to a 47.1 kb region containing eight candidate genes. Two positional candidate genes showed significant changes in expression levels under heat stress. High-temperature stress at the booting stage has the potential to significantly limit rice production. An interspecific advanced backcrossed population between the Oryza sativa L. cultivar R53 and the wild Oryza rufipogon Griff accession HHT4 was used as the source material to develop a set of chromosome segment introgression lines to elucidate the genetic mechanism of the qHTB1-1 QTL in heat tolerance. A single-chromosome-segment introgression line, IL01-15, was used to develop secondary populations for the mapping of qHTB1-1 on chromosome 1 for heat tolerance at the booting stage. Using the BC5F2, BC5F3, and BC5F4 populations, we first confirmed qHTB1-1 and validated the phenotypic effect. The qHTB1-1 QTL explained 13.1%, 16.9%, and 17.8% of the phenotypic variance observed in the BC5F2, BC5F3, and BC5F4 generations, respectively. Using homozygous recombinants screened from larger BC6F2 and BC6F3 populations, qHTB1-1 was fine mapped within a 47.1 kb region between markers RM11633 and RM11642. Eight putative predicted genes were annotated in the region, and six genes were predicted to encode expressed proteins. The expression patterns of these six genes demonstrated that LOC_Os01g53160 and LOC_Os01g53220 were highly induced by heat stress in IL01-15 compared to R53. Sequence comparison of the gene-coding regions of LOC_Os01g53160 and LOC_Os01g53220 between R53 and IL01-15 revealed one synonymous and two nonsynonymous SNPs in exons, respectively. Our results provide a basis for identifying the genes underlying qHTB1-1 and indicate that markers linked to the qHTB1-1 locus can be used to improve the heat tolerance of rice at the booting stage by marker-assisted selection.
Collapse
Affiliation(s)
- Zhibin Cao
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yao Li
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
- Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Huiwu Tang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Bohong Zeng
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiuying Tang
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qizhang Long
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaofeng Wu
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yaohui Cai
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Linfeng Yuan
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Jianlin Wan
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
26
|
Nubankoh P, Wanchana S, Saensuk C, Ruanjaichon V, Cheabu S, Vanavichit A, Toojinda T, Malumpong C, Arikit S. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.). PLANT CELL REPORTS 2020; 39:149-162. [PMID: 31570974 DOI: 10.1007/s00299-019-02477-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The QTL-seq approach was used to identify QTLs for spikelet fertility under heat stress in rice. QTLs were detected on chromosomes 1, 2 and 3. Rice is a staple food of more than half of the global population. Rice production is increasingly affected by extreme environmental fluctuations caused by climate change. Increasing temperatures that exceed the optimum temperature adversely affect rice growth and development, especially during reproductive stages. Heat stress during the reproductive stages has a large effect on spikelet fertility; hence, the yield decreases. To sustain rice yields under increasing temperatures, the development of rice varieties for heat tolerance is necessary. In this study, we applied the QTL-seq approach to rapidly identify QTLs for spikelet fertility under heat stress (air temperature of 40-45 °C) based on two DNA pools, each consisting of 25 individual plants that exhibited a heat-tolerant or heat-sensitive phenotype from an F2 population of a cross between M9962 (heat tolerant) and Sinlek (heat sensitive). Three QTLs, qSF1, qSF2 and qSF3, were detected on chromosomes 1, 2 and 3, respectively, according to the highest contrasting SNP index between the two bulks. The QTLs identified in this study were found to overlap or were linked to QTLs previously identified in other crosses using conventional QTL mapping. A few highly abundant and anther-specific genes that contain nonsynonymous variants were identified within the QTLs and were proposed to be potential candidate genes. These genes could be targets in rice breeding programs for heat tolerance.
Collapse
Affiliation(s)
- Phakchana Nubankoh
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chatree Saensuk
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sulaiman Cheabu
- Faculty of Agriculture, Princess of Naradhiwas University, Naradhiwas, 96000, Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chanate Malumpong
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
27
|
Khan S, Anwar S, Ashraf MY, Khaliq B, Sun M, Hussain S, Gao ZQ, Noor H, Alam S. Mechanisms and Adaptation Strategies to Improve Heat Tolerance in Rice. A Review. PLANTS (BASEL, SWITZERLAND) 2019; 8:E508. [PMID: 31731732 PMCID: PMC6918131 DOI: 10.3390/plants8110508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/05/2023]
Abstract
The incidence of short episodes of high temperature in the most productive rice growing region is a severe threat for sustainable rice production. Screening for heat tolerance and breeding to increase the heat tolerance of rice is major objective in the situation of recent climate change. Replacing sensitive genotypes with heat tolerant cultivars, modification in sowing time, and use of growth regulators are some of the adaptive strategies for the mitigation of yield reduction by climate change. Different strategies could be adopted to enhance the thermos-tolerance of rice by (1) the modification of agronomic practices i.e., adjusting sowing time or selecting early morning flowering cultivars; (2) induction of acclimation by using growth regulators and fertilizers; (3) selecting the genetically heat resistant cultivars by breeding; and, (4) developing genetic modification. Understanding the differences among the genotypes could be exploited for the identification of traits that are responsible for thermo-tolerance for breeding purpose. The selection of cultivars that flowers in early morning before the increase of temperature, and having larger anthers with long basal pore, higher basal dehiscence, and pollen viability could induce higher thermo-tolerance. Furthermore, the high expression of heat shock proteins could impart thermo-tolerance by protecting structural proteins and enzymes. Thus, these traits could be considered for breeding programs to develop resistant cultivars under a changing climate.
Collapse
Affiliation(s)
- Shahbaz Khan
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
- China National Rice Research Institute, Hangzhou 311400, China;
| | - M. Yasin Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
| | - Binish Khaliq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sajid Hussain
- China National Rice Research Institute, Hangzhou 311400, China;
| | - Zhi-qiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Hafeez Noor
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sher Alam
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| |
Collapse
|
28
|
QTLian breeding for climate resilience in cereals: progress and prospects. Funct Integr Genomics 2019; 19:685-701. [PMID: 31093800 DOI: 10.1007/s10142-019-00684-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
The ever-rising population of the twenty-first century together with the prevailing challenges, such as deteriorating quality of arable land and water, has placed a big challenge for plant breeders to satisfy human needs for food under erratic weather patterns. Rice, wheat, and maize are the major staple crops consumed globally. Drought, waterlogging, heat, salinity, and mineral toxicity are the key abiotic stresses drastically affecting crop yield. Conventional plant breeding approaches towards abiotic stress tolerance have gained success to limited extent, due to the complex (multigenic) nature of these stresses. Progress in breeding climate-resilient crop plants has gained momentum in the last decade, due to improved understanding of the physiochemical and molecular basis of various stresses. A good number of genes have been characterized for adaptation to various stresses. In the era of novel molecular markers, mapping of QTLs has emerged as viable solution for breeding crops tolerant to abiotic stresses. Therefore, molecular breeding-based development and deployment of high-yielding climate-resilient crop cultivars together with climate-smart agricultural practices can pave the path to enhanced crop yields for smallholder farmers in areas vulnerable to the climate change. Advances in fine mapping and expression studies integrated with cheaper prices offer new avenues for the plant breeders engaged in climate-resilient plant breeding, and thereby, hope persists to ensure food security in the era of climate change.
Collapse
|
29
|
Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1-25. [PMID: 30483819 DOI: 10.1007/s00122-018-3219-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/24/2018] [Indexed: 05/27/2023]
Abstract
CSSLs are a complete library of introgression lines with chromosomal segments of usually a distant genotype in an adapted background and are valuable genetic resources for basic and applied research on improvement of complex traits. Chromosome segment substitution lines (CSSLs) are genetic stocks representing the complete genome of any genotype in the background of a cultivar as overlapping segments. Ideally, each CSSL has a single chromosome segment from the donor with a maximum recurrent parent genome recovered in the background. CSSL development program requires population-wide backcross breeding and genome-wide marker-assisted selection followed by selfing. Each line in a CSSL library has a specific marker-defined large donor segment. CSSLs are evaluated for any target phenotype to identify lines significantly different from the parental line. These CSSLs are then used to map quantitative trait loci (QTLs) or causal genes. CSSLs are valuable prebreeding tools for broadening the genetic base of existing cultivars and harnessing the genetic diversity from the wild- and distant-related species. These are resources for genetic map construction, mapping QTLs, genes or gene interactions and their functional analysis for crop improvement. In the last two decades, the utility of CSSLs in identification of novel genomic regions and QTL hot spots influencing a wide range of traits has been well demonstrated in food and commercial crops. This review presents an overview of how CSSLs are developed, their status in major crops and their use in genomic studies and gene discovery.
Collapse
Affiliation(s)
- Divya Balakrishnan
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Malathi Surapaneni
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Sukumar Mesapogu
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Sarla Neelamraju
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India.
| |
Collapse
|
30
|
Golicz AA, Bhalla PL, Singh MB. MCRiceRepGP: a framework for the identification of genes associated with sexual reproduction in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:188-202. [PMID: 29979827 DOI: 10.1111/tpj.14019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/20/2018] [Indexed: 05/22/2023]
Abstract
Rice is an important cereal crop, being a staple food for over half of the world's population, and sexual reproduction resulting in grain formation underpins global food security. However, despite considerable research efforts, many of the genes, especially long intergenic non-coding RNA (lincRNA) genes, involved in sexual reproduction in rice remain uncharacterized. With an increasing number of public resources becoming available, information from different sources can be combined to perform gene functional annotation. We report the development of MCRiceRepGP, a machine learning framework which integrates heterogeneous evidence and employs multicriteria decision analysis and machine learning to predict coding and lincRNA genes involved in sexual reproduction in rice. The rice genome was reannotated using deep-sequencing transcriptomic data from reproduction-associated tissue/cell types identifying previously unannotated putative protein-coding genes and lincRNAs. MCRiceRepGP was used for genome-wide discovery of sexual reproduction associated coding and lincRNA genes. The protein-coding and lincRNA genes identified have distinct expression profiles, with a large proportion of lincRNAs reaching maximum expression levels in the sperm cells. Some of the genes are potentially linked to male- and female-specific fertility and heat stress tolerance during the reproductive stage. MCRiceRepGP can be used in combination with other genome-wide studies, such as genome-wide association studies, giving greater confidence that the genes identified are associated with the biological process of interest. As more data, especially about mutant plant phenotypes, become available, the power of MCRiceRepGP will grow, providing researchers with a tool to identify candidate genes for future experiments. MCRiceRepGP is available as a web application (http://mcgplannotator.com/MCRiceRepGP/).
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Faculty of Veterinary and Agricultural Sciences, Plant Molecular Biology and Biotechnology Laboratory, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Prem L Bhalla
- Faculty of Veterinary and Agricultural Sciences, Plant Molecular Biology and Biotechnology Laboratory, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Mohan B Singh
- Faculty of Veterinary and Agricultural Sciences, Plant Molecular Biology and Biotechnology Laboratory, University of Melbourne, Parkville, Melbourne, Vic., Australia
| |
Collapse
|
31
|
Ps S, Sv AM, Prakash C, Mk R, Tiwari R, Mohapatra T, Singh NK. High Resolution Mapping of QTLs for Heat Tolerance in Rice Using a 5K SNP Array. RICE (NEW YORK, N.Y.) 2017. [PMID: 28584974 DOI: 10.1186/s12284-017-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Heat stress is one of the major abiotic threats to rice production, next to drought and salinity stress. Incidence of heat stress at reproductive phase of the crop results in abnormal pollination leading to floret sterility, low seed set and poor grain quality. Identification of QTLs and causal genes for heat stress tolerance at flowering will facilitate breeding for improved heat tolerance in rice. In the present study, we used 272 F8 recombinant inbred lines derived from a cross between Nagina22, a well-known heat tolerant Aus cultivar and IR64, a heat sensitive popular Indica rice variety to map the QTLs for heat tolerance. RESULTS To enable precise phenotyping for heat stress tolerance, we used a controlled phenotyping facility available at ICAR-Indian Institute of Wheat and Barley Research, Karnal, India. Based on 'days to 50% flowering' data of the RILs, we followed staggered sowing to synchronize flowering to impose heat stress at uniform stage. Using the Illumina infinium 5K SNP array for genotyping the parents and the RILs, and stress susceptibility and stress tolerance indices (SSI and STI) of percent spikelet sterility and yield per plant (g), we identified five QTLs on chromosomes 3, 5, 9 and 12. The identified QTLs explained phenotypic variation in the range of 6.27 to 21. 29%. Of these five QTLs, two high effect QTLs, one novel (qSTIPSS9.1) and one known (qSTIY5.1/qSSIY5.2), were mapped in less than 400 Kbp genomic regions, comprising of 65 and 54 genes, respectively. CONCLUSIONS The present study identified two major QTLs for heat tolerance in rice in narrow physical intervals, which can be employed for crop improvement by marker assisted selection (MAS) after development of suitable scorable markers for breeding of high yielding heat tolerant rice varieties. This is the first report of a major QTL for heat tolerance on chromosome 9 of rice. Further, a known QTL for heat tolerance on chromosome 5 was narrowed down from 23 Mb to 331 Kbp in this study.
Collapse
Affiliation(s)
- Shanmugavadivel Ps
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Present address, Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Amitha Mithra Sv
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ramkumar Mk
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132 001, India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001, India
| | | |
Collapse
|
32
|
PS S, SV AM, Prakash C, MK R, Tiwari R, Mohapatra T, Singh NK. High Resolution Mapping of QTLs for Heat Tolerance in Rice Using a 5K SNP Array. RICE (NEW YORK, N.Y.) 2017; 10:28. [PMID: 28584974 PMCID: PMC5459777 DOI: 10.1186/s12284-017-0167-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/30/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Heat stress is one of the major abiotic threats to rice production, next to drought and salinity stress. Incidence of heat stress at reproductive phase of the crop results in abnormal pollination leading to floret sterility, low seed set and poor grain quality. Identification of QTLs and causal genes for heat stress tolerance at flowering will facilitate breeding for improved heat tolerance in rice. In the present study, we used 272 F8 recombinant inbred lines derived from a cross between Nagina22, a well-known heat tolerant Aus cultivar and IR64, a heat sensitive popular Indica rice variety to map the QTLs for heat tolerance. RESULTS To enable precise phenotyping for heat stress tolerance, we used a controlled phenotyping facility available at ICAR-Indian Institute of Wheat and Barley Research, Karnal, India. Based on 'days to 50% flowering' data of the RILs, we followed staggered sowing to synchronize flowering to impose heat stress at uniform stage. Using the Illumina infinium 5K SNP array for genotyping the parents and the RILs, and stress susceptibility and stress tolerance indices (SSI and STI) of percent spikelet sterility and yield per plant (g), we identified five QTLs on chromosomes 3, 5, 9 and 12. The identified QTLs explained phenotypic variation in the range of 6.27 to 21. 29%. Of these five QTLs, two high effect QTLs, one novel (qSTIPSS9.1) and one known (qSTIY5.1/qSSIY5.2), were mapped in less than 400 Kbp genomic regions, comprising of 65 and 54 genes, respectively. CONCLUSIONS The present study identified two major QTLs for heat tolerance in rice in narrow physical intervals, which can be employed for crop improvement by marker assisted selection (MAS) after development of suitable scorable markers for breeding of high yielding heat tolerant rice varieties. This is the first report of a major QTL for heat tolerance on chromosome 9 of rice. Further, a known QTL for heat tolerance on chromosome 5 was narrowed down from 23 Mb to 331 Kbp in this study.
Collapse
Affiliation(s)
- Shanmugavadivel PS
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Present address, Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024 India
| | - Amitha Mithra SV
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ramkumar MK
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132 001 India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| | | |
Collapse
|
33
|
Zhu S, Huang R, Wai HP, Xiong H, Shen X, He H, Yan S. Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:817-825. [PMID: 29158631 PMCID: PMC5671447 DOI: 10.1007/s12298-017-0465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 05/21/2023]
Abstract
High temperature stress is a major obstacle in rice productivity. Considerable progress has been made on studying heat tolerance (HT) at different stages. However, the genetic basis of HT at the booting stage is poorly understood. In this study, we analyzed the morphological features of a heat-sensitive japonica cultivar Sasanishiki under natural high temperature stress at the booting stage. The anthers became smaller and the number, and fertility, of pollen grains were decreased significantly. As a result, there was a dramatic reduction in spikelet fertility. In contrast, the indica cultivar Habataki showed high HT and normal spikelet fertility under high temperature stress. Additonally, a set of chromosome segment substitution lines, derived from Sasanishiki and Habataki, were evaluated for HT related quantitative trait loci (QTLs) across two environments in the natural field. A total of 12 QTLs associated with HT were detected, of which, 5 were identified in two environments, and 7 in one environment. Furthermore, one of the major-effect QTLs (qHTB3-3) detected on the long arm of chromosome 3, was confirmed using overlapping substituted lines. qHTB3-3 was finally mapped between the two markers RM3525 and 3-M95, approximately 2.8 Mb apart. These findings and further gene cloning of qHTB3-3 will help us better understand the molecular control of HT in rice, and may contribute to the development of high HT rice varieties.
Collapse
Affiliation(s)
- Shan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Rice National Engineering Laboratory (Nanchang), Nanchang Sub-center, National Rice Improvement Center, Jiangxi Provincial Key Laboratory of Rice Physiology and Genetics, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Renliang Huang
- Rice National Engineering Laboratory (Nanchang), Nanchang Sub-center, National Rice Improvement Center, Jiangxi Provincial Key Laboratory of Rice Physiology and Genetics, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Hnin Pwint Wai
- Rice National Engineering Laboratory (Nanchang), Nanchang Sub-center, National Rice Improvement Center, Jiangxi Provincial Key Laboratory of Rice Physiology and Genetics, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
- Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Ministry of Science and Technology), Kyaukse, 05151 Myanmar
| | - Hongliang Xiong
- Rice National Engineering Laboratory (Nanchang), Nanchang Sub-center, National Rice Improvement Center, Jiangxi Provincial Key Laboratory of Rice Physiology and Genetics, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xianhua Shen
- Rice National Engineering Laboratory (Nanchang), Nanchang Sub-center, National Rice Improvement Center, Jiangxi Provincial Key Laboratory of Rice Physiology and Genetics, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Song Yan
- Rice National Engineering Laboratory (Nanchang), Nanchang Sub-center, National Rice Improvement Center, Jiangxi Provincial Key Laboratory of Rice Physiology and Genetics, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|