1
|
Sultana T, Islam S, Azad MAK, Akanda MJH, Rahman A, Rahman MS. Phytochemical Profiling and Antimicrobial Properties of Various Sweet Potato ( Ipomoea batatas L.) Leaves Assessed by RP-HPLC-DAD. Foods 2024; 13:2787. [PMID: 39272552 PMCID: PMC11395622 DOI: 10.3390/foods13172787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to investigate the leaves of six cultivars of Ipomoea batatas L. from the USA, focusing on their Total Polyphenol Content (TPC), Total Flavonoid Content (TFC), antioxidant, and antimicrobial activities. TPC and TFC ranged from 7.29 ± 0.62 to 10.49 ± 1.04 mg TAE/g Dw, and from 2.30 ± 0.04 to 4.26 ± 0.23 mg QE/g Dw, respectively, with the highest values found in the 'O'Henry' variety. RP-High-Performance Liquid Chromatography identified six phenolic and flavonoid compounds: caffeic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and quercetin, excluding gallic acid. The highest levels of these compounds were found in acidified methanolic extracts. Antioxidant activities, measured by ABTS and DPPH assays, showed low IC50 values ranging from 94.6 ± 2.76 to 115.17 ± 7.65 µg/mL, and from 88.83 ± 1.94 to 147.6 ± 1.22 µg/mL. Ferric Ion-Reducing Antioxidant Potential (FRAP) measurements indicated significant antioxidant levels, varying from 1.98 ± 0.14 to 2.83 ± 0.07, with the 'O'Henry' variety exhibiting the highest levels. The antimicrobial activity test included five Gram-positive bacteria, three Gram-negative bacteria, and two pathogenic fungi. S. aureus, S. mutans, L. monocytogenes, E. coli, S. dysenteriae, and C. albicans were most susceptible to the methanolic extract. This study underscores the impressive antioxidant and antimicrobial activities of sweet potato leaves, often discarded, making them a valuable source of natural antioxidants, antimicrobials, and other health-promoting compounds.
Collapse
Affiliation(s)
- Tasbida Sultana
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Shahidul Islam
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Muhammad Abul Kalam Azad
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Md Jahurul Haque Akanda
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Atikur Rahman
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 S University Ave., Little Rock, AR 72204, USA
| | - Md Sahidur Rahman
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| |
Collapse
|
2
|
Amankwaah VA, Williamson S, Reynolds R, Ibrahem R, Pecota KV, Zhang X, Olukolu BA, Truong VD, Carey E, Felde TZ, Ssali R, Yencho GC. Development of NIRS calibration curves for sugars in baked sweetpotato. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4801-4807. [PMID: 37340988 DOI: 10.1002/jsfa.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Variability in sugar content between raw and cooked sweetpotato storage roots impact nutritional and dietary importance with implications for consumer preference. High-throughput phenotyping is required to breed varieties that satisfy consumer preferences. RESULTS Near-infrared reflectance spectroscopy (NIRS) calibration curves were developed for analysing sugars in baked storage roots using 147 genotypes from a population segregating for sugar content and other traits. The NIRS prediction curves had high coefficients of determination in calibration (R2 c) of 0.96 (glucose), 0.93 (fructose), 0.96 (sucrose), and 0.96 (maltose). The corresponding coefficients of determination for cross-validation (R2 cv) were 0.92 (glucose), 0.89 (fructose), 0.96 (sucrose) and 0.93 (maltose) and were similar to the R2 c for all sugars measured. The ratios of the standard deviation of the reference set to the standard error of cross-validation were greater than three for all sugars. These results confirm the applicability of the NIRS curves in efficiently determining sugar content in baked sweetpotato storage roots. External validation was performed on an additional 70 genotypes. Coefficients of determination (r2) were 0.88 (glucose), 0.88 (fructose), 0.86 (sucrose) and 0.49 (maltose). The results were comparable to those found for the calibration and cross-validation in fructose, glucose, and sucrose, but were moderate for maltose due to the low variability of maltose content in the population. CONCLUSIONS NIRS can be used for screening sugar content in baked sweetpotato storage roots in breeding programs and can be used to assist with the development of improved sweetpotato varieties that better meet consumer preferences. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Victor A Amankwaah
- CSIR - Crops Research Institute, Kumasi, Ghana
- Department of Horticultural Science, NC State University, Raleigh, NC, USA
| | - Sharon Williamson
- Department of Horticultural Science, NC State University, Raleigh, NC, USA
| | - Rong Reynolds
- USDA-ARS, Food Science Research Unit, NC State University, Raleigh, NC, USA
| | - Ragy Ibrahem
- Department of Horticultural Science, NC State University, Raleigh, NC, USA
| | - Kenneth V Pecota
- Department of Horticultural Science, NC State University, Raleigh, NC, USA
| | - Xiaofei Zhang
- CIAT International Centre for Tropical Agriculture (CIAT), Cali, Colombia
| | - Bode A Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Van-Den Truong
- USDA-ARS, Food Science Research Unit, NC State University, Raleigh, NC, USA
| | - Edward Carey
- Reputed Agric4Dev Stichting and Foundation, International Potato Centre (CIP), Kumasi, Ghana
| | | | - Reuben Ssali
- International Potato Centre (CIP), Kampala, Uganda
| | | |
Collapse
|
3
|
Yamakawa H, Mizubayashi T, Tanaka M. Polyploid QTL-seq revealed multiple QTLs controlling steamed tuber texture and starch gelatinization temperature in sweetpotato. BREEDING SCIENCE 2024; 74:103-113. [PMID: 39355626 PMCID: PMC11442106 DOI: 10.1270/jsbbs.23060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/26/2023] [Indexed: 10/03/2024]
Abstract
Sweetpotato (Ipomoea batatas) includes diverse cultivars with flesh textures ranging from dry to moist. Moist-fleshed cultivars often contain starch with a lower gelatinization temperature (GT). To elucidate the genetic determinants of flesh texture and starch GT, we conducted a QTL analysis using F1 progenies obtained from a cross between dry-fleshed and moist-fleshed cultivars, 'Benikomachi' (BK) and 'Amahazuki' (AH), by using an updated polyploid QTL-seq pipeline. Flesh texture was assessed based on the wet area ratio (WAR) observed on the cut surface of steamed tubers, as progenies with dry and moist flesh exhibited low and high WAR values, respectively, demonstrating a strong correlation. Three QTLs were found to regulate the WAR. Notably, two AH-derived alleles at 4.30 Mb on Itr_chr05 and 21.01 Mb on Itr_chr07, along with a BK-derived allele at 2.89 Mb on Itr_chr15, were associated with increased WAR. Starch GT, which displayed no correlation with either flesh texture or WAR, was distinctly influenced by two QTLs: a GT-increasing BK-derived allele at 1.74 Mb on Itr_chr05 and a GT-decreasing AH-derived allele at 30.16 Mb on Itr_chr12. Consequently, we developed DNA markers linked to WAR, offering a promising avenue for the targeted breeding of sweetpotato with the desired flesh textures.
Collapse
Affiliation(s)
- Hiromoto Yamakawa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tatsumi Mizubayashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Masaru Tanaka
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
| |
Collapse
|
4
|
Mu F, Zheng H, Zhao Q, Zhu M, Dong T, Kai L, Li Z. Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:193. [PMID: 38493089 PMCID: PMC10944623 DOI: 10.1186/s12870-024-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Collapse
Affiliation(s)
- Fangfang Mu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiaorui Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
5
|
Song W, Li C, Kou M, Li C, Gao G, Cai T, Tang W, Zhang Z, Nguyen T, Wang D, Wang X, Ma M, Gao R, Yan H, Shen Y, You C, Zhang Y, Li Q. Different regions and environments have critical roles on yield, main quality and industrialization of an industrial purple-fleshed sweetpotato ( Ipomoea batatas L. (Lam.)) "Xuzishu8". Heliyon 2024; 10:e25328. [PMID: 38390079 PMCID: PMC10881541 DOI: 10.1016/j.heliyon.2024.e25328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/10/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Purple-fleshed sweetpotato (PFSP) (Ipomoea batatas (L.) Lam), whose flesh is purple to dark purple, is a special variety type of sweetpotato, which has the characteristics of food crop, industrial crop and medicinal crop. The storage root (SR) of PFSP is rich in anthocyanins, starch, protein, soluble sugar, mineral elements, polyphenol, dietary fiber and so on, which has balanced and comprehensive nutritional value. And in recent years, its unique nutritional elements are increasingly known for their health functions. At present, there is no article on the characteristics and quality analysis of industrial xz8 variety. To explore the influence of different environments on the processing quality of xz8, we selected nine regions (Xuzhou, Jiawang, Pizhou, Xinyi, Peixian, Sihong, Yanchen, Xiangyang and Tianshui) to measure its yield and quality changes. The data demonstrated that xz8 has a very consistent high yield performance. In Tianshui, the anthocyanins, protein and minerals contents were significantly higher and yield also above average. Moreover, the variety with the lowest starch content exhibited the best taste. On the basis of the above results, it suggested that quite practicable to promote xz8 cultivation and suitable for processing in these areas. Thus, our present findings improve our understanding of xz8 variety and provide the basis for the industrial production of PFSP with strong prospects for success.
Collapse
Affiliation(s)
- Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chengyang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Guangzhen Gao
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Tingdong Cai
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Zhenyi Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Thanhliem Nguyen
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
| | - Dandan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Meng Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Yifan Shen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chang You
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| |
Collapse
|
6
|
Chen SP, Kuo YW, Lin JS. Review: Defense responses in sweetpotato (Ipomoea batatas L.) against biotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111893. [PMID: 37813194 DOI: 10.1016/j.plantsci.2023.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Sweetpotato (Ipomoea batatas L.) is regarded as amongst the world's most important crops for food, vegetable, forage, and raw material for starch and alcohol production. Since pest attack and disease infection are the main limiting aspects frequently causing the yield loss and quality degradation of sweetpotato, it is a great demand to develop the effective defense strategies for maintaining productivity. In the past decade, many studies have focused on dynamic analysis at the physiological, biochemical, and molecular responses of sweetpotatoes to environmental challenges. This review offers an overview of the defense mechanisms against biotic stresses in sweetpotato observed so far, particularly insect herbivory and pathogen infections. The defenses of sweetpotato include the regulation of the toxic and anti-digestive proteins, plant-derived compounds, physical barrier formation, and sugar distribution. Ipomoelin and sporamin have been extensively researched for the defense against herbivore wounding. Herbivory-induced plant volatiles, chlorogenic acid, and latex phytochemicals play important roles in defenses for insect herbivory. Induction of IbSWEET10 reduces sugar content to mediate F. oxysporum resistance. Therefore, these researches provide the genetic strategies for improving resistance bioengineering and breeding of sweetpotato crops and future prospects for research in this field.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan.
| | - Yun-Wei Kuo
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
7
|
Yang D, Bian X, Kim HS, Jin R, Gao F, Chen J, Ma J, Tang W, Zhang C, Sun H, Xie Y, Li Z, Kwak SS, Ma D. IbINV Positively Regulates Resistance to Black Rot Disease Caused by Ceratocystis fimbriata in Sweet Potato. Int J Mol Sci 2023; 24:16454. [PMID: 38003642 PMCID: PMC10671118 DOI: 10.3390/ijms242216454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.
Collapse
Affiliation(s)
- Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Xiaofeng Bian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Rong Jin
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Fangyuan Gao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Jingwei Chen
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Jukui Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Wei Tang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Chengling Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Yiping Xie
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Zongyun Li
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China;
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Daifu Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| |
Collapse
|
8
|
Nakatumba-Nabende J, Babirye C, Tusubira JF, Mutegeki H, Nabiryo AL, Murindanyi S, Katumba A, Nantongo J, Sserunkuma E, Nakitto M, Ssali R, Makunde G, Moyo M, Campos H. Using machine learning for image-based analysis of sweetpotato root sensory attributes. SMART AGRICULTURAL TECHNOLOGY 2023; 5:None. [PMID: 37800125 PMCID: PMC10547598 DOI: 10.1016/j.atech.2023.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023]
Abstract
The sweetpotato breeding process involves assessing different phenotypic traits, such as the sensory attributes, to decide which varieties to progress to the next stage during the breeding cycle. Sensory attributes like appearance, taste, colour and mealiness are important for consumer acceptability and adoption of new varieties. Therefore, measuring these sensory attributes is critical to inform the selection of varieties during breeding. Current methods using a trained human panel enable screening of different sweetpotato sensory attributes. Despite this, such methods are costly and time-consuming, leading to low throughput, which remains the biggest challenge for breeders. In this paper, we describe an approach to apply machine learning techniques with image-based analysis to predict flesh-colour and mealiness sweetpotato sensory attributes. The developed models can be used as high-throughput methods to augment existing approaches for the evaluation of flesh-colour and mealiness for different sweetpotato varieties. The work involved capturing images of boiled sweetpotato cross-sections using the DigiEye imaging system, data pre-processing for background elimination and feature extraction to develop machine learning models to predict the flesh-colour and mealiness sensory attributes of different sweetpotato varieties. For flesh-colour the trained Linear Regression and Random Forest Regression models attained R 2 values of 0.92 and 0.87, respectively, against the ground truth values given by a human sensory panel. In contrast, the Random Forest Regressor and Gradient Boosting model attained R 2 values of 0.85 and 0.80, respectively, for the prediction of mealiness. The performance of the models matched the desirable R 2 threshold of 0.80 for acceptable comparability to the human sensory panel showing that this approach can be used for the prediction of these attributes with high accuracy. The machine learning models were deployed and tested by the sweetpotato breeding team at the International Potato Center in Uganda. This solution can automate and increase throughput for analysing flesh-colour and mealiness sweetpotato sensory attributes. Using machine learning tools for analysis can inform and quicken the selection of promising varieties that can be progressed for participatory evaluation during breeding cycles and potentially lead to increased chances of adoption of the varieties by consumers.
Collapse
Affiliation(s)
| | - Claire Babirye
- Makerere Artificial Intelligence Lab, Makerere University, Uganda
| | | | - Henry Mutegeki
- Makerere Artificial Intelligence Lab, Makerere University, Uganda
| | - Ann Lisa Nabiryo
- Makerere Artificial Intelligence Lab, Makerere University, Uganda
| | | | - Andrew Katumba
- Department of Electrical and Computer Engineering, Makerere University, Uganda
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Weng Z, Deng Y, Tang F, Zhao L, Zhao L, Wang Y, Dai X, Zhou Z, Cao Q. Screening and optimisation of in vitro pollen germination medium for sweetpotato (Ipomoea batatas). PLANT METHODS 2023; 19:93. [PMID: 37644497 PMCID: PMC10463589 DOI: 10.1186/s13007-023-01050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/04/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Sweetpotato is an important vegetable and food crop that is bred through sexual crosses and systematic selection. The use of in vitro germination of sweetpotato pollen to test its viability has important theoretical and practical implications for improving the efficiency of sweetpotato crossbreeding by controlling pollination and conducting research on sweetpotato pollen biology. RESULTS In this study, we observed the morphological structure of sweetpotato pollen under a scanning electron microscope (SEM), developed an effective method for the in vitro germination of sweetpotato pollen, and examined the viability of sweetpotato pollen after treating plants at different temperatures before blossoming. Sweetpotato pollen grains are spherical, with an average diameter of 87.07 ± 3.27 μm (excluding spines), with multiple germination pores and reticulate pollen surface sculpture. We applied numerous media to sweetpotato pollen germination in vitro to screen the initial medium and optimised the medium components through single-factor design. The most effective liquid medium for in vitro sweetpotato pollen germination contained 50 g/L Sucrose, 50 g/L Polyethylene glycol 4000 (PEG4000), 100 mg/L Boric acid and 300 mg/L Calcium nitrate, with a pH = 6.0. The optimum growth temperature for pollen development in sweetpotato was from 25 to 30 °C. Neither staining nor in situ germination could accurately determine the viability of sweetpotato pollen. CONCLUSIONS In vitro germination can be used to effectively determine sweetpotato pollen viability. The best liquid medium for in vitro germination of sweetpotato pollen contained 50 g/L Sucrose, 50 g/L Polyethylene glycol 4000 (PEG4000), 100 mg/L Boric acid and 300 mg/L Calcium nitrate, with the pH adjusted to 6.0. This study provides a reliable medium for the detection of sweetpotato pollen viability, which can provide a theoretical reference for sweetpotato genetics and breeding.
Collapse
Affiliation(s)
- Zongkuan Weng
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Yitong Deng
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Fen Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Lukuan Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Lingxiao Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Yuan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Xibin Dai
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Institute of Sweetpotato Research, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, China.
| |
Collapse
|
10
|
Haque E, Shirasawa K, Suematsu K, Tabuchi H, Isobe S, Tanaka M. Polyploid GWAS reveals the basis of molecular marker development for complex breeding traits including starch content in the storage roots of sweet potato. FRONTIERS IN PLANT SCIENCE 2023; 14:1181909. [PMID: 37342138 PMCID: PMC10277646 DOI: 10.3389/fpls.2023.1181909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 06/22/2023]
Abstract
Given the importance of prioritizing genome-based breeding of sweet potato to enable the promotion of food and nutritional security for future human societies, here, we aimed to dissect the genetic basis of storage root starch content (SC) when associated with a complex set of breeding traits including dry matter (DM) rate, storage root fresh weight (SRFW), and anthocyanin (AN) content in a mapping population containing purple-fleshed sweet potato. A polyploid genome-wide association study (GWAS) was extensively exploited using 90,222 single-nucleotide polymorphisms (SNPs) obtained from a bi-parental 204 F1 population between 'Konaishin' (having high SC but no AN) and 'Akemurasaki' (having high AN content but moderate SC). Through the comparison of polyploid GWAS on the whole set of the 204 F1, 93 high-AN-containing F1, and 111 low-AN-containing F1 populations, a total of two (consists of six SNPs), two (14 SNPs), four (eight SNPs), and nine (214 SNPs) significantly associated signals were identified for the variations of SC, DM, SRFW, and the relative AN content, respectively. Of them, a novel signal associated with SC, which was most consistent in 2019 and 2020 in both the 204 F1 and 111 low-AN-containing F1 populations, was identified in homologous group 15. The five SNP markers associated with homologous group 15 could affect SC improvement with a degree of positive effect (~4.33) and screen high-starch-containing lines with higher efficiency (~68%). In a database search of 62 genes involved in starch metabolism, five genes including enzyme genes granule-bound starch synthase I (IbGBSSI), α-amylase 1D, α-amylase 1E, and α-amylase 3, and one transporter gene ATP/ADP-transporter were located on homologous group 15. In an extensive qRT-PCR of these genes using the storage roots harvested at 2, 3, and 4 months after field transplantation in 2022, IbGBSSI, which encodes the starch synthase isozyme that catalyzes the biosynthesis of amylose molecule, was most consistently elevated during starch accumulation in sweet potato. These results would enhance our understanding of the underlying genetic basis of a complex set of breeding traits in the starchy roots of sweet potato, and the molecular information, particularly for SC, would be a potential platform for molecular marker development for this trait.
Collapse
Affiliation(s)
- Emdadul Haque
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Miyakonojo, Japan
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Keisuke Suematsu
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Miyakonojo, Japan
| | - Hiroaki Tabuchi
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Miyakonojo, Japan
| | - Sachiko Isobe
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Masaru Tanaka
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Miyakonojo, Japan
| |
Collapse
|
11
|
Xiang W, Li K, Dong F, Zhang Y, Zeng Q, Jiang L, Zhang D, Huang Y, Xiao L, Zhang Z, Zhang C. Development of a multicriteria decision-making model for evaluating hybrid offspring in the sweetpotato ( Ipomoea batatas L.) breeding process. BREEDING SCIENCE 2023; 73:246-260. [PMID: 37840976 PMCID: PMC10570886 DOI: 10.1270/jsbbs.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 10/17/2023]
Abstract
Sweetpotato variety breeding is always a long process. Screening of hybrid offspring is dominated by empirical judgment in this process. Data analysis and decision fatigue have been troubling breeders. In recent years, the low-efficiency screening mode has been unable to meet the requirements of sweetpotato germplasm innovation. Therefore, it is necessary to construct a high-efficiency method that can screen germplasms for different usages, for mining elite genotypes, and to create dedicated sweetpotato varieties. In this article, the multicriteria decision-making (MCDM) model was constructed based on six agronomic traits, including fresh root yield, vine length, vine diameter, branch number, root number and the spatial distribution of storage roots, and five quality traits, including dry matter content, marketable root yield, uniformity of roots, starch content and the edible quality score. Among these, the edible quality score was calculated by using fuzzy comprehensive evaluation to integrate the sensory scores of color, odor, sweetness, stickiness and fibrous taste. The MCDM model was compared with the traditional screening method via an evaluation in 25 sweetpotato materials. The interference of subjective factors on the evaluation results was significantly reduced. The MCDM model is more overall, more accurate and faster than the traditional screening method in the selection of elite sweetpotato materials. It could be programmed to serve the breeders in combination with the traditional screening method.
Collapse
Affiliation(s)
- Wei Xiang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Kailong Li
- Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Fang Dong
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Ya Zhang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Qiang Zeng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Ling Jiang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Daowei Zhang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Yanlan Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Liang Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, PR China
| | - Zhuo Zhang
- Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| | - Chaofan Zhang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, PR China
| |
Collapse
|
12
|
Park H, Abe T, Kunitake H, Hirano T. Characterization of a novel mutant with inhibition of storage root formation in sweet potato. BREEDING SCIENCE 2023; 73:212-218. [PMID: 37404352 PMCID: PMC10316310 DOI: 10.1270/jsbbs.22090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/07/2023] [Indexed: 07/06/2023]
Abstract
Sweet potato is a widely cultivated crop with storage roots. Although many studies have been conducted on the mechanism of its storage root formation, the details have not been fully elucidated. We screened mutant lines with inhibition of storage root formation to clarify parts of the mechanism. In this study, the process of storage root formation in one of the mutant lines, C20-8-1, was investigated. The inhibition of storage root formation was observed during the early stages of growth. The roots in C20-8-1 did not show histological differences compared to those in wild type. The transition from fibrous roots to pencil roots, which are the developmental stages prior to mature storage root formation, was delayed or inhibited in C20-8-1. The upregulation of starch biosynthesis-related genes and downregulation of lignin biosynthesis genes with storage root swelling were not confirmed in the root of C20-8-1 during the developmental transition stage, suggesting that most of the roots in C20-8-1 are in the pre-transition state toward the storage root swelling. C20-8-1 showed a mutant phenotype during the critical period of storage root swelling initiation, and further clarification of this mutation is expected to provide new insights into storage root formation.
Collapse
Affiliation(s)
- Hyungjun Park
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
| | - Hisato Kunitake
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Tomonari Hirano
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| |
Collapse
|
13
|
Zhao L, Zhao D, Xiao S, Zhang A, Deng Y, Dai X, Zhou Z, Ji Z, Cao Q. Comparative Metabolomic and Transcriptomic Analyses of Phytochemicals in Two Elite Sweet Potato Cultivars for Table Use. Molecules 2022; 27:molecules27248939. [PMID: 36558068 PMCID: PMC9782294 DOI: 10.3390/molecules27248939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
To elucidate nutritional components in sweet potato cultivars for table use and to compare the phytochemicals of cultivars from different countries, 'Kokei No. 14' and 'Xinxiang' were selected. The physiological parameters and metabolites were determined using the colorimetric method and widely targeted metabolomics, respectively. Transcriptomic analysis was performed to explain the mechanism that resulted in phytochemical differences. 'Xinxiang' showed higher flavonoid and carotenoid contents. Metabolomics showed five upregulated flavonoids. Two essential amino acids (EAAs) and one conditionally essential amino acid (CEAA) were upregulated, whereas four EAAs and two CEAAs were downregulated. Unlike lipids, in which only one of thirty-nine was upregulated, nine of twenty-seven differentially accumulated phenolic acids were upregulated. Three of the eleven different alkaloids were upregulated. Similarly, eight organic acids were downregulated, with two upregulated. In addition, three of the seventeen different saccharides and alcohols were upregulated. In 'other metabolites,' unlike vitamin C, 6'-O-Glucosylaucubin and pantetheine were downregulated. The differentially accumulated metabolites were enriched to pathways of the biosynthesis of secondary metabolites, ABC transporters, and tyrosine metabolism, whereas the differentially expressed genes were mainly concentrated in the metabolic pathway, secondary metabolite biosynthesis, and transmembrane transport functions. These results will optimize the sweet potato market structure and enable a healthier diet for East Asian residents.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Donglan Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Shizhuo Xiao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - An Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Yitong Deng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xibin Dai
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhilin Zhou
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Zhixian Ji
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinghe Cao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence:
| |
Collapse
|
14
|
Park H, Narasako Y, Abe T, Kunitake H, Hirano T. Comprehensive effects of heavy-ion beam irradiation on sweet potato ( Ipomoea batatas [L.] Lam.). PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:311-316. [PMID: 36349229 PMCID: PMC9592942 DOI: 10.5511/plantbiotechnology.22.0725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Sweet potato is a major root crop with nutritious tuberous roots. The mechanism of tuberous root development has not yet been adequately elucidated. Genetic resources are required to develop the molecular understanding of sweet potato. Heavy-ion beams were applied to hexaploid sweet potato for an increase in genetic variation, after which the comprehensive effects of heavy-ion beam irradiation were investigated. In vitro cultured shoots with an axillary bud of 'Beniharuka' were irradiated with Ar-ions at a dose of 1-5 Gy and C-ions at a dose of 5-20 Gy, and three irradiated lines were separated from each irradiated shoot. The shoot regeneration was inhibited at high doses of each ion irradiation. Ar-ion irradiation had an especially high biological effect on shoot regeneration. A total of 335 lines were obtained, consisting of 104 and 231 lines derived from Ar- and C-ion irradiation, respectively. The change in the DNA content of the lines was analyzed by flow cytometry to evaluate the irradiation-induced damage to the DNA. The two lines demonstrated significant differences in the DNA content and changes at the chromosome level. The screening for the morphological mutants was conducted in the field. Some irradiated lines showed inhibited or no tuberous root phenotype as mutant candidates. Additionally, the high-yield mutant candidates were dominated by Ar-ion irradiation. It was indicated that heavy-ion beam mutagenesis is effective in broadening the range of the phenotypes corresponding to tuberous root formation in hexaploid sweet potato.
Collapse
Affiliation(s)
- Hyungjun Park
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Yosuke Narasako
- Kushima AoiFarm Co., 6564-12 Naru, Kushima-shi, Miyazaki 889-3531, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hisato Kunitake
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Tomonari Hirano
- Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| |
Collapse
|
15
|
Yan M, Nie H, Wang Y, Wang X, Jarret R, Zhao J, Wang H, Yang J. Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. PLANT COMMUNICATIONS 2022; 3:100332. [PMID: 35643086 PMCID: PMC9482988 DOI: 10.1016/j.xplc.2022.100332] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/17/2022] [Accepted: 05/02/2022] [Indexed: 05/14/2023]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) is one of the most important root crops cultivated worldwide. Because of its adaptability, high yield potential, and nutritional value, sweetpotato has become an important food crop, particularly in developing countries. To ensure adequate crop yields to meet increasing demand, it is essential to enhance the tolerance of sweetpotato to environmental stresses and other yield-limiting factors. The highly heterozygous hexaploid genome of I. batatas complicates genetic studies and limits improvement of sweetpotato through traditional breeding. However, application of next-generation sequencing and high-throughput genotyping and phenotyping technologies to sweetpotato genetics and genomics research has provided new tools and resources for crop improvement. In this review, we discuss the genomics resources that are available for sweetpotato, including the current reference genome, databases, and available bioinformatics tools. We systematically review the current state of knowledge on the polyploid genetics of sweetpotato, including studies of its origin and germplasm diversity and the associated mapping of important agricultural traits. We then outline the conventional and molecular breeding approaches that have been applied to sweetpotato. Finally, we discuss future goals for genetic studies of sweetpotato and crop improvement via breeding in combination with state-of-the-art multi-omics approaches such as genomic selection and gene editing. These approaches will advance and accelerate genetic improvement of this important root crop and facilitate its sustainable global production.
Collapse
Affiliation(s)
- Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Haozhen Nie
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yunze Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyi Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | - Jiamin Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hongxia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
16
|
Leite CEC, Souza BDKF, Manfio CE, Wamser GH, Alves DP, de Francisco A. Sweet Potato New Varieties Screening Based on Morphology, Pulp Color, Proximal Composition, and Total Dietary Fiber Content via Factor Analysis and Principal Component Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:852709. [PMID: 35599896 PMCID: PMC9119308 DOI: 10.3389/fpls.2022.852709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
A sample set of 18 sweet potatoes [Ipomoea batatas (L.) Lam] segmented into six registered cultivars and 12 new varieties were evaluated. The 142 tuberous roots were obtained from a sweet potato germplasm bank (BAG-sweet potato; -27.417713768824555 and -49.64874168439556), specifically from plants belonging to a sweet potato breeding program. All samples were characterized according to their morphology, instrumental pulp color, proximate composition, and total dietary fiber. The analytical results were submitted to parametric and non-parametric statistical tests for sample variance data comparison. Moreover, the screening of the cultivars and new varieties was performed by exploratory statistical analysis, factor analysis (FA), and principal component analysis (PCA). From the sixteen independent variables that characterized the samples, the exploratory FA identified thirteen that had a communality greater than 0.7, with 92.08% of assertiveness. The PCA generated 4 principal components able to account for 84.01% of the explanatory variance. So, among the six registered cultivars, SCS372 Marina and SCS370 Luiza showed the capability to be employed as cultivars for production. Among the 12 sweet potato new varieties, samples 17025-13, 17125-10, and 17117 met the requirements for patent and registration. These results will be useful to farmers who wish to use these sweet potatoes in the development of their crops.
Collapse
Affiliation(s)
- Cláudio Eduardo Cartabiano Leite
- Cereal Science and Technology Laboratory, Food Science Post-Graduation Program (PPGCAL), Agrarian Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Brunna de Kácia Ferreira Souza
- Cereal Science and Technology Laboratory, Food Science and Technology Department (CTA), Agrarian Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Candida Elisa Manfio
- Agricultural Research and Rural Extension of Santa Catarina (EPAGRI) – Ituporanga Experimental Station, Ituporanga, Brazil
| | - Gerson Henrique Wamser
- Agricultural Research and Rural Extension of Santa Catarina (EPAGRI) – Ituporanga Experimental Station, Ituporanga, Brazil
| | - Daniel Pedrosa Alves
- Agricultural Research and Rural Extension of Santa Catarina (EPAGRI) – Ituporanga Experimental Station, Ituporanga, Brazil
| | - Alicia de Francisco
- Cereal Science and Technology Laboratory, Food Science Post-Graduation Program (PPGCAL), Agrarian Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
17
|
Zhao D, Zhao L, Liu Y, Zhang A, Xiao S, Dai X, Yuan R, Zhou Z, Cao Q. Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway for the Accumulation of Anthocyanins and Other Flavonoids in Sweetpotato Root Skin and Leaf Vein Base. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2574-2588. [PMID: 35175040 DOI: 10.1021/acs.jafc.1c05388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam.] is a major tuberous root crop that is rich in flavonoids. Here, we discovered a spontaneous mutation in the color of the leaf vein base (LVB) and root skin (RS) in the Zheshu 81 cultivar. The flavonoid and anthocyanin metabolites and molecular mechanism were analyzed using metabolome and transcriptome data. Compared to the wild type, 13 differentially accumulated metabolites (DAMs) in the LVB and 59 DAMs in the RS were all significantly downregulated. Moreover, all the anthocyanin metabolites decreased significantly. The differentially expressed genes (DEGs) encoding the key enzymes in the later enzymatic reaction of anthocyanin and flavonoid were significantly downregulated in the mutant. The expression trends of the transcription factor MYB were evidently related to the anthocyanin content. These results offer insights into the coloration in the LVB and RS and a theoretical basis for determining the regulation of flavonoid and anthocyanin synthesis in sweetpotato.
Collapse
Affiliation(s)
- Donglan Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Lingxiao Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Yang Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - An Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Shizhuo Xiao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Xibin Dai
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Rui Yuan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| |
Collapse
|
18
|
Batista LG, Mello VH, Souza AP, Margarido GRA. Genomic prediction with allele dosage information in highly polyploid species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:723-739. [PMID: 34800132 DOI: 10.1007/s00122-021-03994-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Including allele, dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels. Several studies have shown how to leverage allele dosage information to improve the accuracy of genomic selection models in autotetraploid. In this study, we expanded the methodology used for genomic selection in autotetraploid to higher (and mixed) ploidy levels. We adapted the models to build covariance matrices of both additive and digenic dominance effects that are subsequently used in genomic selection models. We applied these models using estimates of ploidy and allele dosage to sugarcane and sweet potato datasets and validated our results by also applying the models in simulated data. For the simulated datasets, including allele dosage information led up to 140% higher mean predictive abilities in comparison to using diploidized markers. Including dominance effects were highly advantageous when using diploidized markers, leading to mean predictive abilities which were up to 115% higher in comparison to only including additive effects. When the frequency of heterozygous genotypes in the population was low, such as in the sugarcane and sweet potato datasets, there was little advantage in including allele dosage information in the models. Overall, we show that including allele dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels.
Collapse
Affiliation(s)
- Lorena G Batista
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Victor H Mello
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Anete P Souza
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Gabriel R A Margarido
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
19
|
Yamakawa H, Haque E, Tanaka M, Takagi H, Asano K, Shimosaka E, Akai K, Okamoto S, Katayama K, Tamiya S. Polyploid QTL-seq towards rapid development of tightly linked DNA markers for potato and sweetpotato breeding through whole-genome resequencing. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2040-2051. [PMID: 34008333 PMCID: PMC8486255 DOI: 10.1111/pbi.13633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 05/27/2023]
Abstract
Potato (Solanum tuberosum L.) and sweetpotato (Ipomoea batatas L.), which are nutritionally and commercially important tuberous crops, possess a perplexing heredity because of their autopolyploid genomes. To reduce cross-breeding efforts for selecting superior cultivars from progenies with innumerable combinations of traits, DNA markers tightly linked to agronomical traits are required. To develop DNA markers, we developed a method for quantitative trait loci (QTL) mapping using whole-genome next-generation sequencing (NGS) in autopolyploid crops. To apply the NGS-based bulked segregant method, QTL-seq was modified. (1) Single parent-specific simplex (unique for one homologous chromosome) single-nucleotide polymorphisms (SNPs), which present a simple segregation ratio in the progenies, were exploited by filtering SNPs by SNP index (allele frequency). (2) Clusters of SNPs, which were inherited unevenly between bulked progenies with opposite phenotypes, especially those with an SNP index of 0 for the bulk that did not display the phenotypes of interest, were explored. These modifications allowed for separate tracking of alleles located on each of the multiple homologous chromosomes. By applying this method, clusters of SNPs linked to the potato cyst nematode resistance H1 gene and storage root anthocyanin (AN) content were identified in tetraploid potato and hexaploid sweetpotato, respectively, and completely linked DNA markers were developed at the site of the presented SNPs. Thus, polyploid QTL-seq is a versatile method that is free from specialized manipulation for sequencing and construction of elaborate linkage maps and facilitates rapid development of tightly linked DNA markers in autopolyploid crops, such as potato and sweetpotato.
Collapse
Affiliation(s)
- Hiromoto Yamakawa
- Institute of Crop ScienceNational Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - Emdadul Haque
- Kyushu‐Okinawa Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MiyakonojoMiyazakiJapan
| | - Masaru Tanaka
- Kyushu‐Okinawa Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MiyakonojoMiyazakiJapan
| | - Hiroki Takagi
- Department of Bioproduction ScienceIshikawa Prefectural UniversityNonoichi, IshikawaJapan
| | - Kenji Asano
- Hokkaido Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MemuroHokkaidoJapan
| | - Etsuo Shimosaka
- Hokkaido Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MemuroHokkaidoJapan
| | - Kotaro Akai
- Hokkaido Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MemuroHokkaidoJapan
| | - Satoshi Okamoto
- Hokkaido Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MemuroHokkaidoJapan
- Present address:
Center for Seeds and SeedlingsNational Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - Kenji Katayama
- Hokkaido Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MemuroHokkaidoJapan
| | - Seiji Tamiya
- Hokkaido Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MemuroHokkaidoJapan
- Present address:
Tohoku Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)MoriokaIwateJapan
| |
Collapse
|
20
|
Haque E, Tabuchi H, Monden Y, Suematsu K, Shirasawa K, Isobe S, Tanaka M. QTL analysis and GWAS of agronomic traits in sweetpotato ( Ipomoea batatas L.) using genome wide SNPs. BREEDING SCIENCE 2020; 70:283-291. [PMID: 32714050 PMCID: PMC7372034 DOI: 10.1270/jsbbs.19099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/08/2019] [Indexed: 05/16/2023]
Abstract
While sweetpotato (Ipomoea batatas L.) improvement has generally been done by field-based selection, molecular genetic studies on traits of interest, i.e., molecular markers are needed for enhancing the breeding program of this world's 7th most important crop, as such markers facilitate marker-assisted selection. Here, we performed a combined approach of QTLs analyses and GWAS of storage root β-carotene content (BC), dry-matter (DM) and starch content (SC) using the genetic linkage maps constructed with 5,952 and 5,640 SNPs obtained from F1 progenies between cultivars 'J-Red' and 'Choshu'. BC was negatively correlated with DM (r = -0.45) and SC (r = -0.51), while DM was positively correlated with SC (r = 0.94). In both parental maps, a total of five, two and five QTL regions on linkage groups 7 and 8 were associated with BC, DM and SC, respectively. In GWAS of BC, one strong signal (P = 1.04 × 10-9) was observed on linkage group 8, which co-located with one of the above QTL regions. The SNPs markers found here, particularly for β-carotene, would be useful base resources for future marker-assisted selection program with this trait.
Collapse
Affiliation(s)
- Emdadul Haque
- Kyushu Okinawa Agricultural Research Center, NARO, 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
| | - Hiroaki Tabuchi
- Kyushu Okinawa Agricultural Research Center, NARO, 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
| | - Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Keisuke Suematsu
- Kyushu Okinawa Agricultural Research Center, NARO, 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Masaru Tanaka
- Kyushu Okinawa Agricultural Research Center, NARO, 6651-2 Yokoichi-cho, Miyakonojo, Miyazaki 885-0091, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
21
|
Yang Y, Shi D, Wang Y, Zhang L, Chen X, Yang X, Xiong H, Bhattarai G, Ravelombola W, Olaoye D, Yang G, Shi A. Transcript profiling for regulation of sweet potato skin color in Sushu8 and its mutant Zhengshu20. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:1-9. [PMID: 31923733 DOI: 10.1016/j.plaphy.2019.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Sweet potato [Ipomoea batatas (L.) Lam.] (2n = 6x = 90) is an economic important autopolyploid species and its varieties differ regarding storage root skin and flesh colors. Two sweet potato genetic lines, Sushu8 (with red skin) and its mutant Zhengshu20, which produced different colored storage roots, were used in this study. The total flavonoid, carotenoid, and anthocyanin contents of the two lines were analyzed and revealed that anthocyanin was primarily responsible for the skin color difference. In addition, the early storage root expanding stage was the key period for anthocyanin accumulation in Sushu8. A total of 24 samples, including the skins of the fibrous root and the storage root at the early and middle expanding stages as well as the flesh of the storage root at the middle expanding stage, were analyzed based on differentially expressed genes identified by transcriptome sequencing and a weighted gene co-expression network analysis. Two gene modules highly related with the regulation of sweet potato skin color through stress responses as well as starch synthesis and glucose metabolism were identified. Furthermore, the WRKY75 transcription factor gene, fructose-bisphosphate aldolase 2 gene, and other DEGs highly related to the regulation of anthocyanin metabolism were enriched in the brown and green modules.
Collapse
Affiliation(s)
- Yufeng Yang
- Cereal Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Department of Horticulture, University of Arkansas, Fayetteville, AR72701, USA.
| | - Dianyi Shi
- College of Life Sciences, Neijiang Normal University, Neijiang, 641100, China.
| | - Yannan Wang
- Cereal Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Li Zhang
- Cereal Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Xiangong Chen
- Cereal Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Xiaoping Yang
- Cereal Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Haizheng Xiong
- Department of Horticulture, University of Arkansas, Fayetteville, AR72701, USA.
| | - Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR72701, USA.
| | - Waltram Ravelombola
- Department of Horticulture, University of Arkansas, Fayetteville, AR72701, USA.
| | - Dotun Olaoye
- Department of Horticulture, University of Arkansas, Fayetteville, AR72701, USA.
| | - Guohong Yang
- Cereal Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR72701, USA.
| |
Collapse
|
22
|
Wei C, Li M, Qin J, Xu Y, Zhang Y, Wang H. Transcriptome analysis reveals the effects of grafting on sweetpotato scions during the full blooming stages. Genes Genomics 2019; 41:895-907. [PMID: 31030407 DOI: 10.1007/s13258-019-00823-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/20/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Sweetpotato (Ipomoea batatas) is a hexaploid plant and generally most genotypes do not flower at all in sub-tropics. Heterografting was carried out between sweetpotato cultivar 'Xushu 18' and Japanese morning glory (Ipomoea nil). With sweetpotato as 'scion' and I. nil as 'rootstock', sweetpotato was induced flowering in the autumn. However, little is known about the molecular mechanisms underlying sweetpotato responses to grafting, especially during the full blooming stages. OBJECTIVES To investigate the poorly understood molecular responses underlying the grafting-induced phenotypic processes in sweetpotato at full anthesis. METHODS In this study, to explore the transcriptome diversity and complexity of sweetpotato, PacBio Iso-Seq and Illumina RNA-seq analysis were combined to obtain full-length transcripts and to profile the changes in gene expression of five tissues: scion flowers (SF), scion leaves (SL), scion stems (SS), own-rooted leaves (OL) and own-rooted stems (OS). RESULTS A total of 138,151 transcripts were generated with an average length of 2255 bp, and more than 72% (100,396) of the transcripts were full-length. During full blooming, to examine the difference in gene expression of sweetpotato under grafting and natural growth conditions, 7905, 7795 and 15,707 differentially expressed genes were detected in pairwise comparisons of OS versus SS, OL versus SL and SL versus SF, respectively. Moreover, differential transcription of genes associated with anthocyanin biosynthesis, light pathway and photosynthesis, ethylene signal transduction pathway was observed in scion responses to grafting. CONCLUSION Our study is useful in understanding the molecular basis of grafting-induced flowering in grafted sweetpotatoes, and will lay a foundation for further research on sweetpotato breeding in the future.
Collapse
Affiliation(s)
- Changhe Wei
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ming Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China.,Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Jia Qin
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yunfan Xu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yizheng Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Haiyan Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
23
|
Muthamilarasan M, Singh NK, Prasad M. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. ADVANCES IN GENETICS 2019; 103:1-38. [PMID: 30904092 DOI: 10.1016/bs.adgen.2019.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For several decades, researchers are working toward improving the "major" crops for better adaptability and tolerance to environmental stresses. However, little or no research attention is given toward neglected and underutilized crop species (NUCS) which hold the potential to ensure food and nutritional security among the ever-growing global population. NUCS are predominantly climate resilient, but their yield and quality are compromised due to selective breeding. In this context, the importance of omics technologies namely genomics, transcriptomics, proteomics, phenomics and ionomics in delineating the complex molecular machinery governing growth, development and stress responses of NUCS is underlined. However, gaining insights through individual omics approaches will not be sufficient to address the research questions, whereas integrating these technologies could be an effective strategy to decipher the gene function, genome structures, biological pathways, metabolic and regulatory networks underlying complex traits. Given this, the chapter enlists the importance of NUCS in food and nutritional security and provides an overview of deploying omics approaches to study the NUCS. Also, the chapter enumerates the status of crop improvement programs in NUCS and suggests implementing "integrating omics" for gaining a better understanding of crops' response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Mehanathan Muthamilarasan
- National Institute of Plant Genome Research, New Delhi, India; ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Nagendra Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
24
|
Katayama K, Nishinaka M, Nakamura Y, Kuranouchi T, Ohara-Takada A, Fujita K, Kitahara K. New Sweetpotato Lines have High Amylose and Resistant Starch Contents. STARCH-STARKE 2018. [DOI: 10.1002/star.201800180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenji Katayama
- Field Crop Research Division, Institute of Crop Science, National Agriculture and Food Research Organization; 2-1-2, Kannondai, Tsukuba Ibaraki 305-8518 Japan
| | - Mio Nishinaka
- Field Crop Research Division, Institute of Crop Science, National Agriculture and Food Research Organization; 2-1-2, Kannondai, Tsukuba Ibaraki 305-8518 Japan
| | - Yoshiyuki Nakamura
- Field Crop Research Division, Institute of Crop Science, National Agriculture and Food Research Organization; 2-1-2, Kannondai, Tsukuba Ibaraki 305-8518 Japan
| | - Toshikazu Kuranouchi
- Field Crop Research Division, Institute of Crop Science, National Agriculture and Food Research Organization; 2-1-2, Kannondai, Tsukuba Ibaraki 305-8518 Japan
| | - Akiko Ohara-Takada
- Field Crop Research Division, Institute of Crop Science, National Agriculture and Food Research Organization; 2-1-2, Kannondai, Tsukuba Ibaraki 305-8518 Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University; Kagoshima 890-0065 Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University; Kagoshima 890-0065 Japan
| |
Collapse
|
25
|
Timothy JB, Frank O, Roger S, Lynn B. Promotion of orange flesh sweet potato by demonstration of acceptance and food
product development. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajfs2017.1647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|