1
|
Han X, Lei J, Zhang Y, Jia Y, Wang X, Liu J, Tian Z. Feeding behavior, life-history traits, and settling preference of Aulacorthum solani (Hemiptera: Aphididae) on resistant and susceptible soybeans. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2658-2668. [PMID: 39302962 DOI: 10.1093/jee/toae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Foxglove aphid, Aulacorthum solani Kaltenbach (Hemiptera: Aphididae), is a major pest worldwide. It can infest various crops, including soybean, and reduce yields. The use of insect-resistant cultivars can effectively manage pests. Dowling is a soybean cultivar that can control Aphis glycines through antibiosis and antixenosis. In this study, we investigated the feeding behavior of A. solani using electropenetrography (EPG), and its life-history traits using an age-stage, two-sex life table, and its settling preferences on Dowling (resistant) and Heinong 51 (HN51, susceptible) soybean cultivars. The Dowling cultivar showed strong antibiosis against A. solani. Aphids feeding on Dowling exhibited significantly reduced survival, fecundity, and longevity, and increased nymph duration. Moreover, Dowling had negative impacts on the demographic parameters of the aphids. The number of A. solani individuals was significantly less on Dowling than on HN51, indicating the antixenotic effects of Dowling. As shown using EPG, the mechanical blocking wave (F) of A. solani was significantly longer after feeding on Dowling than after feeding on HN51, indicating that Dowling has a higher mechanical resistance. In conclusion, Dowling exhibited strong resistance to A. solani. These results are beneficial for integrated pest management in soybean fields and breeding programs.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jiahui Lei
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Zhang
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Yulong Jia
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyun Wang
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jian Liu
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Zhenqi Tian
- Key Laboratory of Crop Pests in Northern Cold Regions of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Stone AL, Damsteegt VD, Smith OP, Stewart LR. Global phylogenetic analysis of soybean dwarf virus isolates and their associations with aphid vectors and severe disease in soybeans. Virology 2024; 591:109984. [PMID: 38242060 DOI: 10.1016/j.virol.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Soybean dwarf virus (SbDV) was first described in Japan as an agent of severe soybean disease transmitted by the foxglove aphid, Aulacorthum solani, with separable yellowing (Y) and dwarfing (D) strains. SbDV of both Y and D genotypes were later documented in other countries. For three decades, SbDV isolates were assessed to evaluate risk to U.S. soybean production. U.S. SbDV isolates were transmitted by the pea aphid Acyrthosiphum pisum and showed limited disease in soybeans, suggesting it was not a major threat to U.S. soybean production. Here we report 21 new full-length SbDV genome sequences including those of the originally described Japanese Y and D isolates, isolates from Syria and New Zealand associated with severe disease, and 17 isolates from U.S. field collections. Using these new full-length genomes, a global phylogeny was assembled and used to revisit risk assessment based on sequence similarities, isolate pathogenicity, and vector specificity.
Collapse
Affiliation(s)
- Andrew L Stone
- USDA, ARS Foreign Disease-Weed Science Research Unit, Frederick, MD, 21702, USA.
| | - Vernon D Damsteegt
- USDA, ARS Foreign Disease-Weed Science Research Unit, Frederick, MD, 21702, USA
| | - Oney P Smith
- Department of Biology, Hood College, Frederick, MD, 21701, USA
| | - Lucy R Stewart
- USDA, ARS Foreign Disease-Weed Science Research Unit, Frederick, MD, 21702, USA.
| |
Collapse
|
3
|
Qian S, Ahmed A, He P, He P, Munir S, Xia M, Tang C, Tang P, Wang Z, Khan R, Li X, Wu Y, He Y. Bacillus amyloliquefaciens AK-12 Helps Rapeseed Establish a Protection against Brevicoryne brassicae. Int J Mol Sci 2023; 24:15893. [PMID: 37958876 PMCID: PMC10648069 DOI: 10.3390/ijms242115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unmanageable loss. Therefore, effective prevention and management strategies are urgently required to avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was tagged with a green fluorescent protein through a natural transformation. The transformed strains were checked for stability and growth, and the best-performing strain was tested for its colonization inside and outside the rapeseed plant. The stability of AK-12-GFP reached more than 95%, and the growth curve was consistent with that of AK-12. After 30 days of treatment, the colonization of 1 × 106 CFU/g was recorded in rapeseed leaves. Interestingly, AK-12 reduced the aphid transmission rate compared with the control and improved the growth of the rapeseed seedlings. Meanwhile, the AK-12 strain also exhibited phosphorus, potassium-solubilizing, and nitrogen-fixing activity, and produced 2.61 µg/mL of IAA at 24 h. Regulation in the activity of four enzymes was detected after the AK-12 treatment. Phenylalanine ammonia lyase (PAL) was recorded at a maximum of 86.84 U/g after 36 h, and catalase (CAT) decreased after 48 h; however, peroxidase (POD) and polyphenol oxidase (PPO) reached the maximum within 12 h of AK-12 application. Additionally, important resistance genes related to these enzymes were upregulated, indicating the activation of a defense response in the rapeseed against aphids. In conclusion, defense enzymes and defense-related gene activation could improve the pest resistance in rapeseed, which has good application prospects for the future to be developed into biopesticide.
Collapse
Affiliation(s)
- Shixiong Qian
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mengyuan Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Chaoyun Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Zaiqiang Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Rizwan Khan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Wani SH, Choudhary M, Barmukh R, Bagaria PK, Samantara K, Razzaq A, Jaba J, Ba MN, Varshney RK. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3875-3895. [PMID: 35267056 PMCID: PMC9729161 DOI: 10.1007/s00122-022-04060-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/11/2022] [Indexed: 05/03/2023]
Abstract
Improving crop resistance against insect pests is crucial for ensuring future food security. Integrating genomics with modern breeding methods holds enormous potential in dissecting the genetic architecture of this complex trait and accelerating crop improvement. Insect resistance in crops has been a major research objective in several crop improvement programs. However, the use of conventional breeding methods to develop high-yielding cultivars with sustainable and durable insect pest resistance has been largely unsuccessful. The use of molecular markers for identification and deployment of insect resistance quantitative trait loci (QTLs) can fastrack traditional breeding methods. Till date, several QTLs for insect pest resistance have been identified in field-grown crops, and a few of them have been cloned by positional cloning approaches. Genome editing technologies, such as CRISPR/Cas9, are paving the way to tailor insect pest resistance loci for designing crops for the future. Here, we provide an overview of diverse defense mechanisms exerted by plants in response to insect pest attack, and review recent advances in genomics research and genetic improvements for insect pest resistance in major field crops. Finally, we discuss the scope for genomic breeding strategies to develop more durable insect pest resistant crops.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, J&K, 192101, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pravin K Bagaria
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Jagdish Jaba
- Intergated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Malick Niango Ba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 12404, Niamey, Niger
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
5
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
6
|
Pan L, Lu Z, Yan L, Zeng W, Shen Z, Yu M, Bu L, Cui G, Niu L, Wang Z. NLR1 is a strong candidate for the Rm3 dominant green peach aphid (Myzus persicae) resistance trait in peach. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1357-1369. [PMID: 35022695 DOI: 10.1093/jxb/erab506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The green peach aphid (GPA), Myzus persicae, is a polyphagous, sap-sucking aphid and a vector of many plant viruses. In peach, Prunus persica, three individual dominant GPA resistance loci have been genetically defined (Rm1-3), but knowledge of the underlying genes is limited. In this study, we focused on the Rm3 locus. Bulk segregant analysis (BSA) mapping in segregating progeny populations delimited Rm3 to an interval spanning 160 kb containing 21 genes on chromosome 1. RNA-seq data provided no evidence of candidate genes, but chromosomal structural variations were predicted around a nucleotide-binding site-leucine-rich repeat (NLR) gene (ppa000596m) within the Rm3 fine-mapping interval. Following bacterial artificial chromosome (BAC) library construction for a GPA-resistant peach cultivar and the sequencing of three target BAC clones, a chromosomal structural variation encompassing two novel TIR-NLR-class disease resistance (R) protein-coding genes was identified, and the expressed NLR gene (NLR1) was identified as a candidate for M. persicae resistance. Consistent with its proposed role in controlling GPA resistance, NLR1 was only expressed in the leaves of resistant peach phenotypes. A molecular marker that was designed based on the NLR1 sequence co-segregated with the GPA-resistant phenotype in four segregating populations, 162 peach cultivars, and 14 wild relatives, demonstrating the dominant inheritance of the Rm3 locus. Our findings can be exploited to facilitate future breeding for GPA-resistance in peach.
Collapse
Affiliation(s)
- Lei Pan
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenhua Lu
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Yan
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenfang Zeng
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhijun Shen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingliang Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lulu Bu
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guochao Cui
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liang Niu
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiqiang Wang
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
7
|
Jiang B, Cheng Y, Cai Z, Li M, Jiang Z, Ma R, Yuan Y, Xia Q, Nian H. Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing. BMC Genomics 2020; 21:280. [PMID: 32245402 PMCID: PMC7126358 DOI: 10.1186/s12864-020-6668-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) is one of the most serious limitations to soybean production worldwide. The identification of resistance gene(s) and their incorporation into elite varieties is an effective approach for breeding to prevent soybean from being harmed by this disease. A valuable mapping population of 228 F8:11 recombinant inbred lines (RILs) derived from a cross of the resistant cultivar Guizao1 and the susceptible cultivar BRSMG68 and a high-density genetic linkage map with an average distance of 0.81 centimorgans (cM) between adjacent bin markers in this population were used to map and explore candidate gene(s). RESULTS PRR resistance in Guizao1 was found to be controlled by a single Mendelian locus and was finely mapped to a 367.371-kb genomic region on chromosome 3 harbouring 19 genes, including 7 disease resistance (R)-like genes, in the reference Willliams 82 genome. Quantitative real-time PCR assays of possible candidate genes revealed that Glyma.03 g05300 was likely involved in PRR resistance. CONCLUSIONS These findings from the fine mapping of a novel Rps locus will serve as a basis for the cloning and transfer of resistance genes in soybean and the breeding of P. sojae-resistant soybean cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Bingzhi Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Mu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Ze Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Ruirui Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yeshan Yuan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI) Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| |
Collapse
|
8
|
Lee JS, Yoo MH, Jung JK, Bilyeu KD, Lee JD, Kang S. Detection of novel QTLs for foxglove aphid resistance in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1481-8. [PMID: 25904004 DOI: 10.1007/s00122-015-2519-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/11/2015] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE The Raso2 , novel QTL for Korea biotype foxglove aphid resistance in soybean from PI 366121 was identified on chromosome 7 using GoldenGate SNP microarray. Foxglove aphid, Aulacorthum solani (Kaltenbach), is a hemipteran insect that infects a wide variety of plants worldwide and causes serious yield losses in crops. The objective of this study was to identify the putative QTL for foxglove aphid resistance in wild soybean, PI 366121, (Glycine soja Sieb. and Zucc.). One hundred and forty-one F4-derived F8 recombinant inbred lines developed from a cross of susceptible Williams 82 and PI 366121 were used. The phenotyping of antibiosis and antixenosis resistance was done through choice and no-choice tests with total plant damage and primary infestation leaf damage; a genome-wide molecular linkage map was constructed with 504 single-nucleotide polymorphism markers utilizing a GoldenGate assay. Using inclusive composite interval mapping analysis for foxglove aphid resistance, one major candidate QTL on chromosome 7 and three minor QTL regions on chromosomes 3, 6 and 18 were identified. The major QTL on chromosome 7 showed both antixenosis and antibiosis resistance responses. However, the minor QTLs showed only antixenosis resistance response. The major QTL mapped to a different chromosome than the previously identified foxglove aphid resistance QTL, Raso1, from the cultivar Adams. Also, the responses to the Korea biotype foxglove aphid were different for Raso1, and the gene from PI 366121 against the Korea biotype foxglove aphid was different. Thus, the foxglove aphid resistance gene from PI 366121 was determined to be an independent gene from Raso1 and was designated as Raso2. This result could be useful in breeding for new foxglove aphid-resistant soybean cultivars.
Collapse
Affiliation(s)
- Ju Seok Lee
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 330-714, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Sato D, Sugimoto M, Akashi H, Tomita M, Soga T. Comparative metabolite profiling of foxglove aphids (Aulacorthum solani Kaltenbach) on leaves of resistant and susceptible soybean strains. MOLECULAR BIOSYSTEMS 2014; 10:909-15. [PMID: 24514152 DOI: 10.1039/c3mb70595a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Aphid infestations can cause severe decreases in soybean (Glycine max [L.] Merr.) yield. Since planting aphid-resistant soybean strains is a promising approach for pest control, understanding the resistance mechanisms employed by aphids is of considerable importance. We compared aphid resistance in seven soybean strains and found that strain Tohoku149 was the most resistant to the foxglove aphid, Aulacorthum solani Kaltenbach. We subsequently analyzed the metabolite profiles of aphids cultured on the leaves of resistant and susceptible soybean strains using capillary electrophoresis-time-of-flight mass spectrometry. Our findings showed that the metabolite profiles of several amino acids, glucose 6-phosphate, and components of the tricarboxylic acid cycle were similar in aphids reared on Tohoku149 leaves and in aphids maintained under conditions of starvation, suggesting that Tohoku149 is more resistant to aphid feeding. Compared to susceptible strains, we also found that two methylated metabolites, S-methylmethionine and trigonelline, were either not detected or decreased in aphids reared on Tohoku149 plants. Since these metabolites function as important sulfur transporters in phloem sap and osmoprotectants involved in salt and drought stress, respectively, aphid-resistance is considered to be related to sulfur metabolism and methylation. These results contribute to an increase in our understanding of soybean aphid resistance mechanisms at the molecular level.
Collapse
Affiliation(s)
- Dan Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | | | | | | | | |
Collapse
|
10
|
Smith CM, Chuang WP. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. PEST MANAGEMENT SCIENCE 2014; 70:528-40. [PMID: 24282145 DOI: 10.1002/ps.3689] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/05/2013] [Accepted: 11/26/2013] [Indexed: 05/06/2023]
Abstract
Aphids damage major world food and fiber crops through direct feeding and transmission of plant viruses. Fortunately, the development of many aphid-resistant crop plants has provided both ecological and economic benefits to food production. Plant characters governing aphid host selection often dictate eventual plant resistance or susceptibility to aphid herbivory, and these phenotypic characters have been successfully used to map aphid resistance genes. Aphid resistance is often inherited as a dominant trait, but is also polygenic and inherited as recessive or incompletely dominant traits. Most aphid-resistant cultivars exhibit constitutively expressed defenses, but some cultivars exhibit dramatic aphid-induced responses, resulting in the overexpression of large ensembles of putative aphid resistance genes. Two aphid resistance genes have been cloned. Mi-1.2, an NBS-LRR gene from wild tomato, confers resistance to potato aphid and three Meloidogyne root-knot nematode species, and Vat, an NBS-LRR gene from melon, controls resistance to the cotton/melon aphid and to some viruses. Virulence to aphid resistance genes of plants occurs in 17 aphid species--more than half of all arthropod biotypes demonstrating virulence. The continual appearance of aphid virulence underscores the need to identify new sources of resistance of diverse sequence and function in order to delay or prevent biotype development.
Collapse
Affiliation(s)
- C Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
11
|
Kamphuis LG, Zulak K, Gao LL, Anderson J, Singh KB. Plant-aphid interactions with a focus on legumes. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1271-1284. [PMID: 32481194 DOI: 10.1071/fp13090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/29/2013] [Indexed: 06/11/2023]
Abstract
Sap-sucking insects such as aphids cause substantial yield losses in agriculture by draining plant nutrients as well as vectoring viruses. The main method of control in agriculture is through the application of insecticides. However, aphids rapidly evolve mechanisms to detoxify these, so there is a need to develop durable plant resistance to these damaging insect pests. The focus of this review is on aphid interactions with legumes, but work on aphid interactions with other plants, particularly Arabidopsis and tomato is also discussed. This review covers advances on the plant side of the interaction, including the identification of major resistance genes and quantitative trait loci conferring aphid resistance in legumes, basal and resistance gene mediated defence signalling following aphid infestation and the role of specialised metabolites. On the aphid side of the interaction, this review covers what is known about aphid effector proteins and aphid detoxification enzymes. Recent advances in these areas have provided insight into mechanisms underlying resistance to aphids and the strategies used by aphids for successful infestations and have significant impacts for the delivery of durable resistance to aphids in legume crops.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | - Katherine Zulak
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | - Ling-Ling Gao
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | | | - Karam B Singh
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
12
|
Yamashita Y, Takeuchi T, Ohnishi S, Sasaki J, Tazawa A. Fine mapping of the major Soybean dwarf virus resistance gene Rsdv1 of the soybean cultivar 'Wilis'. BREEDING SCIENCE 2013; 63:417-22. [PMID: 24399914 PMCID: PMC3859353 DOI: 10.1270/jsbbs.63.417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/24/2013] [Indexed: 06/01/2023]
Abstract
Soybean dwarf virus (SbDV), a Luteoviridae family member, causes dwarfing, yellowing and sterility of soybean (Glycine max), leading to one of the most serious problems in soybean production in northern Japan. Previous studies revealed that the Indonesian soybean cultivar 'Wilis' is resistant to SbDV and that the resistance can be introduced into Japanese cultivars. A major QTL for SbDV resistance has been reported between SSR markers Sat_217 and Satt211 on chromosome 5. In this study, we named this QTL Rsdv1 (resistance to SbDV) and developed near-isogenic lines incorporating Rsdv1 (Rsdv1-NILs) using Sat_217 and Satt211 markers. The Rsdv1-NILs were resistant to SbDV in greenhouse inoculation and field tests, indicating that Rsdv1 alone is sufficient for the resistance phenotype. We fine-mapped Rsdv1 within the 44-kb region between Sat_11 and Sct_13. None of the six genes predicted in this region was closely related to known virus resistance genes in plants. Thus, Rsdv1 may confer resistance by a previously unknown mechanism. We suggest that Rsdv1 may be a useful source for the Japanese soybean breeding program to introduce SbDV resistance.
Collapse
Affiliation(s)
- Yoko Yamashita
- Hokkaido Research Organization Central Agricultural Experiment Station,
Higashi 6 Kita 15, Naganuma, Hokkaido 069-1395,
Japan
| | - Toru Takeuchi
- Hokkaido Research Organization Central Agricultural Experiment Station,
Higashi 6 Kita 15, Naganuma, Hokkaido 069-1395,
Japan
| | - Shizen Ohnishi
- Hokkaido Research Organization Kitami AES,
52 Yayoi, Kunneppu, Hokkaido 099-1496,
Japan
| | - Jun Sasaki
- Hokkaido Research Organization Kitami AES,
52 Yayoi, Kunneppu, Hokkaido 099-1496,
Japan
| | - Akiko Tazawa
- Hokkaido Research Organization Tokachi AES,
S9-2 Shinsei, Memuro, Hokkaido 082-0071,
Japan
| |
Collapse
|
13
|
Kamphuis LG, Lichtenzveig J, Peng K, Guo SM, Klingler JP, Siddique KHM, Gao LL, Singh KB. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5157-72. [PMID: 24058162 PMCID: PMC3830491 DOI: 10.1093/jxb/ert305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid-plant interactions.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sato D, Akashi H, Sugimoto M, Tomita M, Soga T. Metabolomic profiling of the response of susceptible and resistant soybean strains to foxglove aphid, Aulacorthum solani Kaltenbach. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 925:95-103. [PMID: 23523883 DOI: 10.1016/j.jchromb.2013.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/31/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Aphid infection reduces soybean (Glycine max [L.] Merr.) yield. Consequently, cultivation of aphid-resistant strains is a promising approach to pest control, and understanding the resistance mechanism is of importance. Here, we characterized the resistance of soybeans to foxglove aphid, Aulacorthum solani Kaltenbach, at the metabolite level. First, we evaluated aphid mortality and settlement rates on the leaves of two soybean strains, 'Tohoku149' and 'Suzuyutaka', and found that the former had strong resistance soon after introduction of the aphids. The metabolomic response to aphid introduction was analyzed using capillary electrophoresis-time-of-flight mass spectrometry. We found the following three features in the profiles: (1) concentrations of citrate, amino acids, and their intermediates were intrinsically higher for Tohoku149 than Suzuyutaka, (2) concentrations of several metabolites producing secondary metabolites, such as flavonoids and alkaloids, drastically changed 6h after aphid introduction, and (3) concentrations of TCA cycle metabolites increased in Tohoku149 48 h after aphid introduction. We also profiled free amino acids in aphids reared on both soybean strains and under starvation, and found that the profile of the aphids on Tohoku149 was similar to that of the starved aphids, but different to that of aphids on Suzuyutaka. These tests confirmed that aphids suck phloem sap even from Tohoku149. This study demonstrates the metabolomic profiles of both soybean strains and aphids, which will contribute to the molecular level understanding of mechanisms of soybean resistance to aphids.
Collapse
Affiliation(s)
- Dan Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan.
| | | | | | | | | |
Collapse
|