1
|
Dong Q, Niu L, Gong X, Xing Q, Liang J, Lang J, Wang T, Yang X. Integrative Identification of Chloroplast Metabolism-Related RETICULATA-RELATED Genes in Soybean. PLANTS (BASEL, SWITZERLAND) 2025; 14:1516. [PMID: 40431081 PMCID: PMC12114778 DOI: 10.3390/plants14101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
As a globally important leguminous crop, soybean (Glycine max L.) serves as a vital source of edible oils and proteins for humans and livestock. Oils in leaves can help crops combat fungal infections, adapt to temperature changes via fatty acid modulation, and support resource recycling during leaf senescence. However, accumulating oils in leaves is a fundamental challenge due to the need to balance the inherently competing photosynthesis and fatty acid biosynthesis processes within chloroplasts. RETICULATA-RELATED (RER), known to regulate chloroplast function and plastid metabolism in Arabidopsis, plays an essential role in leaf development. Here, 14 non-redundant GmRER genes were identified in soybean and phylogenetically classified into four subclades. Most Arabidopsis RER genes were evolutionarily preserved as gene duplicates in soybean, except for GmRER5 and GmRER6. RNA secondary structures spanning the coding sequences (CDSs), the 5'- and 3'- untranslated regions (UTRs) of GmRERs, displayed exceptional structural plasticity in CDSs, while exhibiting limited conservation in UTRs. In contrast, protein structures retained conserved folds, underscoring evolutionary constraints on functional domains despite transcriptional plasticity. Notably, GmRER4a and GmRER4b represented an exceptional case of high similarity in both protein and RNA structures. Expression profiling across fourteen tissues and three abiotic stress conditions revealed a dynamic shift in expression levels between leaf-predominant and root-enriched GmRER paralogs after stress treatments. A comparative transcriptome analysis of six soybean landraces further revealed transcriptional polymorphism in the GmRER family, which was associated with the expression patterns of lipid biosynthesis regulators. Our comprehensive characterization of GmRERs may offer potential targets for soybean breeding optimization in overall plant oil production.
Collapse
Affiliation(s)
- Qianli Dong
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (X.G.); (Q.X.); (J.L.); (J.L.)
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Xiyu Gong
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (X.G.); (Q.X.); (J.L.); (J.L.)
| | - Qianlong Xing
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (X.G.); (Q.X.); (J.L.); (J.L.)
| | - Jie Liang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (X.G.); (Q.X.); (J.L.); (J.L.)
| | - Jun Lang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (X.G.); (Q.X.); (J.L.); (J.L.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (X.G.); (Q.X.); (J.L.); (J.L.)
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| |
Collapse
|
2
|
Li S, Guo C, Feng X, Wang J, Pan W, Xu C, Wei S, Han X, Yang M, Chen Q, Wang J, Hu L, Qi Z. Development and Validation of Kompetitive Allele-Specific Polymerase Chain Reaction Markers for Seed Protein Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:3485. [PMID: 39771183 PMCID: PMC11728539 DOI: 10.3390/plants13243485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Seed protein content is a critical trait in soybean breeding, as it provides a primary source of high-quality protein for both human consumption and animal feed. This study aimed to enhance molecular marker-assisted selection for high-protein soybean varieties by developing Kompetitive Allele-Specific Polymerase Chain Reaction (KASP) markers targeted at loci associated with seed protein content. Nineteen markers with high genotyping efficacy were identified through screening. Utilizing SN76 (a high-protein line) as the male parent and SN49 and DS1 (both low-protein lines) as female parents, 484 F6 generation individuals from these hybrid combinations were selected to validate the predictive accuracy of the 19 KASP markers. Notably, KASP-Pro-1, KASP-Pro-2, and KASP-Pro-3 effectively distinguished genotypes associated with high and low protein content, with prediction accuracies of 68.4%, 75.0%, and 83.3%, respectively. These results underscore the reliability and practical utility of the selected molecular markers, which are located within the genes Glyma.03G219900, Glyma.14G119000, and Glyma.17G074400, respectively. Haplotype analysis and gene pyramiding indicate that these three genes may influence seed protein content. Consequently, these KASP markers can be effectively integrated into genetic and genomic research on soybean seed protein content as well as into marker-assisted breeding.
Collapse
Affiliation(s)
- Shuangzhe Li
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Chenyijun Guo
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Xuezhen Feng
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Jing Wang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Wenjing Pan
- Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (W.P.); (J.W.)
| | - Chang Xu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Siming Wei
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Xue Han
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Jinxing Wang
- Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (W.P.); (J.W.)
| | - Limin Hu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (C.G.); (X.F.); (J.W.); (C.X.); (S.W.); (X.H.); (M.Y.); (Q.C.)
| |
Collapse
|
3
|
Singh D, Chaudhary P, Taunk J, Singh CK, Chinnusamy V, Sevanthi AM, Singh VJ, Pal M. Targeting Induced Local Lesions in Genomes (TILLING): advances and opportunities for fast tracking crop breeding. Crit Rev Biotechnol 2024; 44:817-836. [PMID: 37455414 DOI: 10.1080/07388551.2023.2231630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
The intensification of food production via conventional crop breeding alone is inadequate to cater for global hunger. The development of precise and expeditious high throughput reverse genetics approaches has hugely benefited modern plant breeding programs. Targeting Induced Local Lesions in Genomes (TILLING) is one such reverse genetics approach which employs chemical/physical mutagenesis to create new genetic sources and identifies superior/novel alleles. Owing to technical limitations and sectional applicability of the original TILLING protocol, it has been timely modified. Successions include: EcoTILLING, Double stranded EcoTILLING (DEcoTILLING), Self-EcoTILLING, Individualized TILLING (iTILLING), Deletion-TILLING (De-TILLING), PolyTILLING, and VeggieTILLING. This has widened its application to a variety of crops and needs. They can characterize mutations in coding as well as non-coding regions and can overcome complexities associated with the large genomes. Combining next generation sequencing tools with the existing TILLING protocols has enabled screening of huge germplasm collections and mutant populations for the target genes. In silico TILLING platforms have transformed TILLING into an exciting breeding approach. The present review outlines these multifarious TILLING modifications for precise mutation detection and their application in advance breeding programmes together with relevant case studies. Appropriate use of these protocols will open up new avenues for crop improvement in the twenty first century.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Hu Y, Liu Y, Wei JJ, Zhang WK, Chen SY, Zhang JS. Regulation of seed traits in soybean. ABIOTECH 2023; 4:372-385. [PMID: 38106437 PMCID: PMC10721594 DOI: 10.1007/s42994-023-00122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
Soybean (Glycine max) is an essential economic crop that provides vegetative oil and protein for humans, worldwide. Increasing soybean yield as well as improving seed quality is of great importance. Seed weight/size, oil and protein content are the three major traits determining seed quality, and seed weight also influences soybean yield. In recent years, the availability of soybean omics data and the development of related techniques have paved the way for better research on soybean functional genomics, providing a comprehensive understanding of gene functions. This review summarizes the regulatory genes that influence seed size/weight, oil content and protein content in soybean. We also provided a general overview of the pleiotropic effect for the genes in controlling seed traits and environmental stresses. Ultimately, it is expected that this review will be beneficial in breeding improved traits in soybean.
Collapse
Affiliation(s)
- Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yue Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun-Jie Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
5
|
Yao Y, Xiong E, Qu X, Li J, Liu H, Quan L, Lu W, Zhu X, Chen M, Li K, Chen X, Lian Y, Lu W, Zhang D, Zhou X, Chu S, Jiao Y. WGCNA and transcriptome profiling reveal hub genes for key development stage seed size/oil content between wild and cultivated soybean. BMC Genomics 2023; 24:494. [PMID: 37641045 PMCID: PMC10463976 DOI: 10.1186/s12864-023-09617-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Soybean is one of the most important oil crops in the world. The domestication of wild soybean has resulted in significant changes in the seed oil content and seed size of cultivated soybeans. To better understand the molecular mechanisms of seed formation and oil content accumulation, WDD01514 (E1), ZYD00463 (E2), and two extreme progenies (E23 and E171) derived from RILs were used for weighted gene coexpression network analysis (WGCNA) combined with transcriptome analysis. RESULTS In this study, both seed weight and oil content in E1 and E171 were significantly higher than those in E2 and E23, and 20 DAF and 30 DAF may be key stages of soybean seed oil content accumulation and weight increase. Pathways such as "Photosynthesis", "Carbon metabolism", and "Fatty acid metabolism", were involved in oil content accumulation and grain formation between wild and cultivated soybeans at 20 and 30 DAF according to RNA-seq analysis. A total of 121 oil content accumulation and 189 seed formation candidate genes were screened from differentially expressed genes. WGCNA identified six modules related to seed oil content and seed weight, and 76 candidate genes were screened from modules and network. Among them, 16 genes were used for qRT-PCR and tissue specific expression pattern analysis, and their expression-levels in 33-wild and 23-cultivated soybean varieties were subjected to correlation analysis; some key genes were verified as likely to be involved in oil content accumulation and grain formation. CONCLUSIONS Overall, these results contribute to an understanding of seed lipid metabolism and seed size during seed development, and identify potential functional genes for improving soybean yield and seed oil quantity.
Collapse
Affiliation(s)
- Yanjie Yao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Leipo Quan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenyan Lu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuling Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Meiling Chen
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ke Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoming Chen
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yun Lian
- Zhengzhou Subcenter of National Soybean Improvement Center, Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture, Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weiguo Lu
- Zhengzhou Subcenter of National Soybean Improvement Center, Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture, Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
6
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
7
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
8
|
Development of Ethyl Methanesulfonate Mutant Edamame Soybean (Glycine max (L.) Merr.) Populations and Forward and Reverse Genetic Screening for Early-Flowering Mutants. PLANTS 2022; 11:plants11141839. [PMID: 35890474 PMCID: PMC9315854 DOI: 10.3390/plants11141839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Induced mutation is a viable breeding strategy that is widely utilized in the development of elite plant varieties. We aimed to improve a variety of edamame by constructing novel mutant populations using the ethyl methanesulfonate in soybeans (Glycine max (L.) Merr.). In the M2 population, the flowering stage showed a considerable standard deviation compared to the wild type, confirming that the mutant populations had the expected DNA mutations. To identify the DNA mutations in the mutant populations, we used the targeting induced local lesions in genomes (TILLING) method, which is a reverse genetic method, to search for soybean flowering-related gene mutants. A total of 30 mutants from E1, E3, E4, and PhyA1 genes, which are known to be highly effective genes, or their homologous gene for flowering and maturation found in soybean quantitative trait locus analyses were isolated from our TILLING screening. Among these mutants, there were eleven nonsynonymous substitution mutants, one nonsense mutant, and two single nucleotide deletion mutants that could be expected to reduce or eliminate gene function. The e1, e3, and e4 mutants obtained in this study flowered considerably earlier than the wild type. In particular, the e1 mutant with a nonsynonymous substitution flowered approximately 1 month after sowing regardless of the sowing date, and its harvest date was approximately 1 month earlier than that of the wild type. Mutations identified using the TILLING method could not only be used as gel-based DNA markers with the same manipulation method, but the mutations could also be detected as DNA markers by the high-resolution melting method. These results indicate that mutations achieved without chromosome modification by crossbreeding are effective for early and practical improvement of superior varieties and that efficient selection of mutants by reverse genetics is an effective method for the identification of genetic modifications. The edamame mutant populations developed in this study are believed to possess various useful alleles which may be applicable in the search for mutations that lead to improved edamame yield and eating quality beyond the flowering stage.
Collapse
|
9
|
Karaman K, Kizil S, Başak M, Uzun B, Yol E. Development of EMS-induced Mutagenized Groundnut Population and Discovery of Point Mutations in the ahFAD2 and Ara h 1 Genes by TILLING. J Oleo Sci 2021; 70:1631-1640. [PMID: 34732635 DOI: 10.5650/jos.ess21075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reducing allergenicity and increasing oleic content are important goals in groundnut breeding studies. Ara h 1 is a major allergen gene and Delta(12)-fatty-acid desaturase (FAD2) is responsible for converting oleic into linoleic acid. These genes have homoeologues with one copy in each subgenome, identified as Ara h 1.01, Ara h 1.02, ahFAD2A and ahFAD2B in tetraploid groundnut. To alter functional properties of these genes we have generated an Ethyl Methane Sulfonate (EMS) induced mutant population to be used in Targeting Induced Local Lesions in Genomes (TILLING) approach. Seeds were exposed to two EMS concentrations and the germination rates were calculated as 90.1% (1353 plants) for 0.4% and 60.4% (906 plants) for 1.2% EMS concentrations in the M1 generation. Among the 1541 M2 mutants, 768 were analyzed by TILLING using four homoeologous genes. Two heterozygous mutations were identified in the ahFAD2B and ahFAD2A gene regions from 1.2% and 0.4% EMS-treated populations, respectively. The mutation in ahFAD2B resulted in an amino acid change, which was serine to threonine predicted to be tolerated according to SIFT analysis. The other mutation causing amino acid change, glycine to aspartic acid was predicted to affect protein function in ahFAD2A. No mutations were detected in Ara h 1.01 and Ara h 1.02 for both EMS-treatments after sequencing. We estimated the overall mutation rate to be 1 mutation every 2139 kb. The mutation frequencies were also 1/317 kb for ahFAD2A in 0.4% EMS and 1/466 kb for ahFAD2B in 1.2% EMS treatments. The results demonstrated that TILLING is a powerful tool to interfere with gene function in crops and the mutagenized population developed in this study can be used as an efficient reverse genetics tool for groundnut improvement and functional genomics.
Collapse
Affiliation(s)
- Kürşat Karaman
- Department of Field Crops, Faculty of Agriculture, Akdeniz University
| | - Sibel Kizil
- Department of Field Crops, Faculty of Agriculture, Akdeniz University
| | - Merve Başak
- Department of Medicinal and Aromatic Plants, Akev University
| | - Bülent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University
| | - Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University
| |
Collapse
|
10
|
Lakhssassi N, Zhou Z, Cullen MA, Badad O, El Baze A, Chetto O, Embaby MG, Knizia D, Liu S, Neves LG, Meksem K. TILLING-by-Sequencing + to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis. Int J Mol Sci 2021; 22:4219. [PMID: 33921707 PMCID: PMC8073088 DOI: 10.3390/ijms22084219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022] Open
Abstract
Reverse genetic approaches have been widely applied to study gene function in crop species; however, these techniques, including gel-based TILLING, present low efficiency to characterize genes in soybeans due to genome complexity, gene duplication, and the presence of multiple gene family members that share high homology in their DNA sequence. Chemical mutagenesis emerges as a genetically modified-free strategy to produce large-scale soybean mutants for economically important traits improvement. The current study uses an optimized high-throughput TILLING by target capture sequencing technology, or TILLING-by-Sequencing+ (TbyS+), coupled with universal bioinformatic tools to identify population-wide mutations in soybeans. Four ethyl methanesulfonate mutagenized populations (4032 mutant families) have been screened for the presence of induced mutations in targeted genes. The mutation types and effects have been characterized for a total of 138 soybean genes involved in soybean seed composition, disease resistance, and many other quality traits. To test the efficiency of TbyS+ in complex genomes, we used soybeans as a model with a focus on three desaturase gene families, GmSACPD, GmFAD2, and GmFAD3, that are involved in the soybean fatty acid biosynthesis pathway. We successfully isolated mutants from all the six gene family members. Unsurprisingly, most of the characterized mutants showed significant changes either in their stearic, oleic, or linolenic acids. By using TbyS+, we discovered novel sources of soybean oil traits, including high saturated and monosaturated fatty acids in addition to low polyunsaturated fatty acid contents. This technology provides an unprecedented platform for highly effective screening of polyploid mutant populations and functional gene analysis. The obtained soybean mutants from this study can be used in subsequent soybean breeding programs for improved oil composition traits.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Zhou Zhou
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Mallory A. Cullen
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Oussama Badad
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Abdelhalim El Baze
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Oumaima Chetto
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Mohamed G. Embaby
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dounya Knizia
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Shiming Liu
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | | | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| |
Collapse
|
11
|
Sarkar MAR, Otsu W, Suzuki A, Hashimoto F, Anai T, Watanabe S. Single-base deletion in GmCHR5 increases the genistein-to-daidzein ratio in soybean seed. BREEDING SCIENCE 2020; 70:265-276. [PMID: 32714048 PMCID: PMC7372027 DOI: 10.1270/jsbbs.19134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/03/2019] [Indexed: 06/11/2023]
Abstract
Novel mutant alleles related to isoflavone content are useful for breeding programs to improve the disease resistance and nutritional content of soybean. However, identification of mutant alleles from high-density mutant libraries is expensive and time-consuming because soybean has a large, complicated genome. Here, we identified the gene responsible for increased genistein-to-daidzein ratio in seed of the mutant line F333ES017D9. For this purpose, we used a time- and cost-effective approach based on selective genotyping of a small number of F2 plants showing the mutant phenotype with nearest-neighboring-nucleotide substitution-high-resolution melting analysis markers, followed by alignment of short reads obtained by next-generation sequencing analysis with the identified locus. In the mutant line, GmCHR5 harbored a single-base deletion that caused a change in the substrate flow in the isoflavone biosynthetic pathway towards genistein. Mutated GmCHR5 was expressed at a lower level during seed development than wild-type GmCHR5. Ectopic overexpression of GmCHR5 increased the production of daidzein derivatives in both the wild-type and mutant plants. The present strategy will be useful for accelerating identification of mutant alleles responsible for traits of interest in agronomically important crops.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Wakana Otsu
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Akihiro Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Fumio Hashimoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Toyoaki Anai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Satoshi Watanabe
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| |
Collapse
|
12
|
Thapa R, Carrero-Colón M, Rainey KM, Hudson K. TILLING by Sequencing: A Successful Approach to Identify Rare Alleles in Soybean Populations. Genes (Basel) 2019; 10:E1003. [PMID: 31817015 PMCID: PMC6947341 DOI: 10.3390/genes10121003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
Soybean seeds produce valuable protein that is a major component of livestock feed. However, soybean seeds also contain the anti-nutritional raffinose family oligosaccharides (RFOs) raffinose and stachyose, which are not digestible by non-ruminant animals. This requires the proportion of soybean meal in the feed to be limited, or risk affecting animal growth rate or overall health. While reducing RFOs in soybean seed has been a goal of soybean breeding, efforts are constrained by low genetic variability for carbohydrate traits and the difficulty in identifying these within the soybean germplasm. We used reverse genetics Targeting Induced Local Lesions in Genomes (TILLING)-by-sequencing approach to identify a damaging polymorphism that results in a missense mutation in a conserved region of the RAFFINOSE SYNTHASE3 gene. We demonstrate that this mutation, when combined as a double mutant with a previously characterized mutation in the RAFFINOSE SYNTHASE2 gene, eliminates nearly 90% of the RFOs in soybean seed as a proportion of the total seeds carbohydrates, and results in increased levels of sucrose. This represents a proof of concept for TILLING by sequencing in soybean.
Collapse
Affiliation(s)
- Rima Thapa
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Militza Carrero-Colón
- USDA-ARS Crop Production and Pest Control Research Unit, 915 West State Street, West Lafayette, IN 47907, USA
| | - Katy M. Rainey
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Karen Hudson
- USDA-ARS Crop Production and Pest Control Research Unit, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Islam N, Bates PD, Maria John KM, Krishnan HB, J Zhang Z, Luthria DL, Natarajan SS. Quantitative Proteomic Analysis of Low Linolenic Acid Transgenic Soybean Reveals Perturbations of Fatty Acid Metabolic Pathways. Proteomics 2019; 19:e1800379. [PMID: 30784187 DOI: 10.1002/pmic.201800379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/06/2019] [Indexed: 12/15/2022]
Abstract
To understand the effect of fatty acid desaturase gene (GmFAD3) silencing on perturbation of fatty acid (FA) metabolic pathways, the changes are compared in protein profiling in control and low linolenic acid transgenic soybeans using tandem mass tag based mass spectrometry. Protein profiling of the transgenic line unveiled changes in several key enzymes of FA metabolism. This includes enzymes of lower abundance; fabH, fabF, and thioestrase associated with FA initiation, elongation, and desaturation processes and LOX1_5, ACOX, ACAA1, MFP2 associated with β-oxidation of α-linolenic acids pathways. In addition, the GmFAD3 silencing results in a significant reduction in one of the major allergens, Gly m 4 (C6T3L5). These results are important for exploring how plants adjust in their biological processes when certain changes are induced in the genetic makeup. A complete understanding of these processes will aid researchers to alter genes for developing value-added soybeans.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - K M Maria John
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, MO, 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhanyuan J Zhang
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD, 20705, USA
| | | |
Collapse
|
14
|
Nagatoshi Y, Fujita Y. Accelerating Soybean Breeding in a CO2-Supplemented Growth Chamber. PLANT & CELL PHYSIOLOGY 2019; 60:77-84. [PMID: 30219921 PMCID: PMC6343635 DOI: 10.1093/pcp/pcy189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/07/2018] [Indexed: 05/13/2023]
Abstract
Soybean (Glycine max) is the most important dicot crop worldwide, and is increasingly used as a model legume due to the wide availability of genomic soybean resources; however, the slow generation times of soybean plants are currently a major hindrance to research. Here, we demonstrate a method for accelerating soybean breeding in compact growth chambers, which greatly shortens the generation time of the plants and accelerates breeding and research projects. Our breeding method utilizes commonly used fluorescent lamps (220 µmol m-2 s-1 at the canopy level), a 14 h light (30°C)/10 h dark (25°C) cycle and carbon dioxide (CO2) supplementation at >400 p.p.m. Using this approach, the generation time of the best-characterized elite Japanese soybean cultivar, Enrei, was shortened from 102-132 d reported in the field to just 70 d, thereby allowing up to 5 generations per year instead of the 1-2 generations currently possible in the field and/or greenhouse. The method also facilitates the highly efficient and controlled crossing of soybean plants. Our method uses CO2 supplementation to promote the growth and yield of plants, appropriate light and temperature conditions to reduce the days to flowering, and the reaping and sowing of immature seeds to shorten the reproductive period greatly. Thus, the appropriate parameters enable acceleration of soybean breeding in the compact growth chambers commonly used for laboratory research. The parameters used in our method could therefore be optimized for other species, cultivars, accessions and experimental designs to facilitate rapid breeding in a wide range of crops.
Collapse
Affiliation(s)
- Yukari Nagatoshi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Yang J, Xing G, Niu L, He H, Guo D, Du Q, Qian X, Yao Y, Li H, Zhong X, Yang X. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B. Transgenic Res 2018; 27:155-166. [PMID: 29476327 DOI: 10.1007/s11248-018-0063-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Soybean oil contains approximately 20% oleic acid and 63% polyunsaturated fatty acids, which limits its uses in food products and industrial applications because of its poor oxidative stability. Increasing the oleic acid content in soybean seeds provides improved oxidative stability and is also beneficial to human health. Endoplasmic reticulum-associated delta-12 fatty acid desaturase 2 (FAD2) is the key enzyme responsible for converting oleic acid (18:1) precursors to linoleic acid (18:2) in the lipid biosynthetic pathway. In this study, a 390-bp conserved sequence of GmFAD2-1B was used to trigger a fragment of RNAi-mediated gene knockdown, and a seed-specific promoter of the β-conglycinin alpha subunit gene was employed to downregulate the expression of this gene in soybean seeds to increase the oleic acid content. PCR and Southern blot analysis showed that the T-DNA had inserted into the soybean genome and was stably inherited by the progeny. In addition, the expression analysis indicated that GmFAD2-1B was significantly downregulated in the seeds by RNAi-mediated post-transcription gene knockdown driven by the seed-specific promoter. The oleic acid content significantly increased from 20 to ~ 80% in the transgenic seeds, and the linoleic and linolenic acid content decreased concomitantly in the transgenic lines compared with that in the wild types. The fatty acid profiles also exhibited steady changes in three consecutive generations. However, the total protein and oil contents and agronomic traits of the transgenic lines did not show a significant difference compared with the wild types.
Collapse
Affiliation(s)
- Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qian Du
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Haiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
16
|
Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren H, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, Zhang J, Qin H, Yuan J, Yuan X, Kong F, Liu B, Li J, Zhang Z, Wang G, Zhu B, Tian Z. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 2017; 18:161. [PMID: 28838319 PMCID: PMC5571659 DOI: 10.1186/s13059-017-1289-9] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. RESULTS To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. CONCLUSIONS This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanming Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiwen Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghui Hu
- Institute of maize research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Pan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoan Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haixiang Ren
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157041, China
| | - Weiguang Du
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Hongrui Yan
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China
| | - Yanping Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157041, China
| | - Dezhi Han
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Qin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohui Yuan
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, 430070, China
| | - Fanjiang Kong
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 130102, China
| | - Baohui Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 130102, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
17
|
Tadele Z. Mutagenesis and TILLING to Dissect Gene Function in Plants. Curr Genomics 2016; 17:499-508. [PMID: 28217006 PMCID: PMC5282601 DOI: 10.2174/1389202917666160520104158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/01/2015] [Accepted: 12/05/2015] [Indexed: 11/22/2022] Open
Abstract
Mutagenesis can be random or targeted and occur by nature or artificially by humans. However, the bulk of mutagenesis employed in plants are random and caused by physical agents such as x-ray and gamma-ray or chemicals such as ethyl-methane sulfonate (EMS). Researchers are interested in first identifying these mutations and/or polymorphisms in the genome followed by investigating their effects in the plant function as well as their application in crop improvement. The high-throughput technique called TILLING (Targeting Induced Local Lesion IN Genomes) has been already established and become popular for identifying candidate mutant individuals harboring mutations in the gene of interest. TILLING is a non-transgenic and reverse genetics method of identifying a single nucleotide changes. The procedure of TILLING comprises traditional mutagenesis using optimum type and concentration of mutagen, development of a non-chimeric population, DNA extraction and pooling, mutation detection as well as validation of results. In general, TILLING has proved to be robust in identifying useful mutant lines in diverse economically important crops of the world. The main goal of the current mini-review is to show the significance role played by mutagenesis and TILLING in the discovery of DNA lesions which are to be used in the improvement of crops for the trait of interest.
Collapse
Affiliation(s)
- Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
18
|
Campbell BW, Stupar RM. Soybean (Glycine max) Mutant and Germplasm Resources: Current Status and Future Prospects. ACTA ACUST UNITED AC 2016; 1:307-327. [PMID: 30775866 DOI: 10.1002/cppb.20015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetic bottlenecks during domestication and modern breeding limited the genetic diversity of soybean (Glycine max (L.) Merr.). Therefore, expanding and diversifying soybean genetic resources is a major priority for the research community. These resources, consisting of natural and induced genetic variants, are valuable tools for improving soybean and furthering soybean biological knowledge. During the twentieth century, researchers gathered a wealth of genetic variation in the forms of landraces, Glycine soja accessions, Glycine tertiary germplasm, and the U.S. Department of Agriculture (USDA) Type and Isoline Collections. During the twenty-first century, soybean researchers have added several new genetic and genomic resources. These include the reference genome sequence, genotype data for the USDA soybean germplasm collection, next-generation mapping populations, new irradiation and transposon-based mutagenesis populations, and designer nuclease platforms for genome engineering. This paper briefly surveys the publicly accessible soybean genetic resources currently available or in development and provides recommendations for developing such genetic resources in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Benjamin W Campbell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|