1
|
De Hayr L, Blok LER, Dias KR, Long J, Begemann A, Moir RD, Willis IM, Mocera M, Siegel G, Steindl K, Evans CA, Zhu Y, Zhang F, Field M, Ma A, Adès L, Josephi-Taylor S, Pfundt R, Zaki MS, Tomoum H, Gregor A, Laube J, Reis A, Maddirevula S, Hashem MO, Zweier M, Alkuraya FS, Maroofian R, Buckley MF, Gleeson JG, Zweier C, Coll-Tané M, Koolen DA, Rauch A, Roscioli T, Schenck A, Harvey RJ. Biallelic variants in GTF3C3 result in an autosomal recessive disorder with intellectual disability. Genet Med 2025; 27:101253. [PMID: 39636576 DOI: 10.1016/j.gim.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE This study details a novel syndromic form of autosomal recessive intellectual disability resulting from recessive variants in GTF3C3, encoding a key component of the DNA-binding transcription factor IIIC, which has a conserved role in RNA polymerase III-mediated transcription. METHODS Exome sequencing, minigene analysis, molecular modeling, RNA polymerase III reporter gene assays, and Drosophila knockdown models were utilized to characterize GTF3C3 variants. RESULTS Twelve affected individuals from 7 unrelated families were identified with homozygous or compound heterozygous missense variants in GTF3C3 including c.503C>T p.(Ala168Val), c.1268T>C p.(Leu423Pro), c.1436A>G p.(Tyr479Cys), c.2419C>T p.(Arg807Cys), and c.2420G>A p.(Arg807His). The cohort presented with intellectual disability, variable nonfamilial facial features, motor impairments, seizures, and cerebellar/corpus callosum malformations. Consistent with disruptions in intra- and intermolecular interactions observed in molecular modeling, RNA polymerase III reporter assays confirmed that the majority of missense variants resulted in a loss of function. Minigene analysis of the recurrent c.503C>T p.(Ala168Val) variant confirmed the introduction of a cryptic donor site into exon 4, resulting in mRNA missplicing. Consistent with the clinical features of this cohort, neuronal loss of Gtf3c3 in Drosophila induced seizure-like behavior, motor impairment, and learning deficits. CONCLUSION These findings confirm that GTF3C3 variants result in an autosomal recessive form of syndromic intellectual disability.
Collapse
Affiliation(s)
- Lachlan De Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia; National PTSD Research Centre, Thompson Institute, Birtinya, QLD, Australia
| | - Laura E R Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jingyi Long
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Martina Mocera
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Gabriele Siegel
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ying Zhu
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Futao Zhang
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Michael Field
- Genetics of Learning Disability Service, John Hunter Hospital, Waratah, NSW, Australia
| | - Alan Ma
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Lesley Adès
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sarah Josephi-Taylor
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maha S Zaki
- National Research Centre, Clinical Genetics Department, Human Genetics and Genome Research Institute, Cairo, Egypt
| | - Hoda Tomoum
- Ain Shams University, Department of Pediatrics, Cairo, Egypt
| | - Anne Gregor
- Inselspital, Bern University Hospital, University of Bern, Department of Human Genetics, Bern, Switzerland; Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Laube
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Markus Zweier
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Prince Sultan Military Medical City, Department of Pediatrics, Riyadh, Saudi Arabia
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Michael F Buckley
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Joseph G Gleeson
- University of California, Department of Neurosciences, San Diego, CA; Rady Children's Institute for Genomic Medicine, San Diego, CA
| | - Christiane Zweier
- Inselspital, Bern University Hospital, University of Bern, Department of Human Genetics, Bern, Switzerland; Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland; ITINERARE - University of Zürich Research Priority Program, Zürich, Switzerland; University of Zürich and ETH Zürich, Neuroscience Center Zürich, Zürich, Switzerland
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia; National PTSD Research Centre, Thompson Institute, Birtinya, QLD, Australia.
| |
Collapse
|
3
|
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel) 2023; 13:ani13071223. [PMID: 37048478 PMCID: PMC10093480 DOI: 10.3390/ani13071223] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Animal research is considered a key element in advance of biomedical science. Although its use is controversial and raises ethical challenges, the contribution of animal models in medicine is essential for understanding the physiopathology and novel treatment alternatives for several animal and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation medicine, and surgical techniques require studying the process in different animal species before testing them on humans. Due to their relevance, this article aims to discuss the importance of animal models in diverse lines of biomedical research by analyzing the contributions of the various species utilized in science over the past five years about key topics concerning human and animal health.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
4
|
Liu CQ, Qu XC, He MF, Liang DH, Xie SM, Zhang XX, Lin YM, Zhang WJ, Wu KC, Qiao JD. Efficient strategies based on behavioral and electrophysiological methods for epilepsy-related gene screening in the Drosophila model. Front Mol Neurosci 2023; 16:1121877. [PMID: 37152436 PMCID: PMC10157486 DOI: 10.3389/fnmol.2023.1121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction With the advent of trio-based whole-exome sequencing, the identification of epilepsy candidate genes has become easier, resulting in a large number of potential genes that need to be validated in a whole-organism context. However, conducting animal experiments systematically and efficiently remains a challenge due to their laborious and time-consuming nature. This study aims to develop optimized strategies for validating epilepsy candidate genes using the Drosophila model. Methods This study incorporate behavior, morphology, and electrophysiology for genetic manipulation and phenotypic examination. We utilized the Gal4/UAS system in combination with RNAi techniques to generate loss-of-function models. We performed a range of behavioral tests, including two previously unreported seizure phenotypes, to evaluate the seizure behavior of mutant and wild-type flies. We used Gal4/UAS-mGFP flies to observe the morphological alterations in the brain under a confocal microscope. We also implemented patch-clamp recordings, including a novel electrophysiological method for studying synapse function and improved methods for recording action potential currents and spontaneous EPSCs on targeted neurons. Results We applied different techniques or methods mentioned above to investigate four epilepsy-associated genes, namely Tango14, Klp3A, Cac, and Sbf, based on their genotype-phenotype correlation. Our findings showcase the feasibility and efficiency of our screening system for confirming epilepsy candidate genes in the Drosophila model. Discussion This efficient screening system holds the potential to significantly accelerate and optimize the process of identifying epilepsy candidate genes, particularly in conjunction with trio-based whole-exome sequencing.
Collapse
Affiliation(s)
- Chu-Qiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - De-Hai Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ming Xie
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xi-Xing Zhang
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Yong-Miao Lin
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ka-Chun Wu
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing-Da Qiao, ; orcid.org/0000-0002-4693-8390
| |
Collapse
|