1
|
Boodhoo N, Shojadoost B, Alizadeh M, Astill J, Behboudi S, Sharif S. Effect of treatment with Lactococcus lactis NZ9000 on intestinal microbiota and mucosal immune responses against Clostridium perfringens in broiler chickens. Front Microbiol 2023; 14:1257819. [PMID: 38164397 PMCID: PMC10757962 DOI: 10.3389/fmicb.2023.1257819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Alterations in intestinal microbiota can modulate the developing avian intestinal immune system and, subsequently, may impact on resistance to enteric pathogens. The aim was to demonstrate that early life exposure to Lactococcus lactis, could affect either susceptibility or resistance of broilers to necrotic enteritis (NE). L. lactis NZ9000 (rL. lactis) pre-treatment at 1, 7, 14 and 21 days of age (DOA) led to a significant decrease in NE lesion scores in Clostridium perfringens infected chickens. C. perfringens Infection was associated with spatial and temporal decreases in mononuclear phagocytes and CD4+ αβ T cells. However, rL. Lactis pre-treatment and subsequent C. perfringens infection led to a significant increase in mononuclear phagocytes, CD8α + γδ T, αβ T cells (CD4+ and CD8α+) and B cells (IgM+, IgA+ and IgY+), as well as IL-12p40, IFN-γ and CD40. Differential expression of interleukin (IL)-6, IL-8, IL-10, IL-13, IL-18, IL-22, and transforming growth factor (TGF)-β were observed in L. lactis treated chickens when compared to C. perfringens infected chickens. Microbiota analysis in C. perfringens infected chickens demonstrated an increase in abundance of Bacillota, Bacteroidota, Pseudomonadota and Actinomycetota. These findings suggests that modulation of the chicken intestinal immune system by L. lactis confers partial protection 30 against NE.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Abozeid HH. Global Emergence of Infectious Bronchitis Virus Variants: Evolution, Immunity, and Vaccination Challenges. Transbound Emerg Dis 2023; 2023:1144924. [PMID: 40303661 PMCID: PMC12017171 DOI: 10.1155/2023/1144924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis is an acute, extremely contagious viral disease affecting chickens of all ages, leading to devastating economic losses in the poultry industry worldwide. Affected chickens show respiratory distress and/or nephritis, in addition to decrease of egg production and quality in layers. The avian coronavirus, infectious bronchitis virus (IBV), is a rapidly evolving virus due to the high frequency of mutations and recombination events that are common in coronaviruses. This leads to the continual emergence of novel genotypes that show variable or poor crossprotection. The immune response against IBV is complex. Passive, innate and adaptive humoral and cellular immunity play distinct roles in protection against IBV. Despite intensive vaccination using the currently available live-attenuated and inactivated IBV vaccines, IBV continues to circulate, evolve, and trigger outbreaks worldwide, indicating the urgent need to update the current vaccines to control the emerging variants. Different approaches for preparation of IBV vaccines, including DNA, subunit, peptides, virus-like particles, vectored and recombinant vaccines, have been tested in many studies to combat the disease. This review focuses on several key aspects related to IBV, including its clinical significance, the functional structure of the virus, the factors that contribute to its evolution and diversity, the types of immune responses against IBV, and the characteristics of both current and emerging IBV vaccines. The goal is to provide a comprehensive understanding of IBV and explore the emergence of variants, their dissemination around the world, and the challenges to define the efficient vaccination strategies.
Collapse
Affiliation(s)
- Hassanein H. Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Zeng Z, Zeng X, Guo Y, Wu Z, Cai Z, Pan D. Determining the Role of UTP-Glucose-1-Phosphate Uridylyltransferase (GalU) in Improving the Resistance of Lactobacillus acidophilus NCFM to Freeze-Drying. Foods 2022; 11:foods11121719. [PMID: 35741917 PMCID: PMC9223153 DOI: 10.3390/foods11121719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Lactobacillus acidophilus NCFM is widely used in the fermentation industry; using it as a freeze-dried powder can greatly reduce the costs associated with packaging and transportation, and even prolong the storage period. Previously published research has reported that the expression of galU (EC: 2.7.7.9) is significantly increased as a result of freezing and drying. Herein, we aimed to explore how galU plays an important role in improving the resistance of Lactobacillus acidophilus NCFM to freeze-drying. For this study, galU was first knocked out and then re-expressed in L. acidophilus NCFM to functionally characterize its role in the pertinent metabolic pathways. The knockout strain ΔgalU showed lactose/galactose deficiency and displayed irregular cell morphology, shortened cell length, thin and rough capsules, and abnormal cell division, and the progeny could not be separated. In the re-expression strain pgalU, these inhibited pathways were restored; moreover, the pgalU cells showed a strengthened cell wall and capsule, which enhanced their resistance to adverse environments. The pgalU cells showed GalU activity that was 229% higher than that shown by the wild-type strain, and the freeze-drying survival rate was 84%, this being 4.7 times higher than that of the wild-type strain. To summarize, expression of the galU gene can significantly enhance gene expression in galactose metabolic pathway and make the strain form a stronger cell wall and cell capsule and enhance the resistance of the bacteria to an adverse external environment, to improve the freeze-drying survival rate of L. acidophilus NCFM.
Collapse
Affiliation(s)
- Zhidan Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Correspondence:
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Boodhoo N, Shojadoost B, Alizadeh M, Kulkarni RR, Sharif S. Ex Vivo Differential Responsiveness to Clostridium perfringens and Lactococcus lactis by Avian Small Intestine Macrophages and T Cells. Front Immunol 2022; 13:807343. [PMID: 35222386 PMCID: PMC8863843 DOI: 10.3389/fimmu.2022.807343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue resident immune system cells in the chicken intestine play a significant role in the protection against pathogens. However, very little is known about these cells. The current study was conducted to further characterize chicken intestinal immune system cells. Furthermore, this study aimed to assess the immune modulatory action of a highly virulent Clostridium perfringens, a commonly found chicken intestinal microbe, in comparison with a non-commensal, Lactococcus lactis, on intestine-derived immune system cells. The results demonstrated varying distribution of innate and adaptive immune cells along the avian gut-associated lymphoid tissue (GALT) in the duodenum, jejunum, ileum, and cecal tonsils. In addition, steady-state and tissue-specific presence of CD25+ cells among αβ and γδ T-cell subsets was assessed along the intestine. Ex vivo stimulation with C. perfringens or L. lactis resulted in a significant increase in the frequency of CD25+ T cells (γδ and αβ T cells). In addition, significantly more cell death was observed in ex vivo stimulation with C. perfringens, which was indirectly correlated with a decrease in macrophage activation based on nitric oxide (NO) production with no effect on lymphoid cell responsiveness as per intracellular interferon (IFN)-gamma (γ) staining. Ex vivo stimulation with L. lactis activated γδ T cells and αβ T cells, based on intracellular IFN-γ staining, while it had limited effect on macrophages. However, the ability of γδ and αβ T cells to produce IFN-γ and the ability of macrophages production of NO was rescued in the presence of L. lactis. These results demonstrate the potential application of L. lactis, as a probiotic, against virulent C. perfringens infection in chicken.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Bhuiyan MSA, Amin Z, Rodrigues KF, Saallah S, Shaarani SM, Sarker S, Siddiquee S. Infectious Bronchitis Virus (Gammacoronavirus) in Poultry Farming: Vaccination, Immune Response and Measures for Mitigation. Vet Sci 2021; 8:273. [PMID: 34822646 PMCID: PMC8623603 DOI: 10.3390/vetsci8110273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis virus (IBV) poses significant financial and biosecurity challenges to the commercial poultry farming industry. IBV is the causative agent of multi-systemic infection in the respiratory, reproductive and renal systems, which is similar to the symptoms of various viral and bacterial diseases reported in chickens. The avian immune system manifests the ability to respond to subsequent exposure with an antigen by stimulating mucosal, humoral and cell-mediated immunity. However, the immune response against IBV presents a dilemma due to the similarities between the different serotypes that infect poultry. Currently, the live attenuated and killed vaccines are applied for the control of IBV infection; however, the continual emergence of IB variants with rapidly evolving genetic variants increases the risk of outbreaks in intensive poultry farms. This review aims to focus on IBV challenge-infection, route and delivery of vaccines and vaccine-induced immune responses to IBV. Various commercial vaccines currently have been developed against IBV protection for accurate evaluation depending on the local situation. This review also highlights and updates the limitations in controlling IBV infection in poultry with issues pertaining to antiviral therapy and good biosecurity practices, which may aid in establishing good biorisk management protocols for its control and which will, in turn, result in a reduction in economic losses attributed to IBV infection.
Collapse
Affiliation(s)
- Md. Safiul Alam Bhuiyan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Sharifudin Md. Shaarani
- Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia;
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| |
Collapse
|
6
|
Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl Microbiol Biotechnol 2019; 103:2053-2066. [DOI: 10.1007/s00253-019-09628-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
7
|
Analysis of Immune Responses in Mice Orally Immunized with Recombinant pMG36e-SP-TSOL18/ Lactococcus lactis and pMG36e-TSOL18/ Lactococcus lactis Vaccines of Taenia solium. J Immunol Res 2018; 2018:9262631. [PMID: 30581878 PMCID: PMC6276433 DOI: 10.1155/2018/9262631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022] Open
Abstract
Cysticercosis is a cosmopolitan zoonotic parasitic disease infected by larval of Taenia solium (T. solium). Several drugs for the treatment of cysticercosis, such as praziquantel, albendazole, and mebendazole, have certain toxicity and side effects. Considering that there is no vaccine available, we studied a new vaccine for cysticercosis in this study. The complete TSOL18 gene and the optimized SP-TSOL18 gene fragments were obtained using PCR-based accurate synthesis method. The secretory and intracellular recombinant pMG36e-SP-TSOL18/Lactococcus lactis (L. lactis) and pMG36e-TSOL18/L. lactis vaccines of T. solium were prepared. Immune responses in mice orally immunized with these two recombinant L. lactis vaccines were analyzed by the determination of specific antibodies (IgG, IgG1, IgG2a, and sIgA) in serum, spleen lymphocyte proliferation, and cytokines (IL-2, IFN-γ, IL-4, and IL-10) in spleen lymphocyte culture supernatant. Our results showed that, after the first immunization, in these two recombinant L. lactis vaccine groups, the levels of serum specific IgG, IgG2a, and IgG1 increased on 14–56 d and reached the highest level on days 42, 42, and 28, respectively. The level of specific sIgA of intestinal mucosa also increased on 14–56 d and reached the highest level on day 42. The level of spleen lymphocyte proliferation increased on 14–56 d and reached the highest level on day 42. The levels of IL-2, IFN-γ, IL-4, and IL-10 in spleen lymphocyte culture supernatant increased on 14–56 d and reached the highest level on days 42, 42, 28, and 28, respectively. These results indicated that the recombinant pMG36e-SP-TSOL18/L. lactis and pMG36e-TSOL18/L. lactis vaccines can induce specific cellular, humoral, and mucosal immune responses in mice with oral vaccination. More importantly, the recombinant pMG36e-SP-TSOL18/L. lactis vaccine has a better immune effect. In summary, these results demonstrated the possibility of using L. lactis strain as a vector to deliver protective antigens of T. solium.
Collapse
|
8
|
Taghinezhad-S S, Mohseni AH, Keyvani H, Razavilar V. Protection against human papillomavirus type 16-induced tumors in C57BL/6 mice by mucosal vaccination with Lactococcus lactis NZ9000 expressing E6 oncoprotein. Microb Pathog 2018; 126:149-156. [PMID: 30391536 DOI: 10.1016/j.micpath.2018.10.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023]
Abstract
Recombinant strains of Lactococcus lactis NZ9000 that express native and codon-optimized E6 protein (fused to the SPusp45 secretion signal) were successfully constructed by using the nisin-controlled gene expression (NICE) system. Expression of the recombinant strains was evaluated by Western blot analysis. Female mice of strain C57BL/6 were immunized orally with recombinant lactococci expressing inducible E6 oncoprotein and the antigen-specific antibody production (IgA and IgG) and cytokines were measured by ELISA and ELISPOT assay, respectively. Our outcomes indicate that the HPV-16 E6 specific IL-2- and IFN-γ-secreting lymphocytes in the antigen-stimulated intestinal mucosal lymphocytes, splenocytes and vaginal lymphocytes were significantly higher than the control groups. We showed that L. lactis having codon-optimized E6 oncogene had better inhibitory effect on tumor growth, better treatment effects on progression of tumor size, and better survival rate in comparison with L. lactis having native E6 oncogene, (P < 0.0001). In conclusion, the rE6 protein displayed by L. lactis can induce humoral and cellular immunity. Taken together, these preclinical results represent a promising step towards the development of recombinant L. lactis as a live oral vector vaccine to treat the HPV-16 associated with cervical cancer.
Collapse
Affiliation(s)
- Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Vadood Razavilar
- Department of Food Hygiene, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Taghinezhad-S S, Razavilar V, Keyvani H, Razavi MR, Nejadsattari T. Extracellular overproduction of recombinant Iranian HPV-16 E6 oncoprotein in Lactococcus lactis using the NICE system. Future Virol 2018. [DOI: 10.2217/fvl-2018-0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study aimed to optimize production of HPV-16 E6 by recombinant Lactococcus lactis. Materials & methods: Optimization procedures were conducted on the factors of nisin amount, induction temperature, cell density at induction time, glucose and yeast extract concentrations. Results: Cell densities reached 5.2 and 1.74 g/l, and maximum rE6 production reached 45.25 and 15.91 μg/ml for optiE6 and E6, respectively, at 75 g/l initial glucose concentration in the batch study. During fed-batch fermentation, protein values were improved by feeding with yeast extract and GM17 medium, reaching the maximum of 80.92 and 15.95 μg/ml, and the maximum biomass reached 9.62 and 3.12 g/l, respectively. Conclusion: These encouraging outcomes represent L. lactis cells as an efficient cell factory for antigen production.
Collapse
Affiliation(s)
- Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vadood Razavilar
- Department of Food Hygiene, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Taher Nejadsattari
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 2017; 16:55. [PMID: 28376880 PMCID: PMC5379754 DOI: 10.1186/s12934-017-0669-x] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lionel L A In
- Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Block B and D, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Tan L, Zhang Y, Liu F, Yuan Y, Zhan Y, Sun Y, Qiu X, Meng C, Song C, Ding C. Infectious bronchitis virus poly-epitope-based vaccine protects chickens from acute infection. Vaccine 2016; 34:5209-5216. [PMID: 27665355 DOI: 10.1016/j.vaccine.2016.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
Infectious bronchitis virus (IBV) causes major losses in the poultry industry. The safe and effective vaccine to control IBV spread is imperative. In the present study, we developed IBV S1 glycoprotein poly-epitope-based DNA vaccine pV-S1B+S1T consisting of SH1208 and Holte strain BF2-restricted T cell epitopes and Australian T strain dominant B cell neutralization epitopes. Specific pathogen-free chickens were vaccinated with pV-S1B+S1T and control plasmids twice to elicit strong humoral and cellular immune response, as indicated by viral neutralization titers and results of CD8+ T cell proliferation assays. A lethal dose of IBV SH1208 strain used for protection and challenge experiments at two weeks post-booster immunization following challenge protection and virus shedding reverse transcription quantitative PCR assay, indicated that pV-S1B+S1T protected against IBV and significantly reduced viral excretion. These results demonstrated that the IBV poly-epitope-based vaccine effectively prevents infection and represents a potential IBV vaccine.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yuqiang Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fang Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yanmei Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yuan Zhan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
12
|
Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl Microbiol Biotechnol 2016; 100:5691-701. [DOI: 10.1007/s00253-016-7557-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
|
13
|
Bande F, Arshad SS, Hair Bejo M, Moeini H, Omar AR. Progress and challenges toward the development of vaccines against avian infectious bronchitis. J Immunol Res 2015; 2015:424860. [PMID: 25954763 PMCID: PMC4411447 DOI: 10.1155/2015/424860] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 12/03/2022] Open
Abstract
Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.
Collapse
Affiliation(s)
- Faruku Bande
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Veterinary Services, Ministry of Animal Health and Fisheries Development, PMB 2109, Usman Faruk Secretariat, Sokoto 840221, Sokoto State, Nigeria
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Mohd Hair Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Hassan Moeini
- Department of Virus-Associated Tumours (F100), German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Effects of avian infectious bronchitis virus antigen on eggshell formation and immunoreaction in hen oviduct. Theriogenology 2014; 81:1129-38. [DOI: 10.1016/j.theriogenology.2014.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/15/2014] [Accepted: 02/01/2014] [Indexed: 11/23/2022]
|