1
|
Mitrevska K, Cernei N, Michalkova H, Rodrigo MAM, Sivak L, Heger Z, Zitka O, Kopel P, Adam V, Milosavljevic V. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front Oncol 2022; 12:986045. [PMID: 36212465 PMCID: PMC9535364 DOI: 10.3389/fonc.2022.986045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.
Collapse
Affiliation(s)
- Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | | | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- *Correspondence: Vedran Milosavljevic,
| |
Collapse
|
2
|
Abstract
Cisplatin has been a mainstay of cancer chemotherapy since the 1970s. Despite its broad anticancer potential, its clinical use has regularly been constrained by kidney toxicities. This review details those biochemical pathways and metabolic conversions that underlie the kidney toxicities. A wide range of redox events contribute to the eventual physiological consequences of drug activities.
Collapse
|
3
|
Zhu X, Han J, Lan H, Lin Q, Wang Y, Sun X. A novel circular RNA hsa_circRNA_103809/miR-377-3p/GOT1 pathway regulates cisplatin-resistance in non-small cell lung cancer (NSCLC). BMC Cancer 2020; 20:1190. [PMID: 33276753 PMCID: PMC7716498 DOI: 10.1186/s12885-020-07680-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cisplatin is the first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC), and emerging evidences suggests that targeting circular RNAs (circRNAs) is an effective strategy to increase cisplatin-sensitivity in NSCLC, but the detailed mechanisms are still not fully delineated. Methods Cell proliferation, viability and apoptosis were examined by using the cell counting kit-8 (CCK-8) assay, trypan blue staining assay and Annexin V-FITC/PI double staining assay, respectively. The expression levels of cancer associated genes were measured by using the Real-Time qPCR and Western Blot analysis at transcriptional and translated levels. Dual-luciferase reporter gene system assay was conducted to validated the targeting sites among hsa_circRNA_103809, miR-377-3p and 3′ untranslated region (3’UTR) of GOT1 mRNA. The expression status, including expression levels and localization, were determined by immunohistochemistry (IHC) assay in mice tumor tissues. Results Here we identified a novel hsa_circRNA_103809/miR-377-3p/GOT1 signaling cascade which contributes to cisplatin-resistance in NSCLC in vitro and in vivo. Mechanistically, parental cisplatin-sensitive NSCLC (CS-NSCLC) cells were subjected to continuous low-dose cisplatin treatment to generate cisplatin-resistant NSCLC (CR-NSCLC) cells, and we found that hsa_circRNA_103809 and GOT1 were upregulated, while miR-377-3p was downregulated in CR-NSCLC cells but not in CS-NSCLC cells. In addition, hsa_circRNA_103809 sponged miR-337-3p to upregulate GOT1 in CS-NSCLC cells, and knock-down of hsa_circRNA_103809 enhanced the inhibiting effects of cisplatin on cell proliferation and viability, and induced cell apoptosis in CR-NSCLC cells, which were reversed by downregulating miR-377-3p and overexpressing GOT1. Consistently, overexpression of hsa_circRNA_103809 increased cisplatin-resistance in CS-NSCLC cells by regulating the miR-377-3p/GOT1 axis. Finally, silencing of hsa_circRNA_103809 aggravated the inhibiting effects of cisplatin treatment on NSCLC cell growth in vivo. Conclusions Analysis of data suggested that targeting the hsa_circRNA_103809/miR-377-3p/GOT1 pathway increased susceptibility of CR-NSCLC cells to cisplatin, and this study provided novel targets to improve the therapeutic efficacy of cisplatin for NSCLC treatment in clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07680-w.
Collapse
Affiliation(s)
- Xiang Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jing Han
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huiyin Lan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qingren Lin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yuezhen Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojiang Sun
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
4
|
Altınkaynak Y, Kural B, Akcan BA, Bodur A, Özer S, Yuluğ E, Munğan S, Kaya C, Örem A. Protective effects of L-theanine against doxorubicin-induced nephrotoxicity in rats. Biomed Pharmacother 2018; 108:1524-1534. [DOI: 10.1016/j.biopha.2018.09.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
|
5
|
Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018; 120:230-242. [DOI: 10.1016/j.fct.2018.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
6
|
Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater 2018; 74:397-413. [PMID: 29775731 DOI: 10.1016/j.actbio.2018.05.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Abstract
This study demonstrated the targeted delivery and controlled release of cisplatin drug molecules from doubly decorated mesoporous silica nanoparticles (MSNs), which were internally grafted with fluorescent conjugates and externally coated with polydopamine (PDA) and graphene oxide (GO) layers. The brush-like internal conjugates conferred fluorescent functionality and high capacity of cisplatin loading into MSNs, as well as contributing to a sustained release of the cisplatin through a porous channel with the assistance of external PDA layer. A consolidated double-layer formed by electrostatic interactions between the GO nanosheet and the PDA layer induced more controlled release kinetics which was well predicted by Higuchi model. In addition, Our MSNs exhibited stimuli (pH, NIR irradiation)-responsive controlled release as a potential chemo-photothermal agent against cancer cells. In a cell test, multifunctional MSNs showed a low toxicity itself, but gave a high cytotoxicity against human epithelial neuroblastoma cells (SH-SY5Y) after loading cisplatin. Notably, GO-wrapped MSNs exhibited very effective drug delivery because GO wrapping enhanced their dispensability in aqueous solution, photothermal heating effect, and efficient endocytosis into cells. Furthermore, monoclonal antibody (anti-human epidermal growth factor receptor)-conjugated MSNs showed a higher specificity, which resulted in more enhanced anticancer effects in vitro. The current study demonstrated a reliable synthesis of multifunctional MSNs, endowed with fluorescent imaging, stimuli-responsive controlled release, higher specificity, and efficient cytotoxicity toward cancer cells. STATEMENT OF SIGNIFICANCE The current study demonstrated the reliable synthesis of multifunctional mesoporous silica nanoparticles (MSNs) with internal fluorescent conjugates and external polydopamine and graphene oxide (GO) layers. The combination of internal conjugates and external coating layers produced an effective pore closure effect, leading to controlled and sustained release of small drug molecules. Notably, GO wrapping improved the dispensability and cellular uptake of the MSNs, as well as enhanced drug-controlled release. Our multifunctional MSNs revealed very efficient drug delivery effects against human epithelial neuroblastoma cells by demonstrating several strengths: i) fluorescent imaging, ii) sustained and controlled release of small drug molecules, iii) efficient cellular uptake, cytotoxicity and specificity, and v) stimuli (pH, NIR irradiation)-responsive controlled release as a potential chemo-photothermal agent.
Collapse
|
7
|
Ozaki T, Yamashita T, Tomita H, Sugano E, Ishiguro SI. The protection of rat retinal ganglion cells from ischemia/reperfusion injury by the inhibitory peptide of mitochondrial μ-calpain. Biochem Biophys Res Commun 2016; 478:1700-5. [PMID: 27596965 DOI: 10.1016/j.bbrc.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022]
Abstract
Intracellular Ca(2+)-dependent cysteine proteases such as calpains have been suggested as critical factors in retinal ganglion cell (RGC) death. However, it is unknown whether mitochondrial calpains are involved in RGC death. The purpose of the present study was to determine whether the inhibition of mitochondrial μ-calpain activity protects against RGC death during ischemia/reperfusion (I/R) injury. This study used a well-established rat model of experimental acute glaucoma involving I/R injury. A specific peptide inhibitor of mitochondrial μ-calpain, Tat-μCL, was topically applied to rats via eye drops three times a day for 5 days after I/R. RGC death was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The truncation of apoptosis-inducing factor (AIF) was determined by western blot analyses. Retinal morphology was determined after staining with hematoxyline and eosin. In addition, the number of Fluoro Gold-labeled RGCs in flat-mounted retinas was used to determine the percentage of surviving RGCs after I/R injury. After 1 day of I/R, RGC death was observed in the ganglion cell layer. Treatment with Tat-μCL eye drops significantly prevented the death of RGCs and the truncation of AIF. After 5 days of I/R, RGC death decreased by approximately 40%. However, Tat-μCL significantly inhibited the decrease in the retinal sections and flat-mounted retinas. The results suggested that mitochondrial μ-calpain is associated with RGC death during I/R injury via truncation of AIF. In addition, the inhibition of mitochondrial μ-calpain activity by Tat-μCL had a neuroprotective effect against I/R-induced RGC death.
Collapse
Affiliation(s)
- Taku Ozaki
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka, Japan; Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| | - Tetsuro Yamashita
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Hiroshi Tomita
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka, Japan
| | - Eriko Sugano
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka, Japan
| | - Sei-Ichi Ishiguro
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
8
|
Ma L, Wang H, Wang C, Su J, Xie Q, Xu L, Yu Y, Liu S, Li S, Xu Y, Li Z. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells. Aging Dis 2016; 7:254-66. [PMID: 27330840 PMCID: PMC4898922 DOI: 10.14336/ad.2016.0118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca(2+) concentration, including cytosolic and mitochondrial Ca(2+) in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca(2+) overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance.
Collapse
Affiliation(s)
- Liwei Ma
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Hongjun Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China; 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| | - Chunyan Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Jing Su
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Qi Xie
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Lu Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Yang Yu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Shibing Liu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Songyan Li
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Ye Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Zhixin Li
- 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
9
|
C-phycocyanin prevents cisplatin-induced mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 2015; 406:183-97. [PMID: 25971372 DOI: 10.1007/s11010-015-2436-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022]
Abstract
The potential of C-phycocyanin (C-PC) to prevent cisplatin (CP)-induced kidney mitochondrial dysfunction was determined in CD-1 male mice. The CP-induced mitochondrial dysfunction was characterized by ultrastructural abnormalities and by decrease in the following parameters in isolated kidney mitochondria: adenosine diphosphate (ADP)-induced oxygen consumption (state 3), respiratory control ratio, ADP/oxygen (ADP/O) ratio, adenosine triphosphate synthesis, membrane potential, calcium retention, glutathione (GSH) content, and activity of respiratory complex I, aconitase, catalase, and GSH peroxidase. These mitochondria also showed increase in hydrogen peroxide production, malondialdehyde, and 3-nitrotyrosine protein adducts content. The above-described changes, as well as CP-induced nephrotoxicity, were attenuated in mice pretreated with a single injection of C-PC. Our data suggest that the attenuation of mitochondrial abnormalities is involved in the protective effect of C-PC against CP-induced nephrotoxicity. This is the first demonstration that C-PC pretreatment prevents CP-induced mitochondrial dysfunction in mice.
Collapse
|
10
|
Improved cisplatin delivery in cervical cancer cells by utilizing folate-grafted non-aggregated gelatin nanoparticles. Biomed Pharmacother 2015; 69:1-10. [DOI: 10.1016/j.biopha.2014.10.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/16/2014] [Indexed: 01/02/2023] Open
|
11
|
Liu Z, Sun Y, Su L, Sun Y, Kong S, Chang X, Guo F, Li W, Guo J, Li J. Effects of cisplatin on testicular enzymes and Sertoli cell function in rats. ACTA ACUST UNITED AC 2015. [DOI: 10.2131/fts.2.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Zhifei Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yifan Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Shibo Kong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Fang Guo
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Junjie Guo
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jin Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Hispolon decreases melanin production and induces apoptosis in melanoma cells through the downregulation of tyrosinase and microphthalmia-associated transcription factor (MITF) expressions and the activation of caspase-3, -8 and -9. Int J Mol Sci 2014; 15:1201-15. [PMID: 24445257 PMCID: PMC3907864 DOI: 10.3390/ijms15011201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/29/2013] [Accepted: 01/08/2014] [Indexed: 01/10/2023] Open
Abstract
Hispolon is one of the most important functional compounds that forms Phellinus linteus (Berkeley & Curtis) Teng. Hispolon has antioxidant, anti-inflammatory, antiproliferative and anticancer effects. In this study, we analyzed the functions of hispolon on melanogenesis and apoptosis in B16-F10 melanoma cells. The results demonstrated that hispolon is not an enzymatic inhibitor for tyrosinase; rather, it represses the expression of tyrosinase and the microphthalmia-associated transcription factor (MITF) to reduce the production of melanin in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16-F10 cells at lower concentrations (less than 2 μM). In contrast, at higher concentration (greater than 10 μM), hispolon can induce activity of caspase-3, -8 and -9 to trigger apoptosis of B16-F10 cells but not of Detroit 551 normal fibroblast cells. Therefore, we suggest that hispolon has the potential to treat hyperpigmentation diseases and melanoma skin cancer in the future.
Collapse
|
13
|
Ozaki T, Nakazawa M, Yamashita T, Tomita H, Ebina Y, Ishiguro SI. Decrease of ATP by mitochondrial m-calpain inhibitory peptide in the rat retinas. Cell Struct Funct 2013; 38:207-23. [PMID: 23965546 DOI: 10.1247/csf.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Activations of mitochondrial calpains cause apoptosis-inducing factor-dependent apoptosis of retinal photoreceptor cells in the Royal College of Surgeons (RCS) rat, an animal model of retinitis pigmentosa. In the present study, we attempted to develop specific inhibitors of mitochondrial calpains that would prevent the retinal degeneration. We examined the inhibitory potency of 20-mer peptides of the m-calpain for mitochondrial calpains activity, determined the inhibitory regions, and conjugated the cell-penetrating peptides (CPP). The cytotoxicity and delivery of the peptide was evaluated using mouse photoreceptor-derived 661W cells. After intravitreal injection of the peptide in RCS rats, we examined the peptide delivery to the retina, photoreceptor cell death numbers, responses of the electroretinogram (ERG), concentrations of intracellular ATP, and changes of retinal morphology. Results showed that one of the peptides inhibited the activity of the mitochondrial m-calpain. The HIV-1 tat-conjugated m-calpain peptide, HIV-Nm, could preserve the inhibitory potency of the mitochondrial m-calpain, and penetrate into the 661W cells. While intravitreal injection of HIV-Nm made it possible to deliver to the retina, it did not prevent photoreceptor cell death. Furthermore, it caused the ERG attenuation and the decrease in the intracellular ATP only a day after the injection. Although HIV-Nm did not cause histological change of the retina after 1 or 2 days of the administration, the morphological abnormality of the retina was observed after 3-14 days. Our results demonstrated that HIV-Nm failed to prevent the photoreceptor cell death, but rather caused the attenuation of ERG response and the decrease of ATP.
Collapse
Affiliation(s)
- Taku Ozaki
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University
| | | | | | | | | | | |
Collapse
|