1
|
Liu Z, Liu JL, An L, Wu T, Yang L, Cheng YS, Nie XS, Qin ZQ. Genome-wide analysis of the CCT gene family in Chinese white pear (Pyrus bretschneideri Rehd.) and characterization of PbPRR2 in response to varying light signals. BMC PLANT BIOLOGY 2022; 22:81. [PMID: 35196984 PMCID: PMC8864873 DOI: 10.1186/s12870-022-03476-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Canopy architecture is critical in determining the light environment and subsequently the photosynthetic productivity of fruit crops. Numerous CCT domain-containing genes are crucial for plant adaptive responses to diverse environmental cues. Two CCT genes, the orthologues of AtPRR5 in pear, have been reported to be strongly correlated with photosynthetic performance under distinct canopy microclimates. However, knowledge concerning the specific expression patterns and roles of pear CCT family genes (PbCCTs) remains very limited. The key roles played by PbCCTs in the light response led us to examine this large gene family in more detail. RESULTS Genome-wide sequence analysis identified 42 putative PbCCTs in the genome of pear (Pyrus bretschneideri Rehd.). Phylogenetic analysis indicated that these genes were divided into five subfamilies, namely, COL (14 members), PRR (8 members), ZIM (6 members), TCR1 (6 members) and ASML2 (8 members). Analysis of exon-intron structures and conserved domains provided support for the classification. Genome duplication analysis indicated that whole-genome duplication/segmental duplication events played a crucial role in the expansion of the CCT family in pear and that the CCT family evolved under the effect of purifying selection. Expression profiles exhibited diverse expression patterns of PbCCTs in various tissues and in response to varying light signals. Additionally, transient overexpression of PbPRR2 in tobacco leaves resulted in inhibition of photosynthetic performance, suggesting its possible involvement in the repression of photosynthesis. CONCLUSIONS This study provides a comprehensive analysis of the CCT gene family in pear and will facilitate further functional investigations of PbCCTs to uncover their biological roles in the light response.
Collapse
Affiliation(s)
- Zheng Liu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jia-Li Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Lin An
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Wu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Li Yang
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yin-Sheng Cheng
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xian-Shuang Nie
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zhong-Qi Qin
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| |
Collapse
|
2
|
The Transcriptional Network in the Arabidopsis Circadian Clock System. Genes (Basel) 2020; 11:genes11111284. [PMID: 33138078 PMCID: PMC7692566 DOI: 10.3390/genes11111284] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
The circadian clock is the biological timekeeping system that governs the approximately 24-h rhythms of genetic, metabolic, physiological and behavioral processes in most organisms. This oscillation allows organisms to anticipate and adapt to day–night changes in the environment. Molecular studies have indicated that a transcription–translation feedback loop (TTFL), consisting of transcriptional repressors and activators, is essential for clock function in Arabidopsis thaliana (Arabidopsis). Omics studies using next-generation sequencers have further revealed that transcription factors in the TTFL directly regulate key genes implicated in clock-output pathways. In this review, the target genes of the Arabidopsis clock-associated transcription factors are summarized. The Arabidopsis clock transcriptional network is partly conserved among angiosperms. In addition, the clock-dependent transcriptional network structure is discussed in the context of plant behaviors for adapting to day–night cycles.
Collapse
|
3
|
Seluzicki A, Burko Y, Chory J. Dancing in the dark: darkness as a signal in plants. PLANT, CELL & ENVIRONMENT 2017; 40:2487-2501. [PMID: 28044340 PMCID: PMC6110299 DOI: 10.1111/pce.12900] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/21/2023]
Abstract
Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface.
Collapse
Affiliation(s)
- Adam Seluzicki
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
| | - Yogev Burko
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joanne Chory
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|
4
|
Xu G, Guo H, Zhang D, Chen D, Jiang Z, Lin R. REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis. PHOTOSYNTHESIS RESEARCH 2015; 126:331-40. [PMID: 25910753 DOI: 10.1007/s11120-015-0146-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/16/2015] [Indexed: 05/03/2023]
Abstract
Chlorophyll biosynthesis plays a crucial role in the greening process and survival of etiolated seedlings and yet the mechanism underlying the regulation of this process is poorly understood. Upon light stimulation, NADPH: protochlorophyllide oxidoreductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide. Whereas this represents a key step in the chlorophyll biosynthetic pathway, the regulation of POR remains largely unknown. Three POR isoforms exist in Arabidopsis thaliana, i.e., PORA, PORB, and PORC. In this study, we identified a transcription factor, REVEILLE1 (RVE1), that binds directly to the PORA promoter through the EE-box cis-regulatory element. Analysis of PORA expression in RVE1 loss-of-function (rve1) and overexpression (RVE1-OX) Arabidopsis plants showed that RVE1 positively regulates the transcription of PORA. We found that Pchlide levels were reduced in RVE1-OX seedlings. Furthermore, rve1 etiolated seedlings had lower greening rates than the wild type when exposed to light, whereas RVE1-OX seedlings had higher greening rates. In addition, when etiolated seedlings were exposed to light, RVE1-OX plants had less reactive oxygen species (ROS) accumulation and cell death than the wild type, and had reduced levels of ROS-responsive gene expression. Taken together, our study reveals an important role for RVE1 in regulating chlorophyll biosynthesis and promoting seedling greening during early plant growth and development.
Collapse
Affiliation(s)
- Gang Xu
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Guo
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Zhang
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongqin Chen
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing, 1000, China
| | - Zhimin Jiang
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
5
|
Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 2013; 502:689-92. [PMID: 24153186 PMCID: PMC3827739 DOI: 10.1038/nature12603] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
|
6
|
Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, Millenaar FF. Plants under continuous light. TRENDS IN PLANT SCIENCE 2011; 16:310-8. [PMID: 21396878 DOI: 10.1016/j.tplants.2011.02.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/31/2011] [Accepted: 02/05/2011] [Indexed: 05/05/2023]
Abstract
Continuous light is an essential tool for understanding the plant circadian clock. Additionally, continuous light might increase greenhouse food production. However, using continuous light in research and practice has its challenges. For instance, most of the circadian clock-oriented experiments were performed under continuous light; consequently, interactions between the circadian clock and the light signaling pathway were overlooked. Furthermore, in some plant species continuous light induces severe injury, which is only poorly understood so far. In this review paper, we aim to combine the current knowledge with a modern conceptual framework. Modern genomic tools and rediscovered continuous light-tolerant tomato species (Solanum spp.) could boost the understanding of the physiology of plants under continuous light.
Collapse
Affiliation(s)
- Aaron I Velez-Ramirez
- Horticultural Supply Chains Group, Wageningen University, P.O. Box 630, 6700 AP Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Abstract
The phytochrome-interacting factor PIF3 has been proposed to act as a positive regulator of chloroplast development. Here, we show that the pif3 mutant has a phenotype that is similar to the pif1 mutant, lacking the repressor of chloroplast development PIF1, and that a pif1pif3 double mutant has an additive phenotype in all respects. The pif mutants showed elevated protochlorophyllide levels in the dark, and etioplasts of pif mutants contained smaller prolamellar bodies and more prothylakoid membranes than corresponding wild-type seedlings, similar to previous reports of constitutive photomorphogenic mutants. Consistent with this observation, pif1, pif3, and pif1pif3 showed reduced hypocotyl elongation and increased cotyledon opening in the dark. Transfer of 4-d-old dark-grown seedlings to white light resulted in more chlorophyll synthesis in pif mutants over the first 2 h, and analysis of gene expression in dark-grown pif mutants indicated that key tetrapyrrole regulatory genes such as HEMA1 encoding the rate-limiting step in tetrapyrrole synthesis were already elevated 2 d after germination. Circadian regulation of HEMA1 in the dark also showed reduced amplitude and a shorter, variable period in the pif mutants, whereas expression of the core clock components TOC1, CCA1, and LHY was largely unaffected. Expression of both PIF1 and PIF3 was circadian regulated in dark-grown seedlings. PIF1 and PIF3 are proposed to be negative regulators that function to integrate light and circadian control in the regulation of chloroplast development.
Collapse
|
8
|
Martin-Tryon EL, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER coordinates light signals for proper timing of photomorphogenesis and the circadian clock in Arabidopsis. THE PLANT CELL 2008; 20:1244-59. [PMID: 18515502 PMCID: PMC2438460 DOI: 10.1105/tpc.107.056655] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 04/24/2008] [Accepted: 05/08/2008] [Indexed: 05/24/2023]
Abstract
Numerous, varied, and widespread taxa have an internal circadian clock that allows anticipation of rhythmic changes in the environment. We have identified XAP5 CIRCADIAN TIMEKEEPER (XCT), an Arabidopsis thaliana gene important for light regulation of the circadian clock and photomorphogenesis. XCT is essential for proper clock function: xct mutants display a shortened circadian period in all conditions tested. Interestingly, XCT plays opposite roles in plant responses to light depending both on trait and wavelength. The clock in xct plants is hypersensitive to red but shows normal responses to blue light. By contrast, inhibition of hypocotyl elongation in xct is hyposensitive to red light but hypersensitive to blue light. Finally, XCT is important for ribulose-1,5-bisphosphate carboxylase/oxygenase production and plant greening in response to light. This novel combination of phenotypes suggests XCT may play a global role in coordinating growth in response to the light environment. XCT contains a XAP5 domain and is well conserved across diverse taxa, suggesting it has a common function in higher eukaryotes. Downregulation of the XCT ortholog in Caenorhabditis elegans is lethal, suggesting that studies in Arabidopsis may be instrumental to understanding the biochemical activity of XCT.
Collapse
Affiliation(s)
- Ellen L Martin-Tryon
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
9
|
Ito S, Nakamichi N, Nakamura Y, Niwa Y, Kato T, Murakami M, Kita M, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T. Genetic linkages between circadian clock-associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2007; 48:971-83. [PMID: 17519251 DOI: 10.1093/pcp/pcm063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The current best candidates for Arabidopsis thaliana clock components are CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and its homolog LHY (LATE ELONGATED HYPOCOTYL). In addition, five members of a small family, PSEUDO-RESPONSE REGULATORS (including PRR1, PRR3, PRR5, PRR7 and PRR9), are believed to be another type of clock component. The originally described member of PRRs is TOC1 (or PRR1) (TIMING OF CAB EXPRESSION 1). Interestingly, seedlings of A. thaliana carrying a certain lesion (i.e. loss-of-function or misexpression) of a given clock-associated gene commonly display a characteristic phenotype of light response during early photomorphogenesis. For instance, cca1 lhy double mutant seedlings show a shorter hypocotyl length than the wild type under a given fluence rate of red light (i.e. hypersensitivity to red light). In contrast, both toc1 single and prr7 prr5 double mutant seedlings with longer hypocotyls are hyposensitive under the same conditions. These phenotypes are indicative of linkage between the circadian clock and red light signal transduction mechanisms. Here this issue was addressed by conducting combinatorial genetic and epistasis analyses with a large number of mutants and transgenic lines carrying lesions in clock-associated genes, including a cca1 lhy toc1 triple mutant and a cca1 lhy prr7 prr5 quadruple mutant. Taking these results together, we propose a genetic model for clock-associated red light signaling, in which CCA1 and LHY function upstream of TOC1 (PRR1) in a negative manner, in turn, TOC1 (PRR1) serves as a positive regulator. PRR7 and PRR5 also act as positive regulators, but independently from TOC1 (PRR1). It is further suggested that these signaling pathways are coordinately integrated into the phytochrome-mediated red light signal transduction pathway, in which PIF3 (PHYTOCHROME-INTERACTING FACTOR 3) functions as a negative regulator immediately downstream of phyB.
Collapse
Affiliation(s)
- Shogo Ito
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|