1
|
Wickerhamomyces Yeast Killer Toxins' Medical Applications. Toxins (Basel) 2021; 13:toxins13090655. [PMID: 34564659 PMCID: PMC8470119 DOI: 10.3390/toxins13090655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Possible implications and applications of the yeast killer phenomenon in the fight against infectious diseases are reviewed, with particular reference to some wide-spectrum killer toxins (KTs) produced by Wickerhamomyces anomalus and other related species. A perspective on the applications of these KTs in the medical field is provided considering (1) a direct use of killer strains, in particular in the symbiotic control of arthropod-borne diseases; (2) a direct use of KTs as experimental therapeutic agents; (3) the production, through the idiotypic network, of immunological derivatives of KTs and their use as potential anti-infective therapeutics. Studies on immunological derivatives of KTs in the context of vaccine development are also described.
Collapse
|
2
|
Rigo GV, Tasca T. Vaginitis: Review on Drug Resistance. Curr Drug Targets 2020; 21:1672-1686. [PMID: 32753007 DOI: 10.2174/1389450121666200804112340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Female genital tract infections have a high incidence among different age groups and represent an important impact on public health. Among them, vaginitis refers to inflammation of the vulva and/or vagina due to the presence of pathogens that cause trichomoniasis, bacterial vaginosis, and vulvovaginal candidiasis. Several discomforts are associated with these infections, as well as pregnancy complications and the facilitation of HIV transmission and acquisition. The increasing resistance of microorganisms to drugs used in therapy is remarkable, since women report the recurrence of these infections and associated comorbidities. Different resistant mechanisms already described for the drugs used in the therapy against Trichomonas vaginalis, Candida spp., and Gardnerella vaginalis, as well as aspects related to pathogenesis and treatment, are discussed in this review. This study aims to contribute to drug design, avoiding therapy ineffectiveness due to drug resistance. Effective alternative therapies to treat vaginitis will reduce the recurrence of infections and, consequently, the high costs generated in the health system, improving women's well-being.
Collapse
Affiliation(s)
- Graziela Vargas Rigo
- Research Group on Trichomonas, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Research Group on Trichomonas, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Muhammed MT, Son ÇD, İzgü F. Three dimensional structure prediction of panomycocin, a novel Exo-β-1,3-glucanase isolated from Wickerhamomyces anomalus NCYC 434 and the computational site-directed mutagenesis studies to enhance its thermal stability for therapeutic applications. Comput Biol Chem 2019; 80:270-277. [PMID: 31054539 DOI: 10.1016/j.compbiolchem.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
Panomycocin is a naturally produced potent antimycotic/antifungal protein secreted by the yeast Wickerhamomyces anomalus NCYC 434 with an exo-β-1,3-glucanase activity. In this study the three dimensional structure of panomycocin was predicted and the computational site-directed mutagenesis was performed to enhance its thermal stability in liquid formulations over the body temperature for topical therapeutic applications. Homology modeling was performed with MODELLER and I-TASSER. Among the generated models, the model with the lowest energy and DOPE score was selected for further loop modeling. The loop model was optimized and the reliability of the model was confirmed with ERRAT, Verify 3D and Ramachandran plot values. Enhancement of the thermal stability of the model was done using contemporary servers and programs such as SPDBViewer, CNA, I-Mutant2.0, Eris, AUTO-MUTE and MUpro. In the region outside the binding site of the model Leu52 Arg, Phe223Arg and Gly254Arg were found to be the best thermostabilizing mutations with 6.26 K, 6.26 K and 8.27 K increases, respectively. In the binding site Glu186Arg was found to be the best thermostabilizer mutation with a 9.58 K temperature increase. The results obtained in this study led us to design a mutant panomycocin that can be used as a novel antimycotic/antifungal drug in a liquid formulation for topical applications over the normal body temperature.
Collapse
Affiliation(s)
- Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Çağdaş Devrim Son
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Fatih İzgü
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
4
|
İzgü F, Bayram G, Tosun K, İzgü D. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model. Int J Nanomedicine 2017; 12:5601-5611. [PMID: 28831255 PMCID: PMC5548276 DOI: 10.2147/ijn.s141949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, a liposomal lyophilized powder formulation of panomycocin was developed for therapeutic purposes against vulvovaginal candidiasis which affects 80% of women worldwide. Panomycocin is a potent antimycotic protein secreted by the yeast Wickerhamomyces anomalus NCYC 434. This study involved the preparation of panomycocin-loaded stratum corneum lipid liposomes (SCLLs), characterization of the SCLLs, and determination of antimycotic efficacy of the formulation against Candida albicans and Candida glabrata clinical vaginal isolates in a human vaginal epithelium tissue model. The encapsulation and loading efficiencies of SCLLs were 73% and 76.8%, respectively. In transmission electron microscopy images, the SCLLs appeared in the submicron size range. Dynamic light scattering analyses showed that the SCLLs had uniform size distribution. Zeta potential measurements revealed stable and positively charged SCLLs. In Fourier transform infrared spectroscopy analyses, no irreversible interactions between the encapsulated panomycocin and the SCLLs were detected. The SCLLs retained >98% of encapsulated panomycocin in aqueous solution up to 12 hours. The formulation was fungicidal at the same minimum fungicidal concentration values for non-formulated pure panomycocin when tested on an in vitro model of vaginal candidiasis. This is the first study in which SCLLs and a protein as an active ingredient have been utilized together in a formulation. The results obtained in this study led us to conduct further preclinical trials of this formulation for the development of an effective topical anti-candidal drug with improved safety.
Collapse
Affiliation(s)
- Fatih İzgü
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Günce Bayram
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Kübra Tosun
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Demet İzgü
- Biology Department, TED Ankara College, Ankara, Turkey
| |
Collapse
|
5
|
Hong SH, Song YS, Seo DJ, Kim KY, Jung WJ. Antifungal activity and expression patterns of extracellular chitinase and β-1,3-glucanase in Wickerhamomyces anomalus EG2 treated with chitin and glucan. Microb Pathog 2017; 110:159-164. [PMID: 28668604 DOI: 10.1016/j.micpath.2017.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/23/2017] [Accepted: 06/26/2017] [Indexed: 11/15/2022]
Abstract
In this study, the expression patterns of extracellular chitinase and β-1,3-glucanase from cultured Wickerhamomyces anomalus EG2 treated with chitin, glucan, and chemical chitinase inhibitors (kinetin, caffeine, and acetazolamide) were investigated using SDS-PAGE. Relationship between enzyme expression and antifungal activity from yeast plays a very important role for biocontrol of phytopathoges. To determine antifungal activity against phytopathogens, W. anomalus EG2 was shown to strongly inhibit hyphal growth of Fusarium oxysporum KACC 40032 and Rhizoctonia solani KACC 40111. Slight chitinase activity was observed 12 h after incubation in both PDB and YPD medium without colloidal chitin. The molecular weight of chitinase was approximately 124 kDa β-1,3-Glucanase isoenzyme (GN1 and GN2) was observed distinctly on SDS-PAGE gels when laminarin was used as a substrate. β-1,3-Glucanase isoenzyme was not observed when using glucan-containing high polymer complex (GHPC) as a substrate. Production of chitinase from W. anomalus EG2 was inhibited slightly by acetazolamide. Abnormal and cluster-shaped cells of W. anomalus EG2 were observed in both PDB and YPD medium treated with colloidal chitin. These results indicated that W. anomalus EG2 could be applied commercially as a biological control agent of phytopathogens and as a bioinhibitor of yeast cell growth.
Collapse
Affiliation(s)
- Sin-Hyoung Hong
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agricultural and Life Science, Chonnam National University, Gwangju 61186, South Korea
| | - Yong-Su Song
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agricultural and Life Science, Chonnam National University, Gwangju 61186, South Korea
| | - Dong-Jun Seo
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agricultural and Life Science, Chonnam National University, Gwangju 61186, South Korea
| | - Kil-Yong Kim
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agricultural and Life Science, Chonnam National University, Gwangju 61186, South Korea
| | - Woo-Jin Jung
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agricultural and Life Science, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
6
|
Paris AP, Persel C, Serafin CF, de Cássia Garcia Simão R, Gandra RF. Susceptibility of Candida albicans Isolated from Blood to Wickerhamomyces anomalous Mycocins. Curr Microbiol 2016; 73:878-884. [PMID: 27638312 DOI: 10.1007/s00284-016-1135-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022]
Abstract
The occurrence of infections caused by Candida albicans in developed and developing countries and their resistance to some available antifungal drugs have been viewed as causing a great problem to human health worldwide. In order to find new researched molecules, there are some mycoses secreted by yeasts, especially mycocins produced by Wickerhamomyces anomalus with a broad antimicrobial spectrum of activity. Thus, this trial aimed at evaluating mycocins' activity obtained from environmental W. anomalus cell wall compared to thirty C. albicans strains isolated from blood. Mycocins were extracted from cell walls of three W. anomalus strains (WA40, WA45, and WA92). The 400 μg mL-1 concentration of WA40M1, WA45M2, and WA92M3 mycocin extracts showed the following respective activity results: 96.6, 96.6, and 90.0 % C. albicans strains. WA45M2 and WA92M3 mycocin extracts showed some activity in 3.3 % of C. albicans strains at 50 μg mL-1 concentration. Mycocins extracted from cell walls of three W. anomalus strains named as WA40, WA45, and WA92 showed antifungal activity compared to C. albicans and low degree of hemolysis.
Collapse
Affiliation(s)
- Ana Paula Paris
- Hospital Universitário do Oeste do Paraná,Universidade Estadual do Oeste do Paraná-UNIOESTE, Av. Tancredo Neves, 3224, Cascavel, PR, 85806-470, Brazil.
| | - Cristiane Persel
- Hospital Universitário do Oeste do Paraná,Universidade Estadual do Oeste do Paraná-UNIOESTE, Av. Tancredo Neves, 3224, Cascavel, PR, 85806-470, Brazil
| | - Cleber Fernando Serafin
- Hospital Universitário do Oeste do Paraná,Universidade Estadual do Oeste do Paraná-UNIOESTE, Av. Tancredo Neves, 3224, Cascavel, PR, 85806-470, Brazil
| | - Rita de Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | - Rinaldo Ferreira Gandra
- Hospital Universitário do Oeste do Paraná,Universidade Estadual do Oeste do Paraná-UNIOESTE, Av. Tancredo Neves, 3224, Cascavel, PR, 85806-470, Brazil
| |
Collapse
|
7
|
Tay ST, Lim SL, Tan HW. Growth inhibition of Candida species by Wickerhamomyces anomalus mycocin and a lactone compound of Aureobasidium pullulans. Altern Ther Health Med 2014; 14:439. [PMID: 25380692 PMCID: PMC4246603 DOI: 10.1186/1472-6882-14-439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 10/14/2014] [Indexed: 11/10/2022]
Abstract
Background The increasing resistance of Candida yeasts towards antifungal compounds and the limited choice of therapeutic drugs have spurred great interest amongst the scientific community to search for alternative anti-Candida compounds. Mycocins and fungal metabolites have been reported to have the potential for treatment of fungal infections. In this study, the growth inhibition of Candida species by a mycocin produced by Wickerhamomyces anomalus and a lactone compound from Aureobasidium pullulans were investigated. Methods Mycocin was purified from the culture supernatant of an environmental isolate of W. anomalus using Sephadex G-75 gel filtration column chromatography. The mycocin preparation was subjected to SDS-PAGE analysis followed by MALDI TOF/TOF mass spectrometry analysis. The thermal and temperature stability of the mycocin were determined. The glucanase activity of the mycocin was investigated by substrate staining of the mycocin with 4-methyl-umbelliferyl-ß-D-glucoside (MUG). Gas chromatography mass spectrometry (GCMS) analysis was used to identify anti-Candida metabolite in the culture supernatant of an environmental isolate of Aureobasidium pullulans. The inhibitory effects of the anti-Candida compound against planktonic and biofilm cultures of various Candida species were determined using broth microdilution and biofilm quantitation methods. Results A mycocin active against Candida mesorugosa but not C. albicans, C. parapsilosis and C. krusei was isolated from the culture supernatant of W. anomalus in this study. The mycocin, identified as exo-ß-1,3 glucanase by MALDI TOF/TOF mass spectrometry, was stable at pH 3–6 and temperature ranging from 4-37°C. The glucanase activity of the mycocin was confirmed by substrate staining with MUG. 5-hydroxy-2-decenoic acid lactone (HDCL) was identified from the culture supernatant of A. pullulans. Using a commercial source of HDCL, the planktonic and biofilm MICs of HDCL against various Candida species were determined in this study. Conclusions W. anomalus mycocin demonstrated a narrow spectrum of activity targeting only against C. mesorugosa, while HDCL demonstrated a broad spectrum of inhibitory action against multiple Candida species. The growth inhibition of W. anomalus mycocin and the lactone compound from A. pullulans against Candida yeasts should be further explored for therapeutic potentials against candidiasis.
Collapse
|
8
|
Satora P, Tarko T, Sroka P, Blaszczyk U. The influence ofWickerhamomyces anomaluskiller yeast on the fermentation and chemical composition of apple wines. FEMS Yeast Res 2014; 14:729-40. [DOI: 10.1111/1567-1364.12159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/28/2014] [Accepted: 04/15/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Pawel Satora
- Department of Fermentation Technology and Technical Microbiology; University of Agriculture; Krakow Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Technical Microbiology; University of Agriculture; Krakow Poland
| | - Pawel Sroka
- Department of Fermentation Technology and Technical Microbiology; University of Agriculture; Krakow Poland
| | - Urszula Blaszczyk
- Department of Fermentation Technology and Technical Microbiology; University of Agriculture; Krakow Poland
| |
Collapse
|
9
|
Izgü F, Altinbay D, Türeli AE. In VitroSusceptibilities ofCandidaspp. to Panomycocin, a Novel Exo-β-1,3-Glucanase Isolated fromPichia anomalaNCYC 434. Microbiol Immunol 2013; 51:797-803. [PMID: 17895596 DOI: 10.1111/j.1348-0421.2007.tb03975.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Panomycocin, the killer toxin of Pichia anomala NCYC 434 (K5), is a 49 kDa monomeric glycoprotein with exo-beta-1,3-glucanase activity (patent pending). In this study we evaluated the in vitro activity of panomycocin against a panel of 109 human isolates of seven different pathogenic Candida spp. using microdilution and time-kill methods. Panomycocin was most active against C. tropicalis, C. pseudotropicalis and C. glabrata with MIC(90) values of 1 microg/ml. It displayed significant activity against C. albicans and C. parapsilosis with MIC(90) values of 4 and 2 microg/ml, respectively. For C. krusei, the MIC(90) value was 8 microg/ml. Panomycocin was fungicidal against all the tested Candida spp. The MFC values were only one or 2 dilutions higher than the MICs with the exception of C. krusei isolates with MFCs greater than or equal to 4xMIC. Results of this study indicated that panomycocin could be considered as a natural antifungal agent against Candida infections and has significant potential for further investigation.
Collapse
Affiliation(s)
- Fatih Izgü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | | | | |
Collapse
|
10
|
Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE. The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 2013; 6:453-92. [PMID: 23336673 PMCID: PMC3918151 DOI: 10.1111/1751-7915.12027] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023] Open
Abstract
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized--or at least partially vacant--habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Collapse
Affiliation(s)
- Jonathan A Cray
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Andrew N W Bell
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Prashanth Bhaganna
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Allen Y Mswaka
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - David J Timson
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
11
|
Muccilli S, Wemhoff S, Restuccia C, Meinhardt F. Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Yeast 2012; 30:33-43. [PMID: 23148020 DOI: 10.1002/yea.2935] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/08/2012] [Indexed: 11/08/2022] Open
Abstract
Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains.
Collapse
Affiliation(s)
- Serena Muccilli
- DISPA, Sezione di Tecnologia e Microbiologia degli Alimenti, University of Catania, Italy
| | | | | | | |
Collapse
|
12
|
Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis). Food Microbiol 2011; 30:219-25. [PMID: 22265304 DOI: 10.1016/j.fm.2011.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/23/2022]
Abstract
Killer Saccharomyces cerevisiae and Wickerhamomyces anomalus yeast strains were tested as biocontrol agents against Penicillium digitatum, one the most important causes of postharvest decay in orange fruits. W. anomalus, grown on acidified medium, demonstrated micocinogenic activity against P. digitatum, as indicated by large inhibition halos and hyphal damage resulting from β-glucanase activity. Oranges that had been deliberately inoculated with pathogens were protected from decay by W. anomalus. Inoculation of oranges with W. anomalus strains BS 91 and BS 92 reduced disease severity to 1 and 4%, respectively, for up to 10 days in storage.
Collapse
|
13
|
Izgu DA, Kepekci RA, Izgu F. Inhibition of Penicillium digitatum and Penicillium italicum in vitro and in planta with Panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434. Antonie van Leeuwenhoek 2010; 99:85-91. [DOI: 10.1007/s10482-010-9527-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/29/2010] [Indexed: 11/30/2022]
|
14
|
Purification and molecular characterization of exo-beta-1,3-glucanases from the marine yeast Williopsis saturnus WC91-2. Appl Microbiol Biotechnol 2009; 85:85-94. [PMID: 19513709 DOI: 10.1007/s00253-009-2061-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/22/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
The extracellular beta-1,3-glucanases in the supernatant of cell culture of the marine yeast Williopsis saturnus WC91-2 was purified to homogeneity with a 115-fold increase in specific beta-1,3-glucanase activity as compared to that in the supernatant by ultrafiltration, gel filtration chromatography, and anion-exchange chromatography. According to the data from sodium dodecyl sulfate polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 47.5 kDa. The purified enzyme could convert laminarin into monosaccharides and disaccharides, but had no killer toxin activity. The optimal pH and temperature of the purified enzyme were 4.0 and 40 degrees C, respectively. The enzyme was significantly stimulated by Li+, Ni2+, and Ba2+. The enzyme was inhibited by phenylmethylsulfonyl fluoride, iodoacetic acid, ethylenediamine tetraacetic acid, ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid, and 1,10-phenanthroline. The Km and Vmax values of the purified enzyme for laminarin were 3.07 mg/ml and 4.02 mg/min ml, respectively. Both matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectroscopy and DNA sequencing identified a peptide YIEAQLDAFEKR which is the conserved motif of the beta-1,3-glucanases from other yeasts.
Collapse
|
15
|
Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv 2009; 27:236-55. [DOI: 10.1016/j.biotechadv.2009.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/28/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
|
16
|
Vijayendra SVN, Kashiwagi Y. Characterization of a new acid stable exo-beta-1,3-glucanase of Rhizoctonia solani and its action on microbial polysaccharides. Int J Biol Macromol 2008; 44:92-7. [PMID: 19022284 DOI: 10.1016/j.ijbiomac.2008.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/17/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
A new acid stable exo-beta-1,3-glucanase of Rhizoctonia solani purified from a commercial source 'Kitarase-M', by a combination of ammonium sulfate precipitation, ion-exchange and gel filtration methods, had specific activity of 0.26 U/mg protein, Km and Vmax values of 0.78 mg/ml and 0.27 mM/min/mg protein, respectively. It had molecular weight of 62 kDa with optimum activity at 40 degrees C temperature and pH 5.0, with high stability at pH of 3-7. Unique amino acid sequence was found at N-terminal end. The substrate specificity studies confirmed that it is an exo-beta-1,3-glucanase. It could hydrolyze curdlan powder to release glucose.
Collapse
Affiliation(s)
- S V N Vijayendra
- Applied Microbiology Division, National Food Research Institute, Kan-nondai, 2-1-12, Tsukuba, Ibaraki 305-8642, Japan.
| | | |
Collapse
|
17
|
Wang X, Chi Z, Yue L, Li J. Purification and characterization of killer toxin from a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab. Curr Microbiol 2007; 55:396-401. [PMID: 17687604 DOI: 10.1007/s00284-007-9010-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
The molecular mass of the purified killer toxin from the marine killer yeast YF07b was estimated to be 47.0 kDa. The optimal pH and temperature of the purified killer toxin were 4.5 and 40 degrees C, respectively. The toxin was activated by Ca(2+), K(+), Na(+), Mg(2+), Na(+), and Co(2+). However, Fe(2+), Fe(3+), Hg(2+), Cu(2+), Mn(2+), Zn(2+), and Ag(+) acted as inhibitors in decreasing activity of the toxin. The toxin was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, ethylenediaminetetraacetic acid, and 1,10-phenanthroline. The Km of the toxin for laminarin was 1.17 g L(-1). The toxin also actively hydrolyzed laminarin and killed the whole cells of the pathogenic yeast in crab.
Collapse
Affiliation(s)
- X Wang
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No.5, Qingdao, China
| | | | | | | |
Collapse
|
18
|
Izgü F, Altinbay D, Türeli AE. In vitro activity of panomycocin, a novel exo-?-1,3-glucanase isolated from Pichia anomala NCYC 434, against dermatophytes. Mycoses 2007; 50:31-4. [PMID: 17302745 DOI: 10.1111/j.1439-0507.2006.01303.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Killer proteins that are produced and secreted into the environment by certain yeast strains are considered as promising antifungal agents. In this study, in vitro activity of Pichia anomala NCYC 434 (K5) killer protein, panomycocin, which is a 49 kDa glycoprotein with an exo-beta-1,3-glucanase activity was tested against 41 isolates of dermatophytes. Minimum inhibitory concentrations (MICs) were determined by a broth microdilution method based on the reference document M38-A of Clinical and Laboratory Standards Institute (CLSI; formerly NCCLS). For panomycocin MIC determinations two end point criteria MIC-2 (prominent growth inhibition) and MIC-0 (complete growth inhibition) were recorded. All the tested isolates (Microsporum spp. and Trichophyton spp.) were found susceptible to panomycocin. The MIC-2 values ranged from 0.25 to 2 microg ml(-1) and MIC-0 values ranged from 1 to 8 microg ml(-1). These results showed that panomycocin is active in vitro against fungal strains that cause superficial infections and highlighted its probable use as a topical antifungal agent.
Collapse
Affiliation(s)
- Fatih Izgü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | | | | |
Collapse
|
19
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|