1
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
2
|
|
3
|
Bionda T, Gross LE, Becker T, Papasotiriou DG, Leisegang MS, Karas M, Schleiff E. Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts. PLANTA 2016; 243:733-47. [PMID: 26669598 DOI: 10.1007/s00425-015-2440-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation. Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.
Collapse
Affiliation(s)
- Tihana Bionda
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Lucia E Gross
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Thomas Becker
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Biochemistry and Molecular Biology, ZBMZ, and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Dimitrios G Papasotiriou
- Pharmaceutical Chemistry, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Matthias S Leisegang
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Michael Karas
- Pharmaceutical Chemistry, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Molecular Cell Biology of Plants, Cluster of Excellence Frankfurt, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Buchmann Institut for Molecular Life Sciences, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
4
|
Bölter B, Soll J, Schwenkert S. Redox meets protein trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:949-56. [PMID: 25626173 DOI: 10.1016/j.bbabio.2015.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
After the engulfment of two prokaryotic organisms, the thus emerged eukaryotic cell needed to establish means of communication and signaling to properly integrate the acquired organelles into its metabolism. Regulatory mechanisms had to evolve to ensure that chloroplasts and mitochondria smoothly function in accordance with all other cellular processes. One essential process is the post-translational import of nuclear encoded organellar proteins, which needs to be adapted according to the requirements of the plant. The demand for protein import is constantly changing depending on varying environmental conditions, as well as external and internal stimuli or different developmental stages. Apart from long-term regulatory mechanisms such as transcriptional/translation control, possibilities for short-term acclimation are mandatory. To this end, protein import is integrated into the cellular redox network, utilizing the recognition of signals from within the organelles and modifying the efficiency of the translocon complexes. Thereby, cellular requirements can be communicated throughout the whole organism. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| |
Collapse
|
5
|
Trösch R, Mühlhaus T, Schroda M, Willmund F. ATP-dependent molecular chaperones in plastids--More complex than expected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:872-88. [PMID: 25596449 DOI: 10.1016/j.bbabio.2015.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Raphael Trösch
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany; HU Berlin, Institute of Biology, Chausseestraße 117, 10115 Berlin, Germany; TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Timo Mühlhaus
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Michael Schroda
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Felix Willmund
- TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| |
Collapse
|
6
|
Zhou S, Sun H, Zheng B, Li R, Zhang W. Cell cycle transcription factor E2F2 mediates non-stress temperature response of AtHSP70-4 in Arabidopsis. Biochem Biophys Res Commun 2014; 455:139-46. [DOI: 10.1016/j.bbrc.2014.10.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/24/2023]
|
7
|
Abstract
Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance.
Collapse
|
8
|
Teng YS, Chan PT, Li HM. Differential age-dependent import regulation by signal peptides. PLoS Biol 2012; 10:e1001416. [PMID: 23118617 PMCID: PMC3484058 DOI: 10.1371/journal.pbio.1001416] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022] Open
Abstract
Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.
Collapse
Affiliation(s)
- Yi-Shan Teng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Po-Ting Chan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
10
|
Elkehal R, Becker T, Sommer MS, Königer M, Schleiff E. Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1033-40. [PMID: 22425965 DOI: 10.1016/j.bbamcr.2012.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/30/2012] [Accepted: 02/29/2012] [Indexed: 11/29/2022]
Abstract
Recent studies demonstrated that lipids influence the assembly and efficiency of membrane-embedded macromolecular complexes. Similarly, lipids have been found to influence chloroplast precursor protein binding to the membrane surface and to be associated with the Translocon of the Outer membrane of Chloroplasts (TOC). We used a system based on chloroplast outer envelope vesicles from Pisum sativum to obtain an initial understanding of the influence of lipids on precursor protein translocation across the outer envelope. The ability of the model precursor proteins p(OE33)titin and pSSU to be recognized and translocated in this simplified system was investigated. We demonstrate that transport across the outer membrane can be observed in the absence of the inner envelope translocon. The translocation, however, was significantly slower than that observed for chloroplasts. Enrichment of outer envelope vesicles with different lipids natively found in chloroplast membranes altered the binding and transport behavior. Further, the results obtained using outer envelope vesicles were consistent with the results observed for the reconstituted isolated TOC complex. Based on both approaches we concluded that the lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylinositol (PI) increased TOC-mediated binding and import for both precursor proteins. In contrast, enrichment in digalactosyldiacylglycerol (DGDG) improved TOC-mediated binding for pSSU, but decreased import for both precursor proteins. Optimal import occurred only in a narrow concentration range of DGDG.
Collapse
Affiliation(s)
- Rajae Elkehal
- Center of Membrane Proteomic, Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
11
|
Flores-Pérez Ú, Jarvis P. Molecular chaperone involvement in chloroplast protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:332-40. [PMID: 22521451 DOI: 10.1016/j.bbamcr.2012.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 03/31/2012] [Indexed: 11/19/2022]
Abstract
Chloroplasts are organelles of endosymbiotic origin that perform essential functions in plants. They contain about 3000 different proteins, the vast majority of which are nucleus-encoded, synthesized in precursor form in the cytosol, and transported into the chloroplasts post-translationally. These preproteins are generally imported via envelope complexes termed TOC and TIC (Translocon at the Outer/Inner envelope membrane of Chloroplasts). They must navigate different cellular and organellar compartments (e.g., the cytosol, the outer and inner envelope membranes, the intermembrane space, and the stroma) before arriving at their final destination. It is generally considered that preproteins are imported in a largely unfolded state, and the whole process is energy-dependent. Several chaperones and cochaperones have been found to mediate different stages of chloroplast import, in similar fashion to chaperone involvement in mitochondrial import. Cytosolic factors such as Hsp90, Hsp70 and 14-3-3 may assist preproteins to reach the TOC complex at the chloroplast surface, preventing their aggregation or degradation. Chaperone involvement in the intermembrane space has also been proposed, but remains uncertain. Preprotein translocation is completed at the trans side of the inner membrane by ATP-driven motor complexes. A stromal Hsp100-type chaperone, Hsp93, cooperates with Tic110 and Tic40 in one such motor complex, while stromal Hsp70 is proposed to act in a second, parallel complex. Upon arrival in the stroma, chaperones (e.g., Hsp70, Cpn60, cpSRP43) also contribute to the folding, assembly or onward intraorganellar guidance of the proteins. In this review, we focus on chaperone involvement during preprotein translocation at the chloroplast envelope. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
12
|
Inoue K. Emerging roles of the chloroplast outer envelope membrane. TRENDS IN PLANT SCIENCE 2011; 16:550-7. [PMID: 21775189 DOI: 10.1016/j.tplants.2011.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/11/2011] [Accepted: 06/15/2011] [Indexed: 05/25/2023]
Abstract
The chloroplast is essential for the viability of plants. It is enclosed by a double-membrane envelope that originated from the outer and plasma membranes of a cyanobacterial endosymbiont. Chloroplast biogenesis depends on binary fission and import of nuclear-encoded proteins. Our understanding of the mechanisms and evolutionary origins of these processes has been greatly advanced by recent genetic and biochemical studies on envelope-localized multiprotein machines. Furthermore, the latest studies on outer envelope proteins have provided molecular insights into organelle movement and membrane lipid remodeling, activities that are vital for plant survival under diverse environmental conditions. Ongoing and future research on the chloroplast outer envelope should add to our knowledge of organelle biology and the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- Kentaro Inoue
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Shi LX, Theg SM. The motors of protein import into chloroplasts. PLANT SIGNALING & BEHAVIOR 2011; 6:1397-401. [PMID: 22019640 PMCID: PMC3258075 DOI: 10.4161/psb.6.9.16916] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 06/13/2011] [Indexed: 05/24/2023]
Abstract
Chloroplast function is largely dependent on its resident proteins, most of which are encoded by the nuclear genome and are synthesized in cytosol. Almost all of these are imported through the translocons located in the outer and inner chloroplast envelope membranes. The motor protein that provides the driving force for protein import has been proposed to be Hsp93, a member of the Hsp100 family of chaperones residing in the stroma. Combining in vivo and in vitro approaches, recent publications have provided multiple lines of evidence demonstrating that a stromal Hsp70 system is also involved in protein import into this organelle. Thus it appears that protein import into chloroplasts is driven by two motor proteins, Hsp93 and Hsp70. A perspective on collaboration between these two chaperones is discussed.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California, Davis, CA, USA.
| | | |
Collapse
|
14
|
Harsman A, Krüger V, Bartsch P, Honigmann A, Schmidt O, Rao S, Meisinger C, Wagner R. Protein conducting nanopores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454102. [PMID: 21339590 DOI: 10.1088/0953-8984/22/45/454102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40(SC) as well as a mutant Tom40(SC) (S(54 --> E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40(SC) corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40(SC) S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t(off) approximately = 1.1 ms for the wildtype, whereas the mutant Tom40(SC) S54E displayed a biphasic dwelltime distribution (t(off)(-1) approximately = 0.4 ms; t(off)(-2) approximately = 4.6 ms).
Collapse
Affiliation(s)
- Anke Harsman
- Biophysics, Department of Biology/Chemistry, University of Osnabrueck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chiu CC, Chen LJ, Li HM. Pea chloroplast DnaJ-J8 and Toc12 are encoded by the same gene and localized in the stroma. PLANT PHYSIOLOGY 2010; 154:1172-82. [PMID: 20841453 PMCID: PMC2971597 DOI: 10.1104/pp.110.161224] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/10/2010] [Indexed: 05/20/2023]
Abstract
Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.
Collapse
Affiliation(s)
| | | | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
16
|
Latijnhouwers M, Xu XM, Møller SG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. PLANTA 2010; 232:567-78. [PMID: 20506024 DOI: 10.1007/s00425-010-1192-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/04/2010] [Indexed: 05/20/2023]
Abstract
70 kDa heat shock proteins (Hsp70s) act as molecular chaperones involved in essential cellular processes such as protein folding and protein transport across membranes. They also play a role in the cell's response to a wide range of stress conditions. The Arabidopsis family of Hsp70s homologues includes two highly conserved proteins, cpHsc70-1 and cpHsc70-2 which are both imported into chloroplasts (Su and Li in Plant Physiol 146:1231-1241, 2008). Here, we demonstrate that YFP-fusion proteins of both cpHsc70-1 and cpHsc70-2 are predominantly stromal, though low levels were detected in the thylakoid membrane. Both genes are ubiquitously expressed at high levels in both seedlings and adult plants. We further show that both cpHsc70-1 and cpHsc70-2 harbour ATPase activity which is essential for Hsp70 chaperone activity. A previously described T-DNA insertion line for cpHsc70-1 (DeltacpHsc70-1) has variegated cotyledons, malformed leaves, growth retardation, impaired root growth and sensitivity to heat shock treatment. In addition, under stress conditions, this mutant also exhibits unusual sepals, and malformed flowers and sucrose concentrations as low as 1% significantly impair growth. cpHsc70-1/cpHsc70-2 double-mutants are lethal. However, we demonstrate through co-suppression and artificial microRNA (amiRNA) approaches that transgenic plants with severely reduced levels of both genes have a white and stunted phenotype. Interestingly, chloroplasts in these plants have an unusual morphology and contain few or no thylakoid membranes. Our data show that cpHsc70-1 and cpHsc70-2 are essential ATPases, have overlapping roles and are required for normal plastid structure.
Collapse
Affiliation(s)
- Maita Latijnhouwers
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway
| | | | | |
Collapse
|
17
|
Schwenkert S, Soll J, Bölter B. Protein import into chloroplasts--how chaperones feature into the game. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:901-11. [PMID: 20682282 DOI: 10.1016/j.bbamem.2010.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
Chloroplasts originated from an endosymbiotic event, in which an ancestral photosynthetic cyanobacterium was engulfed by a mitochondriate eukaryotic host cell. During evolution, the endosymbiont lost its autonomy by means of a massive transfer of genetic information from the prokaryotic genome to the host nucleus. Consequently, the development of protein import machineries became necessary for the relocation of proteins that are now nuclear-encoded and synthesized in the cytosol but destined for the chloroplast. Organelle biogenesis and maintenance requires a tight coordination of transcription, translation and protein import between the host cell and the organelle. This review focuses on the translocation complexes in the outer and inner envelope membrane with a special emphasis on the role of molecular chaperones. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
18
|
Su PH, Li HM. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. THE PLANT CELL 2010; 22:1516-31. [PMID: 20484004 PMCID: PMC2899880 DOI: 10.1105/tpc.109.071415] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/26/2010] [Accepted: 05/10/2010] [Indexed: 05/18/2023]
Abstract
Hsp70 family proteins function as motors driving protein translocation into mitochondria and the endoplasmic reticulum. Whether Hsp70 is involved in protein import into chloroplasts has not been resolved. We show here Arabidopsis thaliana knockout mutants of either of the two stromal cpHsc70s, cpHsc70-1 and cpHsc70-2, are defective in protein import into chloroplasts during early developmental stages. Protein import was found to be affected at the step of precursor translocation across the envelope membranes. From solubilized envelope membranes, stromal cpHsc70 was specifically coimmunoprecipitated with importing precursors and stoichiometric amounts of Tic110 and Hsp93. Moreover, in contrast with receptors at the outer envelope membrane, cpHsp70 is important for the import of both photosynthetic and nonphotosynthetic proteins. These data indicate that cpHsc70 is part of the chloroplast translocon for general import and is important for driving translocation into the stroma. We further analyzed the relationship of cpHsc70 with the other suggested motor system, Hsp93/Tic40. Chloroplasts from the cphsc70-1 hsp93-V double mutant had a more severe import defect than did the single mutants, suggesting that the two proteins function in parallel. The cphsc70-1 tic40 double knockout was lethal, further indicating that cpHsc70-1 and Tic40 have an overlapping essential function. In conclusion, our data indicate that chloroplasts have two chaperone systems facilitating protein translocation into the stroma: the cpHsc70 system and the Hsp93/Tic40 system.
Collapse
Affiliation(s)
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
19
|
Shi LX, Theg SM. A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. THE PLANT CELL 2010; 22:205-20. [PMID: 20061551 PMCID: PMC2828695 DOI: 10.1105/tpc.109.071464] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heat shock protein 70s (Hsp70s) are encoded by a multigene family and are located in different cellular compartments. They have broad-ranging functions, including involvement in protein trafficking, prevention of protein aggregation, and assistance in protein folding. Hsp70s work together with their cochaperones, J domain proteins and nucleotide exchange factors (e.g., GrpEs), in a functional cycle of substrate binding and release accompanied by ATP hydrolysis. We have taken advantage of the gene targeting capability of the moss Physcomitrella patens to investigate the functions of chloroplast Hsp70s. We identified four Hsp70 genes and two GrpE cochaperone homolog genes (CGE) in moss that encode chloroplast proteins. Disruption of one of the Hsp70 genes, that for Hsp70-2, caused lethality, and protein import into heat-shocked chloroplasts isolated from temperature-sensitive hsp70-2 mutants was appreciably impaired. Whereas the double cge null mutant was not viable, we recovered a cge1 null/cge2 knock down mutant in which Hsp70-2 was upregulated. Chloroplasts isolated from this mutant demonstrated a defect in protein import. In addition, two different precursors staged as early import intermediates could be immunoprecipitated with an Hsp70-2-specific antibody. This immunoprecipitate also contained Hsp93 and Tic40, indicating that it represents a precursor still in the Toc/Tic translocon. Together, these data indicate that a stromal Hsp70 system plays a crucial role in protein import into chloroplasts.
Collapse
|
20
|
Abstract
Most proteins in chloroplasts are encoded by the nuclear genome and synthesized as precursors with N-terminal targeting signals called transit peptides. Novel machinery has evolved to specifically import these proteins from the cytosol into chloroplasts. This machinery consists of more than a dozen components located in and around the chloroplast envelope, including a pair of GTPase receptors, a beta-barrel-type channel across the outer membrane, and an AAA(+)-type motor in the stroma. How individual components assemble into functional subcomplexes and the sequential steps of the translocation process are being mapped out. An increasing number of noncanonical import pathways, including a pathway with initial transport through the endomembrane system, is being revealed. Multiple levels of control on protein transport into chloroplasts have evolved, including the development of two receptor subfamilies, one for photosynthetic proteins and one for housekeeping proteins. The functions or expression levels of some translocon components are further adjusted according to plastid type, developmental stage, and metabolic conditions.
Collapse
Affiliation(s)
- Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
21
|
Lee J, Wang F, Schnell DJ. Toc receptor dimerization participates in the initiation of membrane translocation during protein import into chloroplasts. J Biol Chem 2009; 284:31130-41. [PMID: 19744928 PMCID: PMC2781512 DOI: 10.1074/jbc.m109.053751] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/09/2009] [Indexed: 01/24/2023] Open
Abstract
The post-translational import of nucleus-encoded preproteins into chloroplasts occurs through multimeric translocons in the outer (Toc) and inner (Tic) membranes. The high fidelity of the protein import process is maintained by specific recognition of the transit peptide of preproteins by the coordinate activities of two homologous GTPase Toc receptors, Toc34 and Toc159. Structural and biochemical studies suggest that dimerization of the Toc receptors functions as a component of the mechanism to control access of preproteins to the membrane translocation channel of the translocon. We show that specific mutations that disrupted receptor dimerization in vitro reduced the rate of protein import in transgenic Arabidopsis compared with the wild type receptor. The mutations did not affect the GTPase activities of the receptors. Interestingly, these mutations did not decrease the initial preprotein binding at the receptors, but they reduced the efficiency of the transition from preprotein binding to membrane translocation. These data indicate that dimerization of receptors has a direct role in protein import and support a hypothesis in which receptor-receptor interactions participate in the initiation of membrane translocation of chloroplast preproteins as part of the molecular mechanism of GTP-regulated protein import.
Collapse
Affiliation(s)
- Jeonghwa Lee
- From the Department of Biochemistry and Molecular Biology and Program in Plant Biology, University of Massachusetts, Amherst, Massachusetts 01003 and
| | - Fei Wang
- the Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Danny J. Schnell
- From the Department of Biochemistry and Molecular Biology and Program in Plant Biology, University of Massachusetts, Amherst, Massachusetts 01003 and
| |
Collapse
|