1
|
Wang Z, Zhang L, Wei J, Hao H, Hamid SM, Gao S, Li W, Nie Z. Morphological and Histological Analysis of the Gastrointestinal Systems in Triplophysa strauchii and Triplophysa tenuis: Insights into Digestive Adaptations. Animals (Basel) 2025; 15:1095. [PMID: 40281929 PMCID: PMC12024309 DOI: 10.3390/ani15081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Fish are vital for material cycling and energy flow in aquatic ecosystems. The genus Triplophysa, with over 100 known species, is significant in the Central Asian highlands' freshwater ecosystems. T. strauchii and T. tenuis, as representatives, occupy distinct ecological niches and face challenges from climate change and human activities. There is a lack of research on Triplophysa fishes' digestive systems, especially comparative studies, so this research aims to fill this gap. In September 2024, 40 samples of T. strauchii were collected from Sayram Lake and 40 samples of T. tenuis were collected from the Muzat River in Xinjiang. After acclimation, morphological observations (measuring fish and digestive tract parameters) and histological analyses (paraffin sectioning, HE staining, and microscopy) were carried out. The data were sorted in Excel and analyzed with an independent samples t-test in SPSS 27.0. Morphologically, T. strauchii has an obtuse snout, terminal mouth, specific upper lip papillae, and an S-shaped intestine about (1.45 ± 0.11) times its body length, while T. tenuis has an arc-shaped subterminal mouth, fringed papillae, and a spiral-shaped intestine around (0.82 ± 0.09) times its body length. Both possess a digestive tract, glands, and a hepatopancreas attached to the mesentery. Histologically, a large number of club cells were found in the oropharyngeal cavities of both species; their secretions have an adhesive effect on food, aiding food selection. Their digestive systems vary in structure and cell composition: the oropharyngeal cavity has three layers; the esophagus has four layers with more goblet cells in T. strauchii; the stomach has three regions without goblet cells and a thicker muscular layer in T. strauchii; the intestinal wall has four layers with different villi and goblet cell distributions; the hepatopancreas has lobules; and T. strauchii has a typical portal area. In conclusion, this study systematically compared the gastrointestinal systems of T. strauchii and T. tenuis for the first time, revealing significant structural differences related to their niches and feeding patterns as adaptations to specific environments. It fills the research gap, provides a basis for exploring fish ecological adaptation and environmental impacts on digestion, offers new ideas for Triplophysa protection strategies, and guides fish evolutionary biology research and Triplophysa resource protection and utilization.
Collapse
Affiliation(s)
- Zhengwei Wang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Lirong Zhang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Jie Wei
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Huimin Hao
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Syeda Maira Hamid
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Shixin Gao
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Wenjun Li
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Zhulan Nie
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| |
Collapse
|
2
|
Lipscomb TN, Yanong RP, Ramee SW, DiMaggio MA. Larval digestive system ontogeny and early weaning in neon tetra Paracheirodon innesi. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1241-1255. [PMID: 37870722 DOI: 10.1007/s10695-023-01254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
The intensive culture of characid teleosts for ornamental trade is highly dependent on live feed organisms, particularly Artemia nauplii, to provide nutrition through the larval stage. Live feeds have inherent disadvantages relative to prepared microparticulate diets (MDs), specifically availability, labor and cost. In this research, the dependence of larval Paracheirodon innesi on live Artemia was confirmed via a nutritional trial. Next, digestive system ontogeny was characterized from the onset of exogenous feeding through metamorphosis. P. innesi exhibited an agastric larval stage, as well as low digestive enzyme activity at the onset of exogenous feeding followed by abrupt increases in trypsin, lipase and pepsin activity. Differentiation of the stomach, including gastric gland formation and production of neutral mucopolysaccharides, as well as the onset of pepsin activity, did not occur until 20 days post hatch (dph; 5.24 ± 0.20 mm). This shift from agastric to gastric digestive modes is indicative of a proliferation of digestive capacity and subsequent prey diversity in other fish species exhibiting similar altricial larval stages.Based on this information, different schedules for weaning from Artemia to a MD were evaluated. For P. innesi fed until 32 dph, weaning beginning at 12 dph and 17 dph resulted in similar survival to live Artemia (mean: 22.0 ± 1.7%), and the MD resulted in the lowest survival (0.8 ± 0.3%). These results indicate that weaning is possible prior to gastric differentiation, potentially resulting in the reduction of Artemia use in the larval culture P. innesi.
Collapse
Affiliation(s)
- Taylor N Lipscomb
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries and Geomatic Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida, USA.
| | - Roy P Yanong
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries and Geomatic Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida, USA
| | - Shane W Ramee
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries and Geomatic Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida, USA
| | - Matthew A DiMaggio
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries and Geomatic Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida, USA
| |
Collapse
|
3
|
Wang W, Feng Y, Tarique I, Liu J, Chen S, Wang Y, Zhu Z, Meng X, Peng L, Yang P. Cellular evidence of mucus cell immunological and differentiation characteristics in allogeneic crucian carp intestinal lamina propria. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109024. [PMID: 37619762 DOI: 10.1016/j.fsi.2023.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
The allogeneic crucian carp is an important fish farm animal with a very different digestive system structure from that of mammals. The lamina propria of the fish intestine is also considered to be an important site of intestinal immunity in fish, but functional histological studies of the lamina propria of the allogeneic crucian carp intestine are still lacking. In this study, Identification of the ubiquitous lamina propria mucus cells in the lamina propria of the intestine by hematoxylin-eosin staining, and determination of the mucocytic properties, class, and distribution of these cells in each intestinal segment by Alcian Blue-Periodic Acid-Schiff (AB-PAS) staining. The results show that type III mucus cells were abundant in the lamina propria of the foregut and midgut, while type II and type IV mucus cells predominate in the hindgut, possibly reflecting the distinct functions of these intestinal segments. Transmission electron microscopy dissected the differentiation of mucus cells in the lamina propria of the intestine at the ultrastructural level and investigated their morphology and distribution patterns in different intestinal segments, the findings revealed that lamina propria mucus cells perform rudimentary functions such as mucous secretion, phagocytosis, and degradation functions. Moreover, immunohistochemistry labeling with CD68 and LAMP1 revealed that numerous cells in the anterior, middle, and posterior intestines were positive for both proteins. Immunofluorescence double-labeling demonstrated that these cells highly co-expressed CD68 and LAMP1. Besides, the distribution and morphology of CD68+ and LAMP1+ cells were similar to those of AB-PAS positive cells and they accounted for the majority of parenchyma cells. Considering the above results, there were abundant cells with both mucous secretion and phagocytosis in the intestinal lamina propria of allogeneic crucian carp, which are a essential component of the intestinal immune process of allogeneic crucian carp.
Collapse
Affiliation(s)
- Wei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongchao Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Imran Tarique
- Healthcare Biotechnology Department Atta-ur-Rahman School of Applied Bio-Sciences (ASAB)National University of Sciences and Technology (NUST) H-12, Islamabad, 44000, Pakistan
| | - Jiyue Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Si Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yisheng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxuan Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangfei Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Peng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Morphology, Histology, and Histochemistry of the Digestive Tract of the Marbled Flounder Pseudopleuronectes yokohamae. Animals (Basel) 2023; 13:ani13050936. [PMID: 36899793 PMCID: PMC10000053 DOI: 10.3390/ani13050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
This study investigated the morphological, histological, and histochemical characteristics of the digestive tract of the marbled flounder (Pseudopleuronectes yokohamae). The relative length of the gut of the marbled flounder digestive tract was 1.54 ± 0.10 (n = 20), and it had a simple stomach and 6-9 pyloric caeca. The mucosal folds of the marbled flounder digestive tract exhibited a general branched morphology. The thickness and mucosal fold length of the intestinal muscularis externa showed similar aspects in all areas. The thickness of the intestinal muscularis externa was the thickest in the posterior intestine portion, and the length of mucosal folds was the longest in the anterior intestine portion. It was indicated that food digested by gastric acid in the stomach moves to the anterior portion (including pyloric caeca) and mid portion of the intestine, ensuring effective stimulation of cholecystokinin (CCK)-producing cells. In addition, the distribution pattern of CCK-producing cells in the intestine was very similar to that of mucus-secreting goblet cells. The CCK-producing cells and goblet cells in the marbled flounder were well-adapted to promote optimal control of the digestive process. Based on the morphological and histochemical studies, it was concluded that the marbled flounder displays a digestive tract comparable to that of fish species with carnivorous habits.
Collapse
|
5
|
Ghaniem S, Nassef E, Zaineldin AI, Bakr A, Hegazi S. A Comparison of the Beneficial Effects of Inorganic, Organic, and Elemental Nano-selenium on Nile Tilapia: Growth, Immunity, Oxidative Status, Gut Morphology, and Immune Gene Expression. Biol Trace Elem Res 2022; 200:5226-5241. [PMID: 35028868 DOI: 10.1007/s12011-021-03075-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 12/29/2022]
Abstract
This study investigates the effects of different sources of selenium (inorganic (SSE), organic (OSE), and elemental nano-selenium (NSE)) on the performance of Nile tilapia (Oreochromis niloticus). In total, 204 Nile tilapia fingerlings were randomly divided into 4 equal groups fed 1 of 4 diets: a control (adding no selenium) and 3 diets as selenium sources (1 mg/kg diet), After a 65-day feeding trial, the growth performance parameters of Nile tilapia were significantly enhanced by dietary selenium supplementation (P < 0.05), with the highest values recorded in the OSE- and NSE-supplemented groups. The selenium-supplemented groups had the highest packed-cell volume, hemoglobin, and red blood cell levels, with the highest values seen in the NSE-supplemented group (P < 0.05). Innate immune-related enzymes and immunoglobulin levels were significantly enhanced with selenium supplementation (P < 0.05); the NSE group demonstrated the highest significant levels of these enzyme activities (P < 0.05). In all selenium-supplemented groups, malondialdehyde levels were significantly and equally reduced (P < 0.05) compared with levels in the control. Bactericidal activity was only enhanced in the NSE group (P < 0.05) compared with other treatments. The expression of TNF-α and IL-Iβ genes was significantly upregulated in selenium-supplemented groups, with the highest expression in the OSE and NSE groups (P < 0.05). These findings support the importance of incorporating selenium in the diet of Nile tilapia. Furthermore, elementary nano-selenium is more effective than inorganic or organic selenium supplementation at improving Nile tilapia growth performance and overall health.
Collapse
Affiliation(s)
- Sameh Ghaniem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Amr I Zaineldin
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt.
| | - Abdulnasser Bakr
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sayed Hegazi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
6
|
Morales-Lange B, Djordjevic B, Gaudhaman A, Press CM, Olson J, Mydland LT, Mercado L, Imarai M, Castex M, Øverland M. Dietary Inclusion of Hydrolyzed Debaryomyces hansenii Yeasts Modulates Physiological Responses in Plasma and Immune Organs of Atlantic Salmon (Salmo salar) Parr Exposed to Acute Hypoxia Stress. Front Physiol 2022; 13:836810. [PMID: 35418880 PMCID: PMC8998430 DOI: 10.3389/fphys.2022.836810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Stress related to salmon aquaculture practices (handling, sub-optimal nutrition, diseases, and environmental problems) may compromise fish welfare. This study describes the effects of two hydrolyzed Debaryomyces hansenii yeast-based products (LAN4 and LAN6) on physiological and immune responses of Atlantic salmon (Salmo salar) parr exposed to short hypoxia stress. A commercial-like diet (control diet: CD) and two experimental diets (CD supplemented with 0.1% of either component LAN4 or LAN6) were fed to fish for 8 weeks. At the end of the feeding experiment, fish were exposed to 1-min hypoxia and samples were collected at 0, 1, 3, 6, 12, and 24 h post-stress. Results showed that plasma cortisol reached a peak at 1 h post-stress in CD and LAN6 groups, whereas no significant increase in cortisol levels was detected in the LAN4 group. Moreover, the LAN6 group enhanced IL-10 responses to hypoxia, when compared to the control and LAN4 group. This suggests a regulation of immunosuppressive profiles in fish fed LAN4. Hypoxia stress increased TNFα in all groups, which indicates that fish may compensate for the short-term stress response, by modulating innate immune molecules. The apparent suppression of hypoxia responses in the LAN4 group coincided with the detection of differences in goblet cells size and Muc-like proteins production in DI; and upregulation (1 h post-stress) of pathways related to oxygen transport, hemoglobin complex, and glutathione transferase activity and the downregulation of fatty acid metabolism (6 h post-stress) in gills. To conclude, a 1-min hypoxia stress exposure affects the response to stress and immunity; and D. hansenii-based yeast products are promising components in functional aquafeeds for salmon due to their ability to counteract possible consequences of hypoxic stress.
Collapse
Affiliation(s)
- Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Byron Morales-Lange,
| | - Brankica Djordjevic
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Brankica Djordjevic,
| | - Ashwath Gaudhaman
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jake Olson
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Mónica Imarai
- Departamento de Biología, Facultad de Química y Biología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
DiBona E, Pinnell LJ, Heising-Huang A, Geist S, Turner JW, Seemann F. A Holistic Assessment of Polyethylene Fiber Ingestion in Larval and Juvenile Japanese Medaka Fish. Front Physiol 2021; 12:668645. [PMID: 34421633 PMCID: PMC8371532 DOI: 10.3389/fphys.2021.668645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Microplastic pollution is of public concern for global environmental health, aquaculture, and fisheries. Toxicity studies have shown that microplastic ingestion may cause intestinal damage, microbiota dysbiosis, and disturb the lipid and energy metabolism in fish. To determine the impact of environmentally relevant, chronic, low dose microplastic fibers on fish health, medaka larvae, and juveniles were exposed to five concentrations of polyethylene (PE) fibers for 21 days through the feed. Fish growth and condition were assessed to determine the overall impact on fish health. To identify impaired energy intake, the gastrointestinal tract (GIT) integrity was evaluated at the molecular and cellular levels. Microbiota analysis was performed by comparing the top seven most abundant phyla present in both larval and juvenile fish exposed to 0, 1.5, and 3 PE fibers/fish/day. A shift in the phyla Proteobacteria and Bacteroidetes were observed. Larval samples demonstrated decreased proteobacteria abundance, while juvenile samples displayed an increase in abundance. Relative gene expression of key digestive genes from GIT tissue was quantified using real time-quantitative polymerase chain reaction. An effect on digestive gene expression potentially affecting nutrient absorption and antioxidant production was indicated via a significant decrease of solute carrier family 6 member 6 expression in larvae exposed to 6 fibers/fish/day. No significant molecular changes were observed in juvenile GIT tissue, although a non-monotonous dose-response was observed. GIT morphology was analyzed using histomorphological observations of the GIT mucus and cell types. No significant impairment of the GIT epithelial layers was observed in larvae or juveniles. To assess growth and condition, Fulton's condition factor was measured. No differences were observed in larval or juvenile growth. Comparisons of different developmental stages allowed for identifying vulnerable developmental stages for microplastic exposure; larvae were more susceptible to molecular changes, while shifts in juvenile microbial communities were similar to changes reported post-polystyrene microplastic sphere exposure. This study is one of the first to provide toxicological data on the risk of PE fiber ingestion during fish development stages. Results indicate no imminent threat to fish condition at current measured environmental levels of microplastics; however, close monitoring of vital spawning grounds for commercially important fishes is recommended.
Collapse
Affiliation(s)
- Elizabeth DiBona
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Lee J Pinnell
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Annika Heising-Huang
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Simon Geist
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Jeffrey W Turner
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States.,Center for Coastal and Marine Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Frauke Seemann
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States.,Center for Coastal and Marine Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
8
|
Abstract
Generally, animals extract nutrients from food by degradation using digestive enzymes. Trypsin and chymotrypsin, one of the major digestive enzymes in vertebrates, are pancreatic proenzymes secreted into the intestines. In this investigation, we report the identification of a digestive teleost enzyme, a pancreatic astacin that we termed pactacin. Pactacin, which belongs to the astacin metalloprotease family, emerged during the evolution of teleosts through gene duplication of astacin family enzymes containing six cysteine residues (C6astacin, or C6AST). In this study, we first cloned C6AST genes from pot-bellied seahorse (Hippocampus abdominalis) and analyzed their phylogenetic relationships using over 100 C6AST genes. Nearly all these genes belong to one of three clades: pactacin, nephrosin, and patristacin. Genes of the pactacin clade were further divided into three subclades. To compare the localization and functions of the three pactacin subclades, we studied pactacin enzymes in pot-bellied seahorse and medaka (Oryzias latipes). In situ hybridization revealed that genes of all three subclades were commonly expressed in the pancreas. Western blot analysis indicated storage of pactacin pro-enzyme form in the pancreas, and conversion to the active forms in the intestine. Finally, we partially purified the pactacin from digestive fluid, and found that pactacin is novel digestive enzyme that is specific in teleosts.
Collapse
|
9
|
Djordjevic B, Morales-Lange B, McLean Press C, Olson J, Lagos L, Mercado L, Øverland M. Comparison of Circulating Markers and Mucosal Immune Parameters from Skin and Distal Intestine of Atlantic Salmon in Two Models of Acute Stress. Int J Mol Sci 2021; 22:ijms22031028. [PMID: 33494146 PMCID: PMC7864346 DOI: 10.3390/ijms22031028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/13/2023] Open
Abstract
Ensuring salmon health and welfare is crucial to maximize production in recirculation aquaculture systems. Healthy and robust mucosal surfaces of the skin and intestine are essential to achieve this goal because they are the first immunological defenses and are constantly exposed to multistressor conditions, such as infectious diseases, suboptimal nutrition, and environmental and handling stress. In this work, Atlantic salmon, split from a single cohort, were subjected to acute hypoxia stress or 15-min crowding stress and observed over a 24-h recovery period. Samples were collected from fish at 0, 1, 3, 6, 12 and 24 h post-stress to analyze plasma-circulating markers of endocrine function (cortisol), oxidative stress (glutathione peroxidase) and immune function (interleukin 10 (IL-10), annexin A1). In addition, mucosal barrier function parameters were measured in the skin mucus (Muc-like protein and lysozyme) and distal intestine (simple folds, goblet cell size and goblet cell area). The results showed that both acute stress models induced increases of circulating cortisol in plasma (1 h post-stress), which then returned to baseline values (initial control) at 24 h post-stress. Moreover, the hypoxia stress was mostly related to increased oxidative stress and IL-10 production, whereas the crowding stress was associated with a higher production of Muc-like protein and lysozyme in the skin mucus. Interestingly, in the distal intestine, smaller goblet cells were detected immediately and one hour after post-hypoxia stress, which could be related to rapid release of the cellular content to protect this organ. Finally, the correlation of different markers in the hypoxic stress model showed that the circulating levels of cortisol and IL-10 were directly proportional, while the availability of Muc-like proteins was inversely proportional to the size of the goblet cells. On the other hand, in the crowding stress model, a proportional relationship was established between plasma cortisol levels and skin mucus lysozyme. Our results suggest key differences in energy partitioning between the two acute stress models and support the need for further investigation into the interplay of multistressor conditions and strategies to modulate immunological aspects of mucosal surfaces.
Collapse
Affiliation(s)
- Brankica Djordjevic
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
- Correspondence: (B.D.); (B.M-L.)
| | - Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
- Correspondence: (B.D.); (B.M-L.)
| | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway;
| | - Jake Olson
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, 2950 Valparaíso, Chile;
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway; (L.L.); (M.Ø.)
| |
Collapse
|
10
|
Pereira RT, Nebo C, de Paula Naves L, Fortes-Silva R, Regina Cardoso de Oliveira I, Paulino RR, Drummond CD, Rosa PV. Distribution of goblet and endocrine cells in the intestine: A comparative study in Amazonian freshwater Tambaqui and hybrid catfish. J Morphol 2019; 281:55-67. [PMID: 31782555 DOI: 10.1002/jmor.21079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Goblet cells (GCs) and endocrine cells (ECs) play an important role in intestine physiology, and few studies currently exist for Amazonian fishes. This study aimed to quantify the distribution of GCs and ECs producing cholecystokinin-8 and neuropeptide Y, assessed by mucin histochemistry and peptides immunohistochemistry, in the intestine of two Amazonian species with different feeding habits Tambaqui (Colossosoma macropomum) and hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus), an omnivore and carnivore, respectively. A systematic literature review correlating feeding habit and GC and EC distribution was also included to contribute to the comparative study. The results of this study provided novel information about the gut cells of Tambaqui and hybrid catfish. Both, GCs and ECs can be found sweeping the entire intestine of Tambaqui and hybrid catfish although the cells can be more concentrated in certain segments. The GCs and ECs in Tambaqui were more uniformly distributed in the midgut segments (T1, T2, and T3). Unlike, in hybrid catfish GCs were more concentrated in the hindgut (C4) and ECs mainly in the two midgut segments (C1 and C2) of hybrid catfish. Based on the comparison between Tambaqui, hybrid catfish, and other fishes in the literature review, we suggest that cell distribution can be partially explained by feeding habits, carnivorous vs. omnivorous.
Collapse
Affiliation(s)
| | - Caroline Nebo
- Institute of Studies of Humid Tropic, Federal University of South and Southeast of Pará (UNIFESSPA), Xinguara, Brazil
| | - Luciana de Paula Naves
- Department of Veterinary, University of José do Rosário Vellano (UNIFENAS), Alfenas, Brazil
| | - Rodrigo Fortes-Silva
- Laboratory of Fish Nutrition and Feeding Behavior (AquaUFRB), Federal University of Bahia UFRB, Cruz das Almas, Brazil
| | | | - Renan Rosa Paulino
- Department of Animal Science, Federal University of Lavras (UFLA), Lavras, Brazil
| | | | - Priscila Vieira Rosa
- Department of Animal Science, Federal University of Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
11
|
Bilal S, Lie KK, Dalum AS, Karlsen OA, Hordvik I. Analysis of immunoglobulin and T cell receptor gene expression in ballan wrasse (Labrus bergylta) revealed an extraordinarily high IgM expression in the gut. FISH & SHELLFISH IMMUNOLOGY 2019; 87:650-658. [PMID: 30753920 DOI: 10.1016/j.fsi.2019.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The serum IgM concentration of ballan wrasse is relatively high, estimated to approximately 13 mg/ml in adult wild fish of 800 g. The present study revealed an unusual high abundance of IgM mRNA in the gut of ballan wrasse. Initially, transcripts encoding IgM, IgT, IgD, TCRα, TCRδ and CD3ε were quantified by RT-qPCR in several tissues of wild caught fish (approx. 800 g), indicating an elevated immune activity in hindgut and an extraordinarily high expression of IgM. Subsequently, a new RT-qPCR analysis was performed on the entire intestine, cut into four different segments, of reared fish (32-100 g). The analysis indicated immune activity along the entire intestine, but not as strong as in the hindgut. Furthermore, similar to the larger fish, the relative abundance of IgM transcripts was higher in the hindgut than in kidney and spleen, although the absolute level of IgM was in general higher in the larger fish. The secreted form of IgM was completely dominant in comparison to the membrane bound form of IgM and the other analysed genes. IgM was purified from gut mucus and external mucosal surfaces by magnetic beads coated with protein A. Mucus IgM reacted with rabbit antisera raised against serum IgM and contained subunits of the same size. Regarding the elevated immune activity in the intestine it is tempting to speculate on a possible compensatory strategy in this lineage of stomach-less fish, and that natural antibodies have an important role in the first line defence.
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biological Sciences, University of Bergen, Norway
| | | | | | | | - Ivar Hordvik
- Department of Biological Sciences, University of Bergen, Norway.
| |
Collapse
|
12
|
Wołczuk K, Ostrowski M, Ostrowska A, Napiórkowska T. Structure of the alimentary tract in the Atlantic mudskipper Periophthalmus barbarus (Gobiidae: Oxudercinae): anatomical, histological and ultrastructural studies. ZOOLOGY 2018; 128:38-45. [PMID: 29755007 DOI: 10.1016/j.zool.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/19/2023]
Abstract
The alimentary tract of oxudercine gobies is characterized by a lack of an anatomically distinct stomach, owing to which they are classified as stomachless. Since the environment, food requirements, and feeding habits have a significant impact on the anatomy of the alimentary tract of fish, it was assumed that predominantly carnivorous, semi-terrestrial mudskippers would have a stomach. In order to verify this hypothesis, anatomical, histological, histochemical and ultrastructural analysis of the alimentary tract of the Atlantic mudskipper Periophthalmus barbarus was performed. The results revealed that despite a lack of clear anatomical distinction within the alimentary tract, there were four well-distinguished sections visible at the histological level: oesophagus, stomach, intestine, and rectum. The division was enhanced by the presence of a pyloric sphincter and an ileorectal valve. The stomach contained tubular glands composed of oxynticopeptic cells. Gland cells had pepsinogen granules and a well-developed tubulovesicular network of smooth membranes, which indicates the secretion of gastric juice. The presence of neutral mucus in the apical region of surface epithelial cells as protection against hydrochloric acid as well as the presence of active pepsin also confirm gastric function. However, low pepsin activity seems to implies low protein digestion. The results of this study indicate that the Atlantic mudskipper P. barbarus has a functional stomach.
Collapse
Affiliation(s)
- Katarzyna Wołczuk
- Nicolaus Copernicus University, Department of Vertebrate Zoology, Lwowska 1, 87-100 Torun, Poland.
| | - Maciej Ostrowski
- Nicolaus Copernicus University, Department of Biochemistry, Lwowska 1, 87-100 Torun, Poland
| | - Agnieszka Ostrowska
- Warsaw University of Life Science SGGW, Analytical Centre, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Teresa Napiórkowska
- Nicolaus Copernicus University, Department of Invertebrate Zoology, Lwowska 1, 87-100 Torun, Poland
| |
Collapse
|