1
|
Xu W, Chuda H, Soyano K, Zeng J, Mei W, Zou H. Chronological Changes in Gonadotropin-Releasing Hormone 1, Gonadotropins, and Sex Steroid Hormones along the Brain-Pituitary-Gonadal Axis during Gonadal Sex Differentiation and Development in the Longtooth Grouper, Epinephelus bruneus. Cells 2023; 12:2634. [PMID: 37998369 PMCID: PMC10670822 DOI: 10.3390/cells12222634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Fshβ and Lhβ showed stronger signals and higher transcript levels from 590 to 1050 dph than at earlier stages, implying their active involvement during primary oocyte development. (2) Fshβ and Lhβ at lower levels were detected during the phases of ovarian differentiation and oogonial proliferation. (3) E2 concentrations increased significantly at 174, 333, and 1435 dph, while T concentrations exhibited significant increases at 174 and 333 dph. These findings suggest potential correlations between serum E2 concentrations and the phases of oogonial proliferation and pre-vitellogenesis.
Collapse
Affiliation(s)
- Wengang Xu
- School of Ocean, Yantai University, Yantai 264005, China
| | - Hisashi Chuda
- Aquaculture Research Institute, Kindai University, Wakayama 649-2211, Japan;
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki 851-2213, Japan;
| | - Jun Zeng
- Guangxi Academy of Sciences, Nanning 530007, China; (J.Z.); (W.M.)
- Institute of Beibu Gulf Marine Industry, Fangchenggang 538000, China
| | - Weiping Mei
- Guangxi Academy of Sciences, Nanning 530007, China; (J.Z.); (W.M.)
- Institute of Beibu Gulf Marine Industry, Fangchenggang 538000, China
| | - Huafeng Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
2
|
Maeng S, Yoon SW, Kim EJ, Nam YK, Sohn YC. Transcriptional Activity of an Estrogen Receptor β Subtype in the Medaka Oryzias dancena. Dev Reprod 2020; 23:333-344. [PMID: 31993539 PMCID: PMC6985291 DOI: 10.12717/dr.2019.23.4.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022]
Abstract
In vertebrate reproductive system, estrogen receptor (ER) plays a pivotal role in
mediation of estrogenic signaling pathways. In the present study, we report the
cDNA cloning, expression analysis, and transcriptional activity of ERβ1
subtype from medaka Oryzias dancena. The deduced O.
dancena ERβ1 (odERβ1; 519 amino acids) contained six
characteristic A/B to E/F domains with very short activation function 2 region
(called AF2). A phylogenetic analysis indicated that odERβ1 was highly
conserved among teleost ERβ1 subgroup. A conventional RT-PCR revealed
that the odERβ1 transcripts were widely distributed in
the multiple tissues, the ovary, brain, gill, intestine, kidney, and muscle.
Further, the relatively higher odERβ1 expressions in the
ovary and brain were clearly reproduced in RT-qPCR assay. When HA-fused
odERβ1 expression vector was transfected into HEK293 cells, an
immunoreactivity for odERβ1 was mainly detected in the nucleus part.
Finally, an estrogen responsive element driven luciferase reporter assays
demonstrated that the transcriptional activity of odERβ1 significantly
increased by estradiol-17β (E2) in a dose dependent manner
(p<0.05). However, fold-activation of odERβ1
in the presence of E2 was markedly weak, when it compared with those of
O. latipes ERβ1. Taken together, these data suggest
that odERβ1 represents a functional variant of teleost ERβ subtype
and provides a basic tool allowing future studies examining the function of F
domain of ERβ1 subtype and expanding our knowledge of ERβ
evolution.
Collapse
Affiliation(s)
- Sejung Maeng
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Sung Woo Yoon
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Eun Jeong Kim
- Dept. of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 48513, Korea
| | - Yoon Kwon Nam
- Dept. of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 48513, Korea
| | - Young Chang Sohn
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
3
|
Gao Y, Jing Q, Huang B, Jia Y. Molecular cloning, characterization, and mRNA expression of gonadotropins during larval development in turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1697-1707. [PMID: 31098916 DOI: 10.1007/s10695-019-00656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Gonadotropins (GtHs) play a pivotal role in regulating the reproductive axis and puberty. In this study, full-length sequences coding for common glycoprotein α subunit (CGα) and luteinizing hormone β (LHβ) were isolated from female turbot (Scophthalmus maximus) pituitary by homology cloning and a strategy based on rapid amplification of cDNA end-polymerase chain reaction. Results showed that the two cDNAs consisted of 669 and 660 nucleotides encoding 129 and 139 amino acids, respectively. CGα and LHβ manifested typical characteristics of glycoprotein hormones, high homologies with the corresponding sequences of available teleosts, and high homology with that of Hippoglossus hippoglossus. CGα, FSHβ, and LHβ mRNAs were abundant in the pituitary, but less expressed in extra-pituitary tissues. The cgα, fshβ, and lhβ were detected at 1-day post-hatching (dph) and peaked simultaneously at early-metamorphosis (22 dph). cgα and fshβ mRNA levels were significantly increased at pre-metamorphosis, peaked in early metamorphosis, and then gradually decreased until metamorphosis was completed. Conversely, lhβ mRNA levels gradually decreased at pre-metamorphosis, dramatically peaked at early metamorphosis, and then decreased during metamorphosis. In addition, the mRNA levels of cgα were significantly higher than those of fshβ and lhβ during turbot larval metamorphic development, whereas no significant difference was found between fshβ and lhβ. These results suggested (i) an early activation of the GtHs system after hatching, which was the highest expression at early metamorphosis, and (ii) FSHβ and LHβ were together involved in the establishment of the reproductive axis during larval development in turbot. These findings contribute to further understanding the potential roles of GtHs during fish larval development.
Collapse
Affiliation(s)
- Yunhong Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiqi Jing
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Huang M, Chen J, Liu Y, Chen H, Yu Z, Ye Z, Peng C, Xiao L, Zhao M, Li S, Lin H, Zhang Y. New Insights Into the Role of Follicle-Stimulating Hormone in Sex Differentiation of the Protogynous Orange-Spotted Grouper, Epinephelus coioides. Front Endocrinol (Lausanne) 2019; 10:304. [PMID: 31156554 PMCID: PMC6529513 DOI: 10.3389/fendo.2019.00304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Follicle-stimulating hormone (FSH) signaling is considered to be essential for early gametogenesis in teleosts, but its functional roles during sex differentiation are largely unknown. In this study, we investigated the effects of long-term and short-term FSH injection on sex differentiation in the protogynous orange-spotted grouper (Epinephelus coioides). Long-term FSH treatment initially promoted the formation of ovaries but subsequently induced a male fate. The expression of female pathway genes was initially increased but then decreased, whereas the expression of male pathway genes was up-regulated only during long-term FSH treatment. The genes related to the synthesis of sex steroid hormones, as well as serum 11-ketotestosterone and estradiol, were also up-regulated during long-term FSH treatment. Short-term FSH treatment activated genes in the female pathway (especially cyp19a1a) at low doses but caused inhibition at high doses. Genes in the male pathway were up-regulated by high concentrations of FSH over the short term. Finally, we found that low, but not high, concentrations of FSH treatment activated cyp19a1a promoter activities in human embryonic kidney (HEK) 293 cells. Overall, our data suggested that FSH may induce ovarian differentiation or a change to a male sex fate in the protogynous orange-spotted grouper, and that these processes occurred in an FSH concentration-dependent manner.
Collapse
Affiliation(s)
- Minwei Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huimin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
- *Correspondence: Shuisheng Li
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
- Yong Zhang
| |
Collapse
|