1
|
Rybska M, Skrzypski M, Pusiak K, Wojciechowicz T, Mieldzioc A. The tissue distribution of nucleobindin-2/nesfatin-1 in the reproductive organs of bitches with regard to the animal's age and body weight. J Vet Res 2025; 69:141-150. [PMID: 40144052 PMCID: PMC11936092 DOI: 10.2478/jvetres-2025-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Neuropeptide nesfatin-1, a nucleobindin-2 derivative, plays a role in regulating food intake, energy metabolism and body weight. It also interacts with the hypothalamic-pituitary-gonadal axis and has functions in the reproductive system. However, its impact on the canine reproductive tract has not been well documented. This study aimed to investigate the potential role of nesfatin-1 in canine ovarian activity and uterine function. Material and Methods Tissue and peripheral blood samples were collected from 60 bitches of various ages and body condition scores (BCS). Analyses included real-time PCR, immunofluorescence examinations and ELISA tests. Results Higher level of nucleobindin-2 mRNA were found in the ovarian tissue of both younger and elderly overweight dogs (BCS > 5/9). The elevated expression of nesfatin-1 was observed in the uterine tissues of overweight dogs (BCS > 5/9) compared to its expression in animals in optimal body condition (BCS = 4/9). This finding was consistent with higher nesfatin-1 levels in the peripheral blood of overweight dogs. Conclusion The distribution and expression of nesfatin-1 in canine reproductive organs vary depending on the animal's age and body weight. The role of nesfatin-1 in the reproductive system is influenced by the animal's body condition and the extent of surplus adipose tissue, which may have significant implications for reproductive functions.
Collapse
Affiliation(s)
- Marta Rybska
- Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, 60-637Poznań, Poland
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637Poznań, Poland
| | - Karolina Pusiak
- Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, 60-637Poznań, Poland
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637Poznań, Poland
| | - Adam Mieldzioc
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637Poznań, Poland
| |
Collapse
|
2
|
Papp RS, Könczöl K, Sípos K, Tóth ZE. Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats. Int J Mol Sci 2025; 26:739. [PMID: 39859453 PMCID: PMC11765514 DOI: 10.3390/ijms26020739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis. The anorexigenic peptide nesfatin-1 is a leptin-independent central regulator of blood glucose. Therefore, its integrative role in male rats can be assumed. To investigate this, we mapped the distribution of nesfatin-1 mRNA- and protein-producing cells in the PMv during postnatal development via in situ hybridization and immunohistochemistry, respectively. Fos-nesfatin-1, double immunostaining was used to determine the combined effect of heterosexual pheromone challenge and insulin-induced hypoglycemia on neuronal activation in adults. We found that ~75% of the pheromone-activated neurons were nesfatin-1 cells. Hypoglycemia reduced pheromone-induced cell activation, particularly in nesfatin-1 neurons. Immuno-electron microscopy revealed innervation of PMv nesfatin-1 neurons by urocortin3-immunoreactive terminals, reportedly originating from the medial amygdala. Nesfatin-1 immunopositive neurons expressed GPR10 mRNA, a receptor associated with metabolic signaling, but did not respond with accumulation of phosphorylated STAT3 immunopositivity, a marker of leptin receptor signaling, in response to intracerebroventricular leptin treatment. Our results suggest that PMv nesfatin-1 neurons are primarily responsible for integrating reproductive and metabolic signaling in male rats.
Collapse
Affiliation(s)
- Rege Sugárka Papp
- Human Brain Tissue Bank and Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| | - Klaudia Sípos
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| |
Collapse
|
3
|
Koç A, Gul A, Erkan A, Guzelsoy M, Turkoglu AR, Coban S, Kologlu RF, Ustundag Y. Association between serum NUCB2/nesfatin‑1 levels and erectile dysfunction. Exp Ther Med 2024; 28:428. [PMID: 39328399 PMCID: PMC11425797 DOI: 10.3892/etm.2024.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Erectile dysfunction (ED) is one of the most common complaints in the male sexual health field, with a multifactorial etiology yet to be fully elucidated. Nucleobindin 2 (NUCB2)/nesfatin-1, known for its regulatory role in food intake, can also regulate the vascular, neural and hormonal systems, all of which are of great importance in the etiology of ED. The present study included 43 men with ED and 40 healthy individuals without ED. The participants were assessed using the Turkish version of the International Index of Erectile Function (IIEF-5) to determine the presence and severity of ED. Serum NUCB2/nesfatin-1, total testosterone, fasting blood glucose, hemoglobin A1c, total cholesterol, low-density lipoprotein, high-density lipoprotein, very low-density lipoprotein, triglyceride and total prostate-specific antigen levels were all measured. The mean age of the participants was 46.77±9.87 years with an age range of 25-67 years. The mean ages of the ED and non-ED groups were 47.47±11.19 and 46.03±8.30 years, respectively. Patient age and serum biochemical parameters were found to be comparable between the two groups. The serum NUCB2/nesfatin-1 levels of the ED group were also revealed to be significantly lower compared with those of the non-ED group (P=0.019). There was a weak negative correlation between the serum NUCB2/nesfatin-1 level and the severity of ED according to the IIEF-5 score (r=-0.306; P=0.005). The receiver operating characteristic curve analysis of serum NUCB2/nesfatin-1 revealed a cut-off value of 1.25 ng/ml for distinguishing between the ED and non-ED groups (P=0.019). These findings suggest that reduced serum NUCB2/nesfatin-1 values may be implicated in the etiology of ED. Further studies are required to clarify the effect of NUCB2/nesfatin-1 on vascular physiology and erectile physiology or pathophysiology.
Collapse
Affiliation(s)
- Akif Koç
- Department of Urology, Bursa Faculty of Medicine, Health Sciences University, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa 16310, Turkey
| | - Abdullah Gul
- Department of Urology, Bursa Faculty of Medicine, Health Sciences University, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa 16310, Turkey
| | - Anil Erkan
- Department of Urology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa 16310, Turkey
| | - Muhammet Guzelsoy
- Department of Urology, Bursa Faculty of Medicine, Health Sciences University, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa 16310, Turkey
| | - Ali Riza Turkoglu
- Department of Urology, Bursa Faculty of Medicine, Health Sciences University, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa 16310, Turkey
| | - Soner Coban
- Department of Urology, Bursa Faculty of Medicine, Health Sciences University, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa 16310, Turkey
| | - Rahime Feyza Kologlu
- Department of Biochemistry, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa 16310, Turkey
| | - Yasemin Ustundag
- Department of Biochemistry, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa 16310, Turkey
| |
Collapse
|
4
|
Golshan M, Alavi SMH, Hatef A, Kazori N, Socha M, Milla S, Sokołowska-Mikołajczyk M, Unniappan S, Butts IAE, Linhart O. Impact of absolute food deprivation on the reproductive system in male goldfish exposed to sex steroids. J Comp Physiol B 2024; 194:411-426. [PMID: 38880793 DOI: 10.1007/s00360-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
There is a link between metabolism and reproduction as metabolic hormones affect hypothalamus-pituitary-testis (HPT) hormonal functions and vice versa. The aim of the present study was to investigate the effects of negative energy balance on the reproductive system in male goldfish exposed to testosterone (T) and 17β-estradiol (E2). Following 7 days of food deprivation (FD), ANOVA models showed significant FD × sex steroid interactions on sperm quality and circulating sex steroid levels. When FD effects were investigated, 11-ketotestosterone (11-KT) level and sperm motility and velocity decreased in food-deprived goldfish in the control group. In E2-exposed goldfish, FD decreased sperm production in addition to sperm motility and velocity that coincided with an elevation of circulating E2 level. However, FD did not significantly impact sex steroids and sperm quality in T-exposed goldfish. ANOVA models showed non-significant FD × sex steroid interactions for HSI, GSI, circulating luteinizing hormone (Lh) level, and metabolic (preproghrelin, goat and nucb2) and reproductive (kiss1, gpr54 and gnrh3) mRNAs. Furthermore, results showed that FD decreased HSI, and increased Lh levels and testicular preproghrelin and goat mRNAs, while sex steroids increased mid-brain nucb2, kiss1 and gpr54 mRNAs. Together, our results suggest that FD-induced inhibition of androgenesis resulted in diminished sperm quality associated with activation of the testicular ghrelinergic system, and negative feedback of 11-KT increased Lh level. The FD-induced testicular metabolic and hormonal system was impacted in goldfish exposed to sex steroids. However, the negative effects of FD on sperm quality were accelerated in E2-exposed goldfish due to estrogenic activity. This study provides novel information to better understand metabolic-associated reproductive disorders in fish.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
| | - Sayyed Mohammad Hadi Alavi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Azadeh Hatef
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
- Toxicology Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Negar Kazori
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Magdalena Socha
- Faculty of Animal Science, University of Agriculture in Kraków, Kraków, Poland
| | - Sylvain Milla
- Research Unit Animal and Functionalities of Animal Products, INRA, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | | | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
5
|
Ahn C, Sun S, Ha J, Yang H. Nesfatin-1 regulates steroidogenesis in mouse Leydig cells. Peptides 2023; 166:171036. [PMID: 37269882 DOI: 10.1016/j.peptides.2023.171036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Nesfatin-1 is a polypeptide hormone known to regulate appetite and energy metabolism and is derived from the precursor protein nucleobindin 2 (NUCB2). Recent studies have shown that nesfatin-1 is expressed in many peripheral tissues in mice, including the reproductive organs. However, its function and regulation in the testis remain unknown. In this study, we investigated the expression of Nucb2 mRNA and nesfatin-1 protein in mouse Leydig cells and the Leydig cell line, TM3 cells. We also examined whether Nucb2 mRNA expression is regulated by gonadotropins and whether exogenous nesfatin-1 affects steroidogenesis in primary Leydig cells isolated from the testis and TM3 cells. We found that Nucb2 mRNA and nesfatin-1 protein were present in primary Leydig cells and TM3 cells, and nesfatin-1 binding sites were also found in both cell types. Nucb2 mRNA expression in testis, primary Leydig cells, and TM3 cells was increased after treatment with pregnant mare's serum gonadotropin and human chorionic gonadotropin. After nesfatin-1 treatment, the expression of steroidogenesis-related enzyme genes Cyp17a1 and Hsd3b was upregulated in primary Leydig cells and TM3 cells. Our results suggest that NUCB2/nesfatin-1 expression in mouse Leydig cells may be regulated through the hypothalamic-pituitary-gonadal axis and that nesfatin-1 produced by Leydig cells may locally regulate steroidogenesis in an autocrine manner. This study provides insight into the regulation of NUCB2/nesfatin-1 expression in Leydig cells and the effect of nesfatin-1 on steroidogenesis, which may have implications for male reproductive health.
Collapse
Affiliation(s)
- Chaeyoung Ahn
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Sojung Sun
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Jinah Ha
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, South Korea.
| |
Collapse
|
6
|
Ha J, Shin J, Seok E, Kim S, Sun S, Yang H. Estradiol and progesterone regulate NUCB2/nesfatin-1 expression and function in GH3 pituitary cells and THESC endometrial cells. Anim Cells Syst (Seoul) 2023; 27:129-137. [PMID: 37351263 PMCID: PMC10283468 DOI: 10.1080/19768354.2023.2226735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Estradiol (E2) and progesterone (P4) are essential sex steroid hormones that play critical roles in the pituitary gland and uterus. Recently, nesfatin-1, a polypeptide hormone that regulates appetite and energy homeostasis in the hypothalamus, was found to be expressed in the pituitary gland and uterus. In this study, we aimed to investigate the relationship between these two steroid hormones and the expression and function of nesfatin-1 in the pituitary gland and uterus using GH3 cells, a lacto-somatotroph cell line, and THESC cells, an endometrial stromal cell line. First, we verified the presence of nesfatin-1 and nesfatin-1 binding sites in GH3 and THESC cells. E2 increased the mRNA expression of NUCB2, the gene encoding the nesfatin-1 protein, in GH3 cells, while P4 had no significant effect. In THESC cells, NUCB2 mRNA expression was decreased by E2 but increased by P4. In addition, nesfatin-1 significantly increased growth hormone (GH) and prolactin (PRL) mRNA expression in GH3 cells, and E2 enhanced this effect. In THESC cells, nesfatin-1 significantly increased the mRNA expression of insulin-like growth factor binding protein 1 (IGFBP1) and PRL, which are decidualization marker genes, and P4 further enhanced this effect. These results suggest that nesfatin-1 may act as a local regulator of GH and PRL production in the pituitary gland and decidualization in the uterus, modulating its effects in response to E2 and P4.
Collapse
Affiliation(s)
- Jinah Ha
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Jungwoo Shin
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Eunji Seok
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Soohyun Kim
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Sojung Sun
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| |
Collapse
|
7
|
Weibert E, Hofmann T, Elbelt U, Rose M, Stengel A. NUCB2/nesfatin-1 is associated with severity of eating disorder symptoms in female patients with obesity. Psychoneuroendocrinology 2022; 143:105842. [PMID: 35752057 DOI: 10.1016/j.psyneuen.2022.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nesfatin-1 has been described as an anorexigenic peptide. Comprehensive evidence also points towards an involvement of nesfatin-1 in the modulation of emotional pathways with a sex-specific regulation of nesfatin-1 in association with anxiety. Although the implication of nesfatin-1 in the regulation of food intake is well-established in animals, data in humans are lacking. Therefore, we investigated a possible association of circulating NUCB2/nesfatin-1 with eating disorder symptoms in female and male patients displaying a wide range of body weight. METHODS We enrolled 243 inpatients (177 female, 66 male) hospitalized due to anorexia nervosa (n = 66) or obesity (n = 144) or with normal weight and suffering from somatoform, adjustment, depressive or anxiety disorders (n = 33). Plasma samples (NUCB2/nesfatin-1 levels measured by ELISA) and measures of eating disorder symptoms (by EDI-2, range 0-100) were obtained within three days after admission. RESULTS The study population displayed a distinct prevalence of eating disorder symptoms with female patients with anorexia nervosa (+ 77.0%, p < 0.001) and obesity (+ 87.9%, p < 0.001) reported significantly higher EDI-2 scores than normal weight patients of the same sex. Accordingly, males with anorexia nervosa (+ 39.7%, p < 0.05) and obesity (+ 51.7%, p < 0.001) had significantly higher EDI-2 scores than males with normal weight. Within the same BMI group, women displayed significantly higher scores than men (+ 21.4%, p < 0.05 in patients with anorexia nervosa, + 18.8%, p < 0.001 in participants with obesity). We observed a positive correlation between NUCB2/nesfatin-1 levels and EDI-2 total scores in female patients with obesity (r = 0.285, p = 0.015), whereas no associations were found in other subgroups. A positive correlation between NUCB2/nesfatin-1 levels and BMI was only observed in the male study population (r = 0.315, p = 0.018). CONCLUSIONS NUCB2/nesfatin-1 plasma levels were positively associated with EDI-2 total scores in women with obesity, while no association was observable in men. The lacking association of NUCB2/nesfatin-1 and EDI-2 total scores in female patients with anorexia nervosa might be due to already low NUCB2/nesfatin-1 plasma levels. Whether NUCB2/nesfatin-1 is selectively involved in eating behavior in women with obesity will have to be further investigated.
Collapse
Affiliation(s)
- Elena Weibert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Tobias Hofmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Ulf Elbelt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Endokrinologikum Berlin, Berlin, Germany
| | - Matthias Rose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andreas Stengel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Zhou Q, Liu Y, Feng R, Zhang W. NUCB2: roles in physiology and pathology. J Physiol Biochem 2022; 78:603-617. [PMID: 35678998 DOI: 10.1007/s13105-022-00895-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Nucleobindin2 (NUCB2) is a member of nucleobindin family which was first found in the nucleus of the hypothalamus, and had a relationship in diet and energy homeostasis. Its location in normal tissues such as stomach and islet further confirms that it plays a vital role in the regulation of physiological functions of the body. Besides, NUCB2 participates in tumorigenesis through activating various signal-pathways, more and more studies indicate that NUCB2 might impact tumor progression by promoting or inhibiting proliferation, apoptosis, autophagy, metastasis, and invasion of tumor cells. In this review, we comprehensively stated NUCB2's expression and functions, and introduced the role of NUCB2 in physiology and pathology and its mechanism. What is more, pointed out the potential direction of future research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ranran Feng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
9
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
10
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
11
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
12
|
Huo X, Wang H, Huo B, Wang L, Yang K, Wang J, Wang L, Wang H. FTX contributes to cell proliferation and migration in lung adenocarcinoma via targeting miR-335-5p/NUCB2 axis. Cancer Cell Int 2020; 20:89. [PMID: 32226311 PMCID: PMC7092578 DOI: 10.1186/s12935-020-1130-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/29/2020] [Indexed: 01/29/2023] Open
Abstract
Background Extensive studies revealed that long non-coding RNAs (lncRNAs) could act as a regulator in tumors, including lung adenocarcinoma (LUAD). LncRNA FTX transcript, XIST regulator (FTX) has been reported to regulate the biological behaviors of some cancers. Nevertheless, its functional role and molecular mechanism remain obscure in LUAD. Our current study concentrates on exploring the biological function of FTX in LUAD. Methods RT-qPCR was used to test the expression of FTX, miR-335-5p or NUCB2 in LUAD cells. The effect of FTX on LUAD progression was investigated by colony formation, EdU, flow cytometry, TUNEL, transwell and western blot assays. The interaction between microRNA-335-5p (miR-335-5p) and FTX or nucleobindin 2 (NUCB2) was confirmed by luciferase reporter assay. Results RT-qPCR showed that FTX expression was up-regulated in LUAD cell lines. Loss-of-function assay indicated that FTX accelerated cell proliferation, migration and invasion, while inhibited cell apoptosis in LUAD. Besides, miR-335-5p, lowly expressed in LUAD cells, was discovered to be sponged by FTX. Subsequently, NUCB2 was identified as a target gene of miR-335-5p. Additionally, it was confirmed that NUCB2 functioned as an oncogene in LUAD. Rescue assays indicated that LUAD progression inhibited by FTX knockdown could be restored by NUCB2 up-regulation. Conclusion FTX played an oncogenic role in LUAD and contributed to cancer development via targeting miR-335-5p/NUCB2 axis.
Collapse
Affiliation(s)
- Xiaodong Huo
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Huixing Wang
- 2Pain Management Center, The Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Bin Huo
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Lei Wang
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Kuo Yang
- 3Central Laboratory/Tianjin Research Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Jinhuan Wang
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Lili Wang
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| | - Haitao Wang
- 1Department of Oncology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 China
| |
Collapse
|
13
|
Guvenc G, Altinbas B, Kasikci E, Ozyurt E, Bas A, Udum D, Niaz N, Yalcin M. Contingent role of phoenixin and nesfatin-1 on secretions of the male reproductive hormones. Andrologia 2019; 51:e13410. [PMID: 31637758 DOI: 10.1111/and.13410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Phoenixin (PNX) and nesfatin-1 are localised in the hypothalamus and the pituitary gland. Moreover, the most of the PNX-expressing neurons in the hypothalamus also co-express nesfatin-1. These outcomes may suggest that there is an interaction between PNX and nesfatin-1, at least in terms of neuroendocrine-mediated regulations. Hence, the study was planned to find out the effects of centrally delivered PNX and nesfatin-1 on male sex hormones or to show the interactive association of intracerebroventricularly (ICV) injected PNX+nesfatin-1 combination on the release of male hormones. PNX and nesfatin-1, single or together, were delivered ICV to different male Wistar Albino rat groups. Both PNX and nesfatin-1 induced a significant enhancement in plasma FSH, LH and testosterone without inducing any alteration in plasma GnRH in the rats. The central combinatorial treatment of both the neuropeptides produced a more potent rise in male plasma hormone levels than treating with single neuropeptide. In summary, our preliminary data show that centrally delivered PNX and nesfatin-1 can affect plasma male hormone levels. Moreover, that the combinatorial treatment with both the neuropeptides in male rats leading to a more potent effect on the plasma male hormone levels might suggest that both these neuropeptides act synergistically in terms of regulation of male HPGA.
Collapse
Affiliation(s)
- Gokcen Guvenc
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Burcin Altinbas
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey.,Department of Physiology, Faculty of Medicine, Sanko University, Gaziantep, Turkey
| | - Esra Kasikci
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ebru Ozyurt
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Aysenur Bas
- Department of Molecular Biology and Genetic, Faculty of Science and Art, Bursa Uludag University, Bursa, Turkey
| | - Duygu Udum
- Department of Biochemistry, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nasir Niaz
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey.,Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
14
|
Catak Z, Yavuzkir S, Kocdemir E, Ugur K, Yardim M, Sahin İ, Agirbas EP, Aydin S. NUCB2/Nesfatin-1 in the Blood and Follicular Fluid in Patients with Polycystic Ovary Syndrome and Poor Ovarian Response. J Reprod Infertil 2019; 20:225-230. [PMID: 31897389 PMCID: PMC6928404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Failure to respond adequately to standard protocols and to recruit adequate follicles is called 'poor ovarian response'. The relationships between metabolic alterations and NUCB2/Nesfatin-1 levels were explored in patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization/intracytoplasmic sperm injection. METHODS This case-control study involved 20 infertile women with PCOS and 20 control women diagnosed as poor ovarian responders stimulated with a GnRH antagonist. Blood samples were taken during ovum pick-up and follicular fluids (FF) were obtained from a dominant follicle from the subjects. Samples were analyzed by using ELISA. Statistical analysis was performed with SPSS version 20. Data are expressed as means ± standard deviation (SD). RESULTS Blood NUCB2/Nesfatin-1 levels in PCOS were significantly lower (p= 0.011) while the NUCB2/Nesfatin-1 levels of FF in poor ovarian response (POR) were higher, but not statistically significant. Insulin, total testosterone, fasting glucose, homeostasis model assessment, and insulin resistance index in women with POR decreased when compared with PCOS. Blood NUCB2/Nesfatin-1 levels were significantly higher than FF NUCB2/Nesfatin-1 levels in both groups (p<0.001). Moreover, a positive correlation was detected between blood NUCB2/Nesfatin-1 and testosterone (p=0.602, r=0.304), HOMA-IR (p=0.252, r=0.384), BMI (p=0.880, r= 0.44) in PCOS, but it was not significant. CONCLUSION NUCB2/Nesfatin-1 levels might be important in follicular growth in PCOS subjects undergoing IVF/ICSI with an antagonist protocol and NUCB2/Nesfatin-1 level could reliably help to predict poor ovarian response.
Collapse
Affiliation(s)
- Zekiye Catak
- Department of Clinical Biochemistry, University of Health Sciences, Elazig Fethi Sekin City Hospital, Elazig, Turkey
| | - Seyda Yavuzkir
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Esra Kocdemir
- Department of Clinical Biochemistry, Kovancilar State Hospital, Elazig, Turkey
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University, Elazig, Turkey
| | - Meltem Yardim
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, Elazig, Turkey
| | - İbrahim Sahin
- Department of Medical Biology, Medical School, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Esra Piril Agirbas
- School of Medicine, Medical School Student, Firat University, Elazig, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, Elazig, Turkey
| |
Collapse
|
15
|
Weibert E, Hofmann T, Stengel A. Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology 2019; 100:58-66. [PMID: 30292960 DOI: 10.1016/j.psyneuen.2018.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 01/20/2023]
Abstract
Nesfatin-1 has been discovered a decade ago and since then drawn a lot of attention. The initially proposed anorexigenic effect was followed by the description of several other involvements such as a role in gastrointestinal motility, glucose homeostasis, cardiovascular functions and thermoregulation giving rise to a pleiotropic action of this peptide. The recent years witnessed mounting evidence on the involvement of nesfatin-1 in emotional processes as well. The present review will describe the peptide's relations to anxiety, depressiveness and stress in animal models and humans and also discuss existing gaps in knowledge in order to stimulate further research.
Collapse
Affiliation(s)
- Elena Weibert
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tobias Hofmann
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Sun S, Yang H. Tissue-Specific Localization NUCB2/nesfatin-1 in the Liver and Heart of Mouse Fetus. Dev Reprod 2018; 22:331-339. [PMID: 30680332 PMCID: PMC6344366 DOI: 10.12717/dr.2018.22.4.331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
NUCB2/nesfatin-1 is first known to be expressed in the hypothalamus while controlling appetite and energy metabolism. However, recent studies have shown that NUCB2/nesfatin-1 was expressed in the various organs as well as the hypothalamus. Our previous reports also demonstrated that NUCB2/nesfatin-1 was expressed in the ovary, testis, pituitary gland, lung, kidney, and stomach of fetal and adult mice. However, the role of NUCB2/nesfatin-1 in mouse fetus remains unknown. Thus, the aim of this study was to investigate whether NUCB2/nestatin-1 is expressed in mouse fetus at the developmental stage in which organogenesis begins. To do this, we performed in situ hybridization (ISH) and immunohistochemistry (IHC) staining to examine the distribution of NUCB2 mRNA and nesfatin-1 protein in the mouse fetal organs during early developmental stages, especially at embryonic day (E) 10.5. As a result of ISH, NUCB2 mRNA positive signals were more frequent in the liver, but there were relatively few positive signals in heart. On the other hand, no positive signals were detected in other organs. These ISH results were validated by IHC staining and qRT-PCR analysis. Expression of nesfatin-1 protein detected by IHC staining was similar to that of NUCB2 mRNA detected by ISH in the liver and heart. In addition, the levels of NUCB2 mRNA expression analyzed by qRT-PCR were significantly increased in the liver and heart compared to other organs of the mouse fetus at E13.5, whereas its level was extensively decreased in the liver, but increased in the lung, stomach, and kidney of the mouse fetus at E17.5. These results suggest that NUCB2/nesfatin-1 may play an important role in liver and heart development and physiological functions in the developmental process of mouse fetus. Further studies are needed on the function of NUCB2/nesfatin-1, which is highly expressed in the various organs, including liver and heart during mouse development.
Collapse
Affiliation(s)
- Sojung Sun
- Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University, Seoul 01797, Korea
| | - Hyunwon Yang
- Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
17
|
Schalla MA, Stengel A. Current Understanding of the Role of Nesfatin-1. J Endocr Soc 2018; 2:1188-1206. [PMID: 30302423 PMCID: PMC6169466 DOI: 10.1210/js.2018-00246] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Nesfatin-1 was discovered in 2006 and implicated in the regulation of food intake. Subsequently, its widespread central and peripheral distribution gave rise to additional effects. Indeed, a multitude of actions were described, including modulation of gastrointestinal functions, glucose and lipid metabolism, thermogenesis, mediation of anxiety and depression, as well as cardiovascular and reproductive functions. Recent years have witnessed a great increase in our knowledge of these effects and their underlying mechanisms, which will be discussed in the present review. Lastly, gaps in knowledge will be highlighted to foster further studies.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Pałasz A, Janas-Kozik M, Borrow A, Arias-Carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochem Int 2018; 113:120-136. [DOI: 10.1016/j.neuint.2017.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
|