1
|
Constable PA, Pinzon-Arenas JO, Mercado Diaz LR, Lee IO, Marmolejo-Ramos F, Loh L, Zhdanov A, Kulyabin M, Brabec M, Skuse DH, Thompson DA, Posada-Quintero H. Spectral Analysis of Light-Adapted Electroretinograms in Neurodevelopmental Disorders: Classification with Machine Learning. Bioengineering (Basel) 2024; 12:15. [PMID: 39851292 PMCID: PMC11761560 DOI: 10.3390/bioengineering12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Electroretinograms (ERGs) show differences between typically developing populations and those with a diagnosis of autism spectrum disorder (ASD) or attention deficit/hyperactivity disorder (ADHD). In a series of ERGs collected in ASD (n = 77), ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137) groups, this analysis explores the use of machine learning and feature selection techniques to improve the classification between these clinically defined groups. Standard time domain and signal analysis features were evaluated in different machine learning models. For ASD classification, a balanced accuracy (BA) of 0.87 was achieved for male participants. For ADHD, a BA of 0.84 was achieved for female participants. When a three-group model (ASD, ADHD, and control) the BA was lower, at 0.70, and fell further to 0.53 when all groups were included (ASD, ADHD, ASD + ADHD, and control). The findings support a role for the ERG in establishing a broad two-group classification of ASD or ADHD, but the model's performance depends upon sex and is limited when multiple classes are included in machine learning modeling.
Collapse
Affiliation(s)
- Paul A. Constable
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide 5000, SA, Australia;
| | - Javier O. Pinzon-Arenas
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; (J.O.P.-A.); (L.R.M.D.); (H.P.-Q.)
| | - Luis Roberto Mercado Diaz
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; (J.O.P.-A.); (L.R.M.D.); (H.P.-Q.)
| | - Irene O. Lee
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (I.O.L.); (D.H.S.)
| | | | - Lynne Loh
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide 5000, SA, Australia;
| | - Aleksei Zhdanov
- “VisioMed.AI”, Golovinskoe Highway, 8/2A, 125212 Moscow, Russia;
| | - Mikhail Kulyabin
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Marek Brabec
- Institute of Computer Science of the Czech Academy of Sciences, Pod Vodarenskou Vezi 2, 182 00 Prague, Czech Republic;
- National Institute of Public Health, Srobarova 48, 100 00 Prague, Czech Republic
| | - David H. Skuse
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (I.O.L.); (D.H.S.)
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3BH, UK;
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Hugo Posada-Quintero
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; (J.O.P.-A.); (L.R.M.D.); (H.P.-Q.)
| |
Collapse
|
2
|
Shimohata A, Rai D, Akagi T, Usui S, Ogiwara I, Kaneda M. The intracellular C-terminal domain of mGluR6 contains ER retention motifs. Mol Cell Neurosci 2023; 126:103875. [PMID: 37352898 DOI: 10.1016/j.mcn.2023.103875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
Metabotropic glutamate receptor 6 (mGluR6) predominantly localizes to the postsynaptic sites of retinal ON-bipolar cells, at which it recognizes glutamate released from photoreceptors. The C-terminal domain (CTD) of mGluR6 contains a cluster of basic amino acids resembling motifs for endoplasmic reticulum (ER) retention. We herein investigated whether these basic residues are involved in regulating the subcellular localization of mGluR6 in 293T cells expressing mGluR6 CTD mutants using immunocytochemistry, immunoprecipitation, and flow cytometry. We showed that full-length mGluR6 localized to the ER and cell surface, whereas mGluR6 mutants with 15- and 20-amino acid deletions from the C terminus localized to the ER, but were deficient at the cell surface. We also demonstrated that the cell surface deficiency of mGluR6 mutants was rescued by introducing an alanine substitution at basic residues within the CTD. The surface-deficient mGluR6 mutant still did not localize to the cell surface and was retained in the ER when co-expressed with surface-expressible constructs, including full-length mGluR6, even though surface-deficient and surface-expressible constructs formed heteromeric complexes. The co-expression of the surface-deficient mGluR6 mutant reduced the surface levels of surface-expressible constructs. These results indicate that basic residues in the mGluR6 CTD served as ER retention signals. We suggest that exposed ER retention motifs in the aberrant assembly containing truncated or misfolded mGluR6 prevent these protein complexes from being transported to the cell surface.
Collapse
Affiliation(s)
- Atsushi Shimohata
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sumiko Usui
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Ikuo Ogiwara
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
3
|
Constable PA, Marmolejo-Ramos F, Gauthier M, Lee IO, Skuse DH, Thompson DA. Discrete Wavelet Transform Analysis of the Electroretinogram in Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder. Front Neurosci 2022; 16:890461. [PMID: 35733935 PMCID: PMC9207322 DOI: 10.3389/fnins.2022.890461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Background To evaluate the electroretinogram waveform in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) using a discrete wavelet transform (DWT) approach. Methods A total of 55 ASD, 15 ADHD and 156 control individuals took part in this study. Full field light-adapted electroretinograms (ERGs) were recorded using a Troland protocol, accounting for pupil size, with five flash strengths ranging from –0.12 to 1.20 log photopic cd.s.m–2. A DWT analysis was performed using the Haar wavelet on the waveforms to examine the energy within the time windows of the a- and b-waves and the oscillatory potentials (OPs) which yielded six DWT coefficients related to these parameters. The central frequency bands were from 20–160 Hz relating to the a-wave, b-wave and OPs represented by the coefficients: a20, a40, b20, b40, op80, and op160, respectively. In addition, the b-wave amplitude and percentage energy contribution of the OPs (%OPs) in the total ERG broadband energy was evaluated. Results There were significant group differences (p < 0.001) in the coefficients corresponding to energies in the b-wave (b20, b40) and OPs (op80 and op160) as well as the b-wave amplitude. Notable differences between the ADHD and control groups were found in the b20 and b40 coefficients. In contrast, the greatest differences between the ASD and control group were found in the op80 and op160 coefficients. The b-wave amplitude showed both ASD and ADHD significant group differences from the control participants, for flash strengths greater than 0.4 log photopic cd.s.m–2 (p < 0.001). Conclusion This methodological approach may provide insights about neuronal activity in studies investigating group differences where retinal signaling may be altered through neurodevelopment or neurodegenerative conditions. However, further work will be required to determine if retinal signal analysis can offer a classification model for neurodevelopmental conditions in which there is a co-occurrence such as ASD and ADHD.
Collapse
Affiliation(s)
- Paul A. Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, SA, Australia
- *Correspondence: Paul A. Constable,
| | - Fernando Marmolejo-Ramos
- Centre for Change and Complexity in Learning, The University of South Australia, Adelaide, SA, Australia
| | - Mercedes Gauthier
- Department of Ophthalmology & Visual Sciences, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Irene O. Lee
- Behavioural and Brain Sciences Unit, Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - David H. Skuse
- Behavioural and Brain Sciences Unit, Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
4
|
Kralik J, Kleinlogel S. Functional Availability of ON-Bipolar Cells in the Degenerated Retina: Timing and Longevity of an Optogenetic Gene Therapy. Int J Mol Sci 2021; 22:ijms222111515. [PMID: 34768944 PMCID: PMC8584043 DOI: 10.3390/ijms222111515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 01/19/2023] Open
Abstract
Degenerative diseases of the retina are responsible for the death of photoreceptors and subsequent loss of vision in patients. Nevertheless, the inner retinal layers remain intact over an extended period of time, enabling the restoration of light sensitivity in blind retinas via the expression of optogenetic tools in the remaining retinal cells. The chimeric Opto-mGluR6 protein represents such a tool. With exclusive ON-bipolar cell expression, it combines the light-sensitive domains of melanopsin and the intracellular domains of the metabotropic glutamate receptor 6 (mGluR6), which naturally mediates light responses in these cells. Albeit vision restoration in blind mice by Opto-mGluR6 delivery was previously shown, much is left to be explored in regard to the effects of the timing of the treatment in the degenerated retina. We performed a functional evaluation of Opto-mGluR6-treated murine blind retinas using multi-electrode arrays (MEAs) and observed long-term functional preservation in the treated retinas, as well as successful therapeutical intervention in later stages of degeneration. Moreover, the treatment decreased the inherent retinal hyperactivity of the degenerated retinas to levels undistinguishable from healthy controls. Finally, we observed for the first time micro electroretinograms (mERGs) in optogenetically treated animals, corroborating the origin of Opto-mGluR6 signalling at the level of mGluR6 of ON-bipolar cells.
Collapse
|
5
|
Baranauskas G. Limited Spatial Spread Explains the Dependence of Visual Response Adaptation on Stimulus Size in Rat Superior Colliculus Neurons. Neuroscience 2020; 451:60-78. [PMID: 33141032 DOI: 10.1016/j.neuroscience.2020.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/01/2020] [Accepted: 10/11/2020] [Indexed: 11/16/2022]
Abstract
Although adaptation to light occurs in the eye and mainly preserves the full dynamic range of neuronal responses during changing background illumination, it affects the entire visual system and helps to optimize visual information processing. We have shown recently that in rat superior colliculus (SC) neurons adaptation to light acts as a local low-pass filter because, in contrast to the primate SC, in rat collicular neurons adaptation to small stimuli is largely limited to the vicinity of the adaptor stimulus. However, it was unclear whether large visual stimuli would induce the same spatially limited adaptation. We addressed this question by evaluating the effects of 1.8°, 6.2° and 20.8° wide adaptor stimuli on test stimuli of variable size. Single unit recordings in the adult rat SC were employed to estimate the response amplitude. Small, 1.8° and 6.2° adaptors habituated visual responses only to stimuli smaller than the adaptive stimuli. However, the 20.8° adaptor dramatically reduced responses even to test stimuli >3 times wider than the adaptor (up to 70° wide). The latter result may be explained by a nearly complete occlusion by a large adaptor of the neuron's receptive field (RF). All these results are consistent with the idea of a limited spatial spread of adaptation in rat SC neurons that is the consequence of high convergence of retinal inputs, in which small RFs limit the spatial spread of adaptation. It is concluded that, in this limited spatial spread of adaptation, rodent SC resembles higher visual system areas in primates and indicates potential differences in visual information processing between rodents and primates.
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
6
|
Rai D, Akagi T, Shimohata A, Ishii T, Gangi M, Maruyama T, Wada-Kiyama Y, Ogiwara I, Kaneda M. Involvement of the C-terminal domain in cell surface localization and G-protein coupling of mGluR6. J Neurochem 2020; 158:837-848. [PMID: 33067823 DOI: 10.1111/jnc.15217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/25/2020] [Accepted: 10/11/2020] [Indexed: 01/05/2023]
Abstract
Metabotropic glutamate receptor 6, mGluR6, interacts with scaffold proteins and Gβγ subunits via its intracellular C-terminal domain (CTD). The mGluR6 pathway is critically involved in the retinal processing of visual signals. We herein investigated whether the CTD (residues 840-871) was necessary for mGluR6 cell surface localization and G-protein coupling using mGluR6-CTD mutants with immunocytochemistry, surface biotinylation assays, and electrophysiological approaches. We used 293T cells and primary hippocampal neurons as model systems. We examined C-terminally truncated mGluR6 and showed that the removal of up to residue 858 did not affect surface localization or glutamate-induced G-protein-mediated responses, whereas a 15-amino acid deletion (Δ857-871) impaired these functions. However, a 21-amino acid deletion (Δ851-871) restored surface localization and glutamate-dependent responses, which were again attenuated when the entire CTD was removed. The sequence alignment of group III mGluRs showed conserved amino acids resembling an ER retention motif in the CTD. These results suggest that the intracellular CTD is required for the cell surface transportation and receptor function of mGluR6, whereas it may contain regulatory elements for intracellular trafficking and signaling.
Collapse
Affiliation(s)
- Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Mie Gangi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Ikuo Ogiwara
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
7
|
Yin C, Ishii T, Kaneda M. Two Types of Cl Transporters Contribute to the Regulation of Intracellular Cl Concentrations in ON- and OFF-type Bipolar Cells in the Mouse Retina. Neuroscience 2020; 440:267-276. [PMID: 32531472 DOI: 10.1016/j.neuroscience.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
In the retina, ON- and OFF-type bipolar cells are classified by subtype-specific center responses, which are attributed to differences in glutamate receptor subtypes. However, the mechanisms by which ON- and OFF-type bipolar cells generate subtype-specific surround responses remain unclear. One hypothesis for surround responses is that intracellular Cl concentrations ([Cl-]i) are set at different levels to achieve opposite polarities for GABA responses in ON- and OFF-type bipolar cells. Although this hypothesis is supported by previous findings obtained from rod (ON-) type bipolar cells, there is currently no information on OFF-type bipolar cells. In the present study, we examined the distribution and function of the Cl transporters, the Na-K-Cl co-transporter (NKCC1) and K-Cl co-transporter (KCC2), in rod (ON-) and OFF-type bipolar cells using immunohistochemical, in situ hybridization, and electrophysiological methods. Rod (ON-) and OFF-type bipolar cells both expressed NKCC1 and KCC2. However, the functional contribution of NKCC1 and KCC2 to the regulation of [Cl-]i differed between rod (ON-) and OFF-type bipolar cells. Strong NKCC1 activity increased [Cl-]i in rod (ON-) type bipolar cells, while that of KCC2 decreased [Cl-]i in OFF-type bipolar cells. We also confirmed the presence of a [Cl-]i gradient between dendrites and axon terminals in rod (ON-type) bipolar cells. Thus, the subtype-specific control of [Cl-]i is achieved by the activity of NKCC1 relative to that of KCC2 and appears to influence the polarity of surround responses.
Collapse
Affiliation(s)
- Chengzhu Yin
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
8
|
Molecular and Cellular Mechanisms Underlying Somatostatin-Based Signaling in Two Model Neural Networks, the Retina and the Hippocampus. Int J Mol Sci 2019; 20:ijms20102506. [PMID: 31117258 PMCID: PMC6566141 DOI: 10.3390/ijms20102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Neural inhibition plays a key role in determining the specific computational tasks of different brain circuitries. This functional "braking" activity is provided by inhibitory interneurons that use different neurochemicals for signaling. One of these substances, somatostatin, is found in several neural networks, raising questions about the significance of its widespread occurrence and usage. Here, we address this issue by analyzing the somatostatinergic system in two regions of the central nervous system: the retina and the hippocampus. By comparing the available information on these structures, we identify common motifs in the action of somatostatin that may explain its involvement in such diverse circuitries. The emerging concept is that somatostatin-based signaling, through conserved molecular and cellular mechanisms, allows neural networks to operate correctly.
Collapse
|
9
|
Zhang Y, Phan E, Wildsoet CF. Retinal Defocus and Form-Deprivation Exposure Duration Affects RPE BMP Gene Expression. Sci Rep 2019; 9:7332. [PMID: 31089149 PMCID: PMC6517395 DOI: 10.1038/s41598-019-43574-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/23/2019] [Indexed: 11/09/2022] Open
Abstract
In the context of ocular development and eye growth regulation, retinal defocus and/or image contrast appear key variables although the nature of the signal(s) relayed from the retina to the sclera remains poorly understood. Nonetheless, under optimal visual conditions, eye length is brought into alignment with its optical power to achieve approximate emmetropia, through appropriate adjustment to eye growth. The retinal pigment epithelium (RPE), which lies between the retina and choroid/sclera, appears to play a crucial role in this process. In the investigations reported here, we used a chick model system to assess the threshold duration of exposure to lens-imposed defocus and form-deprivation necessary for conversion of evoked retinal signals into changes in BMP gene expression in the RPE. Our study provides evidence for the following: 1) close-loop, optical defocus-guided (negative and positive lenses) bidirectional BMP gene expression regulation, 2) open-loop, form-deprivation (diffusers)-induced down-regulation of BMP gene expression, and 3) early, transient up-regulation of BMP gene expression in response to both types of lens and diffuser applications. The critical exposure for accurately encoding retinal images as biological signals at the level of the RPE is in the order of minutes to hours, depending on the nature of the visual manipulations.
Collapse
Affiliation(s)
- Yan Zhang
- School of Optometry, University of California, Berkeley, Berkeley, CA, USA.
| | - Eileen Phan
- School of Optometry, University of California, Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
10
|
Haq W, Dietter J, Bolz S, Zrenner E. Feasibility study for a glutamate driven subretinal prosthesis: local subretinal application of glutamate on blind retina evoke network-mediated responses in different types of ganglion cells. J Neural Eng 2018; 15:045004. [PMID: 29916398 DOI: 10.1088/1741-2552/aac811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A feasibility study for a transmitter based subretinal prosthesis, generating visual responses in blind mouse retina is presented. APPROACH Degenerated rd1 mouse retina were stimulated in subretinal configuration by local glutamate (Glu) or NMDA application via micropipettes (~1.5 μm) and thereby the outer retinal activity was recorded by calcium-imaging or the ganglion cell (GC) activity was recorded by the multi-electrode array system. The network mediated activation of GC via bipolar cells was approved by the administration of Glu receptor blockers. MAIN RESULTS Data of the degenerated and blind rd1 mouse retina reveals that the outer retina is Glu sensitive and that the subretinal Glu stimulation promotes network mediated GC responses. Analysis of the spatial activity-spread indicates that the Glu induced cell activation radius in the outer retina (~12.5 μm) and postsynaptically activated GC (~40 μm) is focal to the stimulation pipette tip. Moreover, the application of NMDA in subretinal space also evoked network mediated GC responses. The Glu-activated GC were identified as ON-OFF, OFF and two ON cells types. SIGNIFICANCE This study evaluates the prerequisite for the function of a transmitter based implant, that after the loss of the photoreceptors, the remnant blind retinal network is Glu sensitive and functional, positively. The differential activation of ON (hyperpolarisation) and OFF (depolarisation) bipolar cells by transmitter Glu is a unique feature and of high interest for retinal implants. Therefore, the respective bipolar cell types could only be driven by glutamatergic stimulation accurately and not by electrical stimulation. The preserved functionality of the blind retina at the onset of complete blindness is motivating to continue research on a transmitter-based prosthesis. Since the artificial Glu stimulation mimics the natural retinal input, early implantation of a Glu-prosthesis might delay the devastating retinal remodelling positively, due to the neuronal-plasticity.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
11
|
Ohkuma M, Kaneda M, Yoshida S, Fukuda A, Miyachi E. Optical measurement of glutamate in slice preparations of the mouse retina. Neurosci Res 2018. [PMID: 29522783 DOI: 10.1016/j.neures.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signaling by glutamatergic synapses plays an important role in visual processing in the retina. In this study, we used an enzyme-linked fluorescence assay system to monitor the dynamics of extracellular glutamate in a slice preparation from the mouse retina. High K stimulation induced an elevation of fluorescence in the inner plexiform layer (IPL) of the retina when glutamate transporters were inhibited by dl-threo-β-benzyloxyaspartic acid (TBOA). The high K-induced fluorescence signals in the IPL were inhibited by the calcium channel blocker Cd2+. Blockade of GABAergic and glycinergic circuits by picrotoxin and strychnine also elevated the fluorescence signals in the IPL. Thus, the enzyme-linked fluorescence assay system might be useful for monitoring the bulk concentration of extracellular glutamate released by synapses in the inner retina.
Collapse
Affiliation(s)
- M Ohkuma
- Department of Physiology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - M Kaneda
- Department of Physiology, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo 160-8602, Japan.
| | - S Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - A Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - E Miyachi
- Department of Physiology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
12
|
Jerath R, Cearley SM, Barnes VA, Nixon-Shapiro E. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis. Med Hypotheses 2016; 96:20-29. [PMID: 27959269 DOI: 10.1016/j.mehy.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally "places" the objects within this "neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. SUMMARY This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, "A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and "Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various cortices in the brain (including the striate and parietal cortex) and the retina, work together in unison to create an infrastructure of visual space thatfunctionally "places" the objects within a "neural" space. These fast oscillations "bring" the faculties of the cortical activity to the retina, creating the infrastructure of the space within the eye where visual information can be immediately recognized by the brain. By this we mean that the visual (striate) cortex synchronizes the information with the photoreceptors in the retina, and the brain instantaneously receives the already processed visual image, thereby relinquishing the eye from being required to send the information to the brain to be interpreted before it can rise to consciousness. The visual system is a heavily studied area of neuroscience yet very little is known about how vision occurs. We believe that our novel hypothesis provides new insights into how vision becomes part of consciousness, helps to reconcile various previously proposed models, and further elucidates current questions in vision based on our unified 3D default space model. Illustrations are provided to aid in explaining our theory.
Collapse
|
13
|
Jiang SM, Zeng LP, Zeng JH, Tang L, Chen XM, Wei X. β-III-Tubulin: a reliable marker for retinal ganglion cell labeling in experimental models of glaucoma. Int J Ophthalmol 2015; 8:643-52. [PMID: 26309856 DOI: 10.3980/j.issn.2222-3959.2015.04.01] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/22/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the reliability of β-III-Tubulin protein as a retinal ganglion cell (RGC) marker in the experimental glaucoma model. METHODS Glaucoma mouse models were established by injecting polystyrene microbeads into the anterior chamber of C57BL/6J mice, then their retinas were obtained 14d and 28d after the intraocular pressure (IOP) was elevated. Retinal flat mounts and sections were double-labeled by fluorogold (FG) and β-III-Tubulin antibody or single-labeled by β-III-Tubulin antibody, then RGCs were counted and compared respectively. RESULTS IOP of the injected eyes were elevated significantly and reached the peak at 22.8±0.7 mm Hg by day 14 after injection, then dropped to 11.3±0.7 mm Hg by day 28. RGC numbers counted by FG labeling and β-III-Tubulin antibody labeling were 64 807±4930 and 64614±5054 respectively in the control group, with no significant difference. By day 14, RGCs in the experimental group decreased significantly compared to the control group, but there was no significant difference between the FG labeling counting and the β-III-Tubulin antibody labeling counting either in the experimental group or in the control group. The result was similar by day 28, with further RGC loss. CONCLUSION Our result suggested that the β-III-Tubulin protein was not affected by IOP elevation and can be used as a reliable marker for RGC in experimental models of glaucoma.
Collapse
Affiliation(s)
- Shan-Ming Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Ping Zeng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji-Hong Zeng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Ming Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
14
|
Zhang J, Zhou YH. Effect of suction on macular thickness and retinal nerve fiber layer thickness during LASIK used femtosecond laser and Moria M2 microkeratome. Int J Ophthalmol 2015; 8:777-83. [PMID: 26309879 DOI: 10.3980/j.issn.2222-3959.2015.04.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/08/2015] [Indexed: 01/09/2023] Open
Abstract
AIM To compare the effect of suction on the macular thickness and retinal nerve fiber layer (RNFL) thickness during laser in situ keratomileusis (LASIK) used Ziemer FEMTO LDV femtosecond laser (Ziemer group) and Moria M2 automated microkeratome (Moria group) for flap creation. METHODS Fourier-domain optical coherence tomography (FD-OCT) was used to measure macular thickness, ganglion cell complex thickness and (RNFL) thickness of 204 eyes of 102 patients with the Ziemer femtosecond laser (102 eyes) and the Moria M2 microkeratome (102 eyes) before surgery and 30min; 1, 3d; 1wk; 1, 3mo; 1y after surgery. RESULTS The average foveal thickness and parafoveal retinal thickness 30min after the surgery were statistically more than that before surgery (Ziemer P<0.001, P=0.003 and Moria P=0.001, P=0.006) and the effect was less in the Ziemer group than that in the Moria group (P all<0.05). The ganglion cell complex thickness was not significantly changed in both groups (P all>0.05). The RNFL thickness was statistically less 30min after surgery in both groups (P=0.014, P<0.001), but the influence was less in Ziemer group than that in Moria group (P=0.038). However, the RNFL thickness had recovered to the preoperative level only 1d after surgery. CONCLUSION The suction of femtosecond laser and mechanical microkeratome led to the increase in macular central fovea thickness and the decrease in RNFL thickness values at the early stage after LASIK. The effect of suction on macular and the RNFL thicknesses in Ziemer group is smaller than that in Moria group.
Collapse
Affiliation(s)
- Jing Zhang
- Ophthalmic Center, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yue-Hua Zhou
- Ophthalmic Center, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
15
|
Ishii T, Kaneda M. ON-pathway-dominant glycinergic regulation of cholinergic amacrine cells in the mouse retina. J Physiol 2014; 592:4235-45. [PMID: 25085888 DOI: 10.1113/jphysiol.2014.271148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Direction selectivity in the retina has been studied as a model of dendritic computation of neural circuits. Starburst amacrine cells (SACs) have been examined as a model system of dendritic computation as they play a pivotal role in the formation of direction selectivity. Because the difference of anatomical location inside the retina made ON-SACs an easier target to record, the biophysical properties of ON-SACs have been used to predict those of OFF-SACs. In this study, we systematically compared the responses of ON- and OFF-SACs to the two principal neurotransmitters, glycine and glutamate. We found that responses to glycine were significantly larger in ON-SACs than in OFF-SACs. In contrast, ON- and OFF-SACs responded similarly to glutamate. The amplitude of glycine responses in ON-SACs increased after eye opening and the largest amplitude was observed at postnatal day 28. On the other hand, no increase in the amplitude of glycine responses in OFF-SACs was observed until postnatal day 28. Glycine-evoked currents were inhibited by the application of strychnine. Glutamate-evoked currents were mimicked by the application of AMPA or kainite, and responses to N-methyl-d-aspartate were observed in the absence of Mg(2+) block. Glutamate-evoked currents produced an increase in the frequency of GABAergic inhibitory postsynaptic currents. Our results suggest that signal processing in ON-SACs cannot be directly used to understand the properties of OFF-SACs. Therefore fully defining the physiological properties of OFF-SACs will be critical to understanding and modelling direction selectivity in the retina.
Collapse
Affiliation(s)
- Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| |
Collapse
|
16
|
Distribution and development of P2Y1-purinoceptors in the mouse retina. J Mol Histol 2013; 44:639-44. [PMID: 23907621 DOI: 10.1007/s10735-013-9525-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that ATP acts on purinergic receptors and mediates synaptic transmission in the retina. In a previous study, we raised the possibility that P2X-purinoceptors, presumably P2X(2)-purinoceptors in OFF-cholinergic amacrine cells, play a key role in the formation of OFF pathway-specific modulation. In this study, we examined whether the P2Y(1)-purinoceptors can function in cholinergic amacrine cells in the mouse retina since cholinergic amacrine cells in the rat retina express P2Y(1)-purinoceptors. P2Y(1)-purinoceptors were shown to be expressed in dendrites of both ON- and OFF-cholinergic amacrine cells in adults. At postnatal day 7, there was immunoreactivity for P2Y(1)-purinoceptors in the soma of cholinergic amacrine cells. At postnatal day 14, weak immunoreactivity for P2Y(1)-purinoceptors was detected in the dendrites but not in the soma of cholinergic amacrine cells. At postnatal day 21, strong immunoreactivity for P2Y(1)-purinoceptors was detected in dendrites of cholinergic amacrine cells. The expression pattern of P2Y(1)-purinoceptors was not affected by visual experience. We concluded that P2Y(1)-purinoceptors are not involved in the OFF-pathway-specific signal transmission in cholinergic amacrine cells of the mouse retina.
Collapse
|