1
|
Sol CM, Delgado G, Kannan K, Jaddoe VWV, Trasande L, Santos S. Fetal exposure to phthalates and body mass index from infancy to adolescence. The Generation R study. ENVIRONMENTAL RESEARCH 2025; 274:121253. [PMID: 40023387 DOI: 10.1016/j.envres.2025.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Prenatal exposure to phthalates might influence the development of childhood obesity. Most previous studies used body mass index (BMI) at a specific age instead of BMI development, which might be a better indicator of later health. We aimed to assess the association of prenatal phthalate exposure with longitudinal BMI development from infancy to adolescence. Among 1,379 mother-child pairs from a population-based cohort study, phthalate concentrations were measured in maternal spot urine samples, collected during first, second and third trimester. We estimated age- and sex-adjusted BMI standard deviation scores (SDS) at 6 months and 1, 2, 3, 4, 6, 10 and 13 years. We examined the associations of maternal phthalate urine concentrations during pregnancy with repeated measures of BMI using linear mixed effects models. An interquartile range higher natural log-transformed maternal first trimester high-molecular weight phthalate and di-2-ethylhexylphthalate (DEHP) urine concentrations were associated with a -0.10 (95% confidence interval (CI) -0.15 to -0.04), and -0.09 (95% CI -0.15 to -0.04) lower age- and sex-adjusted BMI at 6 months. An interquartile range higher natural log-transformed maternal first trimester phthalic acid and low-molecular weight phthalate urine concentrations were associated with a 0.11 (95% CI 0.03 to 0.18) and 0.13 (95% CI 0.04 to 0.21) higher age- and sex-adjusted BMI at 13 years old. No significant associations were observed for maternal second and third trimester phthalate urine concentrations with BMI. Thus, higher maternal phthalate metabolites urine concentrations appear to be related to lower BMI at early ages but with higher BMI at later ages.
Collapse
Affiliation(s)
- Chalana M Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Geneviève Delgado
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York City, NY, 10016, USA; Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY12201, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York City, NY, 10016, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA; Department of Population Health, New York University School of Medicine, New York City, NY, USA; New York Wagner School of Public Service, New York City, NY, 10016, USA; New York University Global Institute of Public Health, New York City, NY, 10016, USA
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; EPIUnit ITR, Instituto de Saúde Pública da Universidade do Porto, Universidade do Porto, Rua das Taipas, n(o)135, 4050-600, Porto, Portugal
| |
Collapse
|
2
|
Shin MW, Kim SH. Hidden link between endocrine-disrupting chemicals and pediatric obesity. Clin Exp Pediatr 2025; 68:199-222. [PMID: 39608365 PMCID: PMC11884955 DOI: 10.3345/cep.2024.00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
The increasing prevalence of pediatric obesity has emerged as a significant public health concern. Among various contributing factors, exposure to endocrine-disrupting chemicals (EDCs) has gained recognition for its potential role. EDCs, including bisphenols, phthalates, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, and organochlorines, disrupt hormonal regulation and metabolic processes, contributing to alterations in fat storage, appetite regulation, and insulin sensitivity. This study offers a comprehensive review of the current research linking EDC exposure to pediatric obesity by integrating the findings from experimental and epidemiological studies. It also addresses the complexities of interpreting this evidence in the context of public health, highlighting the urgent need for further research.
Collapse
Affiliation(s)
- Min Won Shin
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
3
|
Rodrigues MDB, da Silva CAM, Chong-Silva DC, Chong-Neto HJ. Pesticides and human health. J Pediatr (Rio J) 2025; 101 Suppl 1:S70-S76. [PMID: 39719018 PMCID: PMC11962559 DOI: 10.1016/j.jped.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVES to review scientific evidence on the impacts of pesticides on child health, addressing prenatal and postnatal exposures, acute and chronic effects. DATA SOURCE narrative literature review, using databases such as PubMed, SciELO and Google Scholar. The inclusion criteria involved studies published between 2000 and 2023 that analyzed the relationship between pesticides and child health, including systematic reviews, cohort studies, case-control studies and clinical trials. The descriptors used were "pesticides," "child health," "prenatal exposure," "environmental health," and "developmental toxicity." DATA SYNTHESIS In this review, an association was observed between exposure to pesticides and the development of neurological and endocrinological diseases, childhood cancer and immunological diseases. CONCLUSIONS Pesticides represent a significant risk to children's health, with impacts ranging from neurological alterations to chronic diseases. It is essential to promote regulatory changes and encourage agricultural practices that are less dependent on chemical substances, in addition to investing in research that explores long-term impacts and mitigation strategies.
Collapse
Affiliation(s)
| | - Carlos Augusto Mello da Silva
- Board Certification in Medical Toxicology - Departamento Científico de Toxicologia e Saúde Ambiental da Sociedade Brasileira de Pediatria, Brazil
| | | | | |
Collapse
|
4
|
Liu SH, Manz KE, Buckley JP, Feuerstahler L. Exposome Burden Scores to Summarize Environmental Chemical Mixtures: Creating a Fair and Common Scale for Cross-study Harmonization, Report-back and Precision Environmental Health. Curr Environ Health Rep 2025; 12:13. [PMID: 39964568 PMCID: PMC11923795 DOI: 10.1007/s40572-024-00467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW Environmental health researchers are increasingly concerned about characterizing exposure to environmental chemical mixtures (co-exposure to multiple chemicals simultaneously). We discuss approaches for quantifying an overall summary score or index that reflects an individual's total exposure burden to components of the mixture. We focus on unsupervised methods, in which the summary score is not computed in relation to a pre-specified health outcome. RECENT FINDINGS Sum-scores and principal components analysis (PCA) are common approaches for quantifying a total exposure burden metric but have several limitations: 1) they require imputation when using exposure biomarkers with high frequency of non-detection, 2) they do not account for exposure heterogeneity, 3) sum-scores assume the same measurement error for all people, while there is no error term inherent to the PCA model as its primary purpose is dimension reduction, and 4) in pooled analyses, both approaches are limited to analyzing the set of exposure variables that are in common across all studies, potentially discarding valuable information. Meanwhile, item response theory (IRT) is a novel and promising alternative to calculate an exposure burden score that addresses the above limitations. It allows for the inclusion of exposure analytes with high frequency of non-detects without the need for imputation. It can account for exposure heterogeneity to calculate fair metrics for all people, through assessment of differential item functioning and mixture IRT. IRT also quantifies measurement errors of the exposure burden score that are individual-specific, such that it appropriately assigns a larger standard error to an individual who has missing data on one or more exposure variables. Lastly, IRT enhances cross-study harmonization by enabling the creation of exposure burden calculators to set a common scale across studies, and allows for the inclusion of all exposure variables within a chemical class, even if they were only measured in a subset of participants. Summarizing total exposure burden, through the creation of fair and informative index scores, is a promising tool for environmental health research as environmental exposures are increasingly used for biomonitoring and clinical recommendations.
Collapse
Affiliation(s)
- Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Katherine E Manz
- Department of Environmental Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
5
|
Cosentini I, Ruggieri S, Colombo P, Bianchi F, Cori L, Casella M, Tavormina EE, Cibella F, Drago G. Influence of prenatal hexachlorobenzene, PCB and selenium levels on growth trajectories in the first year of life: Findings from the NEHO birth cohort. ENVIRONMENT INTERNATIONAL 2025; 195:109225. [PMID: 39721569 DOI: 10.1016/j.envint.2024.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Prenatal exposure to endocrine-disrupting chemicals (EDCs) may impact postnatal growth trajectories, increasing the risk of various diseases later in life. This issue is of particular concern in industrially contaminated areas, where environmental matrices contain mixtures of pollutants. This study aimed to evaluate the associations between cord serum concentrations of organochlorine pollutants (hexachlorobenzene-HCB and polychlorinated biphenyls-PCBs) and essential elements (EEs), and weight growth trajectories during the first year of life. We analyzed data from 237 infants enrolled in the Neonatal Environment and Health Outcomes (NEHO) cohort. Using the Group-Based Multivariate Trajectory modeling approach, we identified three distinct growth trajectories from birth to 12 months, classified as "Higher," "Normal," and "Lower." Multinomial regression models were then applied to the whole sample and stratified by sex to assess the associations between individual exposures and the identified child growth trajectories. HCB exposure was associated with an increased risk of reduced growth during the first year of life in both the overall sample and among males [higher vs normal: ORMale = 0.33 (95 % CIMale:0.12;0.87); lower vs normal: ORMale = 2.17 (95 % CIMale:0.94;5.00)]. Conversely, PCB-180 exposure was linked to higher growth only in females [higher vs normal: ORFemale = 24.10 (95 % CIFemale:1.33;438.24)]. Elevated levels of selenium in cord serum were negatively associated with excessive growth [higher vs normal: OROverall = 0.50 (95 % CIOverall: 0.26;0.97)]. These findings suggest sex-specific effects on the growth profile during the first year of life, with different chemical exposures contributing to different outcomes.
Collapse
Affiliation(s)
- Ilaria Cosentini
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy.
| | - Silvia Ruggieri
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Paolo Colombo
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Fabrizio Bianchi
- National Research Council of Italy, Institute of Clinical Physiology, Pisa, Italy
| | - Liliana Cori
- National Research Council of Italy, Institute of Clinical Physiology, Pisa, Italy
| | - Melania Casella
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Elisa Eleonora Tavormina
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Fabio Cibella
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Gaspare Drago
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| |
Collapse
|
6
|
Mohanto NC, Ito Y, Kato S, Kaneko K, Sugiura-Ogasawara M, Saitoh S, Kamijima M. Associations of 1.5- and 3-year phthalate exposure levels with early adiposity rebound and overweight/obesity in Japanese children: An adjunct study of the Japan Environment and Children's Study. ENVIRONMENTAL RESEARCH 2024; 263:120165. [PMID: 39419254 DOI: 10.1016/j.envres.2024.120165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The relationship between early childhood phthalate exposure and early adiposity rebound (EAR) is unclear. This study aimed to investigate the association between 1.5- and 3-year phthalate exposure and EAR and overweight/obesity in 7.5-year-old Japanese children. A total of 452 mother-child pairs were enrolled from the Aichi Regional Cohort of the Japan Environment and Children's Study. The children were followed up at birth and at 1.5, 2, 3, 4, 5, 6, and 7.5 years of age for physical examination. Human biomonitoring of 16 urinary metabolites of eight phthalates was performed at 1.5 and 3 years of age. Latent class mixed models, binary logistic regression, and quantile g-computation were performed to identify body mass index (BMI) trajectories and investigate the relationships of single or mixed phthalate exposure with EAR and overweight/obesity. A one-unit increase in log10-transformed 3-year-old Σdi(2-ethylhexyl) phthalate (ΣDEHP) exposure levels was significantly associated with 6-year-old BMI in girls. The 1.5-year mono-iso-butyl phthalate and 3-year Σdi-isodecyl phthalate exposure levels were significantly associated with the repeated measures of longitudinal BMIs in girls. Single phthalate exposure showed null associations with EAR or overweight/obesity in the 7.5-year-old children. Σdi-isononyl phthalate, ΣDEHP, and mono-n-butyl phthalate exhibited the highest proportion of partial positive weights of being in the EAR trajectory after confounder adjustment. Phthalate mixture exposure in 1.5- and 3-year-old children was not significantly associated with EAR. Early childhood phthalate exposure was not related to EAR or overweight/obesity in 7.5-year-old Japanese children. However, few phthalates were positively associated with longitudinal BMIs in girls.
Collapse
Affiliation(s)
- Nayan Chandra Mohanto
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Sayaka Kato
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kayo Kaneko
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
7
|
Marchiandi J, Dagnino S, Zander-Fox D, Green MP, Clarke BO. Characterization of Chemical Exposome in A Paired Human Preconception Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20352-20365. [PMID: 39508786 DOI: 10.1021/acs.est.4c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Parental preconception exposure to synthetic chemicals may have critical influences on fertility and reproduction. Here, we present a robust LC-MS/MS method covering up to 95 diverse xenobiotics in human urine, serum, seminal and follicular fluids to support exposome-wide assessment in reproductive health outcomes. Extraction recoveries of validated analytes ranged from 62% to 137% and limits of quantification from 0.01 to 6.0 ng/mL in all biofluids. We applied the validated method to a preconception cohort of Australian couples (n = 30) receiving fertility treatment. In total, 36 and 38 xenobiotics were detected across the paired biofluids of males and females, respectively, including PFAS, parabens, organic UV-filters, plastic additives, antimicrobials, and other industrial chemicals. Results showed 39% of analytes in males and 37% in females were equally detected in paired serum, urine, and reproductive fluids. The first detection of the sunscreen ingredient avobenzone and the industrial chemical 4-nitrophenol in follicular and seminal fluids suggests they can cross both blood-follicle/testis barriers, indicating potential risks for fertility. Further, the blood-follicle transfer of perfluorobutanoic acid, PFOA, PFHxS, PFOS, and oxybenzone corroborate that serum concentrations can be reliable proxies for assessing exposure within the ovarian microenvironment. In conclusion, we observed significant preconception exposure to multiple endocrine disruptors in couples and identified potential xenobiotics relevant to male and female fertility impairments.
Collapse
Affiliation(s)
- Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Sonia Dagnino
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W12 7TA London, U.K
| | - Deirdre Zander-Fox
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, Melbourne, Victoria 3168, Australia
| | - Mark P Green
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné MN, Picard-Hagen N, Flores-Sanabria MJ, Jammes H, Philippat C, Couturier-Tarrade A. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates. TOXICS 2024; 12:710. [PMID: 39453131 PMCID: PMC11511413 DOI: 10.3390/toxics12100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Maria-José Flores-Sanabria
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
9
|
Fairweather D, Beetler DJ, McCabe EJ, Lieberman SM. Mechanisms underlying sex differences in autoimmunity. J Clin Invest 2024; 134:e180076. [PMID: 39286970 PMCID: PMC11405048 DOI: 10.1172/jci180076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Autoimmune diseases are a leading cause of disability worldwide. Most autoimmune diseases occur more often in women than men, with rheumatic autoimmune diseases being among those most highly expressed in women. Several key factors, identified mainly in animal models and cell culture experiments, are important in increasing autoimmune disease in females. These include sex hormones, immune genes including those found on the X chromosome, sex-specific epigenetic effects on genes by estrogen and the environment, and regulation of genes and messenger RNA by microRNAs found in extracellular vesicles. Evidence is also emerging that viruses as well as drugs or toxins that damage mitochondria may contribute to increased levels of autoantibodies against nuclear and mitochondrial antigens, which are common in many autoimmune diseases. The purpose of this Review is to summarize our current understanding of mechanisms that may determine sex differences in autoimmune disease.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Scott M Lieberman
- Division of Rheumatology, Allergy, and Immunology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Dugandzic R, Konstantelos N, Yu Y, Lavigne E, Srugo S, Lang JJ, Larsen K, Pollock T, Villeneuve P, Thomson EM, MacPherson M, Dales R, Cakmak S. Associations between paediatric obesity, chemical mixtures and environmental factors, in a national cross-sectional study of Canadian children. Pediatr Obes 2024; 19:e13117. [PMID: 38872449 DOI: 10.1111/ijpo.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Whilst single chemical exposures are suspected to be obesogenic, the combined role of chemical mixtures in paediatric obesity is not well understood. OBJECTIVES We aimed to evaluate the potential associations between chemical mixtures and obesity in a population-based sample of Canadian children. METHODS We ascertained biomonitoring and health data for children aged 3-11 from the cross-sectional Canadian Health Measures Survey from 2007 to 2019. Several chemicals of interest were measured in blood or urine and paediatric obesity was defined based on measured anthropometrics. Using quantile-based G computational analysis, we quantified the effects of three chemical mixtures selected a priori. Models were adjusted for sociodemographic and environmental factors identified through a directed acyclic graph. Results are presented through adjusted relative risks (RR) with 95% confidence intervals (95% CI). RESULTS We included 9147 children. Of these, 24.1% were overweight or obese. Exposure to the mixture of bisphenol A, acrylamide, glycidamide, metals, parabens and arsenic increased the risk of childhood overweight or obesity by 45% (95% CI 1.09, 1.93), obesity by 109% (95% CI 1.27, 3.42) and central obesity by 82% (95% CI 1.30, 2.56). CONCLUSIONS Our findings support the role of early childhood chemical exposures in paediatric obesity and the potential combined effects of chemicals.
Collapse
Affiliation(s)
- Rose Dugandzic
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
| | - Natalia Konstantelos
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Yamei Yu
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sebastian Srugo
- Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Justin J Lang
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario, Canada
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
- Department of Geography and Environmental Studies, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Paul Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Robert Dales
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabit Cakmak
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Lv Y, Jia Z, Wang Y, Huang Y, Li C, Chen X, Xia W, Liu H, Xu S, Li Y. Prenatal EDC exposure, DNA Methylation, and early childhood growth: A prospective birth cohort study. ENVIRONMENT INTERNATIONAL 2024; 190:108872. [PMID: 38986426 DOI: 10.1016/j.envint.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals (EDCs) has been found to be associated with growth and developmental abnormalities in children. However, the potential mechanisms by which exposure to EDCs during pregnancy increases the risk of obesity in children remain unclear. OBJECTIVE We aimed to explore associations between prenatal EDC exposure and the body mass index (BMI) of children at age two, and to further explore the potential impact of DNA methylation (DNAm). METHOD This study included 285 mother-child pairs from a birth cohort conducted in Wuhan, China. The BMI of each child was assessed at around 24 months of age. The concentrations of sixteen EDCs at the 1st, 2nd, and 3rd trimesters were measured using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The research utilized general linear models, weighted quantile sum regression, and Bayesian Kernel Machine Regression to assess the association between prenatal EDC exposure and childhood BMI z-scores (BMIz). Cord blood DNAm was measured using the Human Methylation EPIC BeadChip array. An epigenome-wide DNAm association study related to BMIz was performed using robust linear models. Mediation analysis was then applied to explore potential mediators of DNAm. RESULTS Urinary concentrations of seven EDCs were positively associated with BMIz in the 1st trimester, which remained significant in the WQS model. A total of 641 differential DNAm positions were associated with elevated BMIz. Twelve CpG positions (annotated to DUXA, TMEM132C, SEC13, ID4, GRM4, C2CD2, PRAC1&PRAC2, TSPAN6 and DNAH10) mediated the associations between urine BP-3/BPS/MEP/TCS and elevated BMIz (P < 0.05). CONCLUSION Our results revealed that prenatal exposure to EDCs was associated with a higher risk of childhood obesity, with specific DNAm acting as a partial mediator.
Collapse
Affiliation(s)
- Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengxi Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
12
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Rousselle L, Parent AS. Impact of antenatal exposure to a mixture of persistent organic pollutants on intellectual development. Int J Hyg Environ Health 2024; 261:114422. [PMID: 38981323 DOI: 10.1016/j.ijheh.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Strong experimental evidence exists that several endocrine disrupting chemicals (EDCs) have neurobehavioral toxicity. However, evidence of associations between prenatal exposure and child's cognitive development is inconsistent. Moreover, toxicants are generally analyzed one by one without considering aggregate effects. We examined here the impact of a prenatal exposure to a mixture of persistent organic pollutants (POPs) on intellectual abilities in preschool children, and compared their effects to those described in the literature. METHODS Sixty-two children were included in a longitudinal cohort. Four organochlorine pesticides, four polychlorinated biphenyls (PCBs) and seven perfluorinated compounds (PFCs) were measured in cord blood. Intellectual abilities were assessed at 6 years of age using the Wechsler Preschool and Primary Scale of Intelligence 4th ed. (WPPSI-IV). We examined the associations between a mixture of POPs and cognitive performances using principal components approach (PCA) and weighted quantile sum (WQS) regression taking sex difference into account. RESULTS No negative correlation was found when analyses were performed on boys and girls together. In sex-stratified analyses, lower scores in full scale intelligence quotient (FSIQ) and fluid reasoning index (FRI) were observed in boys most exposed to a mixture of POPs. Increase of the WQS index was also associated with lower verbal comprehension index (VCI) scores in girls only. No other negative correlation was found using both WQS and PCA models. CONCLUSION Our study suggests deleterious associations between antenatal exposure to a mixture of POPs and sex-specific cognitive level, clarifying some trends described in the literature.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Fanny Brevers
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Laurence Rousselle
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium
| |
Collapse
|
13
|
Chen H, Zhang W, Sun X, Zhou Y, Li J, Zhao H, Xia W, Xu S, Cai Z, Li Y. Prenatal exposure to multiple environmental chemicals and birth size. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:629-636. [PMID: 37422589 DOI: 10.1038/s41370-023-00568-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Epidemiological studies addressing the combined effects of exposure to chemical mixtures at different stages of pregnancy on birth size are scarce. OBJECTIVE To evaluate the association between prenatal exposure to chemical mixtures and birth size. METHODS Our previous study repeatedly measured the urinary concentrations of 34 chemical substances among 743 pregnant women and identified three distinct clusters of exposed population and six dominant principal components of exposed chemicals in each trimester. In this study, we assessed the associations of these exposure profiles with birth weight, birth length, and ponderal index using multivariable linear regression. RESULTS We found that compared with women in cluster 1 (lower urinary chemical concentrations), women in cluster 2 (higher urinary concentrations of metals, benzothiazole, benzotriazole, and some phenols), and women in cluster 3 (higher urinary concentrations of phthalates) were more likely to give birth to children with higher birth length [0.23 cm (95% CI: -0.03, 0.49); 0.29 cm (95%CI: 0.03, 0.54), respectively]. This association was observed only in 1st trimester. In addition, prenatal exposure to PC3 (higher benzophenones loading) was associated with reduced birth length across pregnancy [-0.07 cm (95% CI: -0.18, 0.03) in 1st and 2nd trimester; -0.13 cm (95% CI: -0.24, -0.03) in 3rd trimester]. Exposure to PC6 (higher thallium and BPA loading in 2nd trimester) was associated with increased birth length [0.15 cm (95% CI: 0.05, 0.26)]. Compared with other outcomes, associations of both clusters and PCs with birth length were stronger, and these associations were more pronounced in boys. IMPACT STATEMENT Exposure to multiple chemicals simultaneously, the actual exposure situation of pregnant women, was associated with birth size, indicating that chemical mixtures should be taken more seriously when studying the health effects of pollutants.
Collapse
Affiliation(s)
- Huan Chen
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, People's Republic of China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, People's Republic of China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, People's Republic of China
| | - Yuanyuan Li
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
15
|
Chen L, Qin Y, Zhang Y, Song X, Wang R, Jiang J, Liu J, Guo T, Yuan W, Song Z, Dong Y, Song Y, Ma J. Association of the external environmental exposome and obesity: A comprehensive nationwide study in 2019 among Chinese children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172233. [PMID: 38615759 DOI: 10.1016/j.scitotenv.2024.172233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Children and adolescents are particularly vulnerable to the effects of various environmental factors, which could disrupt growth processes and potentially lead to obesity. Currently, comprehensive and systematic assessments of these environmental exposures during developmental periods are lacking. Therefore, this study aims to evaluate the association between external environmental exposures and the incidence of obesity in children and adolescents. METHODS Data was collected from the 2019 Chinese National Survey on Students' Constitution and Health, including 214,659 Han children aged 7 to 19. Body Mass Index (BMI) and BMI-for-age z-score (zBMI) were the metrics used to assess overweight and obesity prevalence. The study assessed 18 environmental factors, including air pollutants, natural space, land cover, meteorological conditions, built environment, road conditions, and artificial light at night. Exposome-wide association study (ExWAS) to analyze individual exposures' associations with health outcomes, and Weighted Quantile Sum (WQS) to assess cumulative exposure effects. RESULTS Among the children and adolescents, there were 24.2 % participants classified as overweight or obesity. Notably, 17 out of 18 environmental factors exhibited significant associations with zBMI and overweight/obesity. Seven air pollutants, road conditions, and built density were positively correlated with higher zBMI and obesity risk, while NDVI, forests, and meteorological factors showed negative correlations. Co-exposure analysis highlighted that SO2, ALAN, PM10, and trunk road density significantly increased zBMI, whereas rainfall, grassland, and forest exposure reduced it. Theoretically reduction in the number and prevalence of cases was calculated, indicating potential reductions in prevalence of up to 4.51 % for positive exposures and 5.09 % for negative exposures. Notably, substantial reductions were observed in regions with high pollution levels. CONCLUSION This large-scale investigation, encompassing various environmental exposures in schools, highlights the significant impact of air pollution, road characteristics, rainfall, and forest coverage on childhood obesity.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yang Qin
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - RuoLin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Zhiying Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| |
Collapse
|
16
|
Svensson K, Gennings C, Lindh C, Kiviranta H, Rantakokko P, Wikström S, Bornehag CG. EDC mixtures during pregnancy and body fat at 7 years of age in a Swedish cohort, the SELMA study. ENVIRONMENTAL RESEARCH 2024; 248:118293. [PMID: 38281561 DOI: 10.1016/j.envres.2024.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Some endocrine disrupting chemicals (EDC), are "obesogens" and have been associated with overweight and obesity in children. Daily exposure to different classes of EDCs demands for research with mixtures approach. OBJECTIVES This study evaluates the association, considering sex-specific effects, between prenatal exposure to EDC mixture and children's body fat at seven years of age. METHODS A total of 26 EDCs were assessed in prenatal urine and serum samples from first trimester in pregnancy from 737 mother-child pairs participating in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study. An indicator for children's "overall body fat" was calculated, using principal component analysis (PCA), based on BMI, percent body fat, waist, and skinfolds measured at seven years of age. Weighted quantile sum (WQS) regression was used to assess associations between EDC mixture and children's body fat. RESULTS Principal component (PC1) represented 83.6 % of the variance, suitable as indicator for children's "overall body fat", with positive loadings of 0.40-0.42 for each body fat measure. A significant interaction term, WQS*sex, confirmed associations in the opposite direction for boys and girls. Higher prenatal exposure to EDC mixture was borderline significant with more "overall body fat" for boys (Mean β = 0.20; 95 % CI: -0.13, 0.53) and less for girls (Mean β = -0.23; 95 % CI: -0.58, 0.13). Also, higher prenatal exposure to EDC mixture was borderline significant with more percent body fat (standardized score) for boys (Mean β = 0.09; 95 % CI: -0.04, 0.21) and less for girls (Mean β = -0.10 (-0.26, 0.05). The chemicals of concern included bisphenols, phthalates, PFAS, PAH, and pesticides with different patterns for boys and girls. DISCUSSION Borderline significant associations were found between prenatal exposure to a mixture of EDCs and children's body fat. The associations in opposite directions suggests that prenatal exposure to EDCs may present sex-specific effects on children's body fat.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden; Centre for Clinical Research, County Council of Värmland, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Ouidir M, Cissé AH, Botton J, Lyon-Caen S, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Slama R, Heude B, Philippat C. Fetal and Infancy Exposure to Phenols, Parabens, and Phthalates and Anthropometric Measurements up to 36 Months, in the Longitudinal SEPAGES Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57002. [PMID: 38728218 PMCID: PMC11086749 DOI: 10.1289/ehp13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.
Collapse
Affiliation(s)
- Marion Ouidir
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | - Aminata H. Cissé
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Jérémie Botton
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | | | | | | | - Sam Bayat
- Department of Pulmonology and Physiology, Grenoble University Hospital, La Tronche, France
- Synchrotron Radiation for Biomedicine Laboratory (STROBE), Inserm UA07, Grenoble Alpes University, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
18
|
Tain YL, Hsu CN. The Impact of the Aryl Hydrocarbon Receptor on Antenatal Chemical Exposure-Induced Cardiovascular-Kidney-Metabolic Programming. Int J Mol Sci 2024; 25:4599. [PMID: 38731818 PMCID: PMC11083012 DOI: 10.3390/ijms25094599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
19
|
Rahimlou M, Mousavi MA, Chiti H, Peyda M, Mousavi SN. Association of maternal exposure to endocrine disruptor chemicals with cardio-metabolic risk factors in children during childhood: a systematic review and meta-analysis of cohort studies. Diabetol Metab Syndr 2024; 16:82. [PMID: 38576015 PMCID: PMC10993545 DOI: 10.1186/s13098-024-01320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND In the present systematic review and meta-analysis, the association of maternal exposure to the endocrine disrupting chemicals (EDCs) with cardio-metabolic risk factors in children during childhood for the first time. METHOD The PubMed, Scopus, EMBASE, and Web of Science databases were systematically searched, up to Feb 2023. In total 30 cohort studies had our inclusion criteria. A random-effects model was used for the variables that had considerable heterogeneity between studies. The Newcastle-Ottawa Scale (NOS) tool was used to classify the quality score of studies. All statistical analyses were conducted using Stata 14 and P-value < 0.05 considered as a significant level. RESULTS In the meta-analysis, maternal exposure to the EDCs was weakly associated with higher SBP (Fisher_Z: 0.06, CI: 0.04, 0.08), BMI (Fisher_Z: 0.07, CI: 0.06, 0.08), and WC (Fisher_Z: 0.06, CI: 0.03, 0.08) z-scores in children. A significant linear association was found between maternal exposure to the bisphenol-A and pesticides with BMI and WC z-score in children (p < 0.001). Subgroup analysis showed significant linear association of BPA and pesticides, in the urine samples of mothers at the first trimester of pregnancy, with BMI and WC z-score in children from 2-8 years (p < 0.05). CONCLUSION Prenatal exposure to the EDCs in the uterine period could increase the risk of obesity in children. Maternal exposure to bisphenol-A and pesticides showed the strongest association with the obesity, especially visceral form, in the next generation.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir Ali Mousavi
- Department of General Surgery, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mazyar Peyda
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Honarestan St., Janbazan St., Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
20
|
Perez-Diaz C, Uriz-Martínez M, Ortega-Rico C, Leno-Duran E, Barrios-Rodríguez R, Salcedo-Bellido I, Arrebola JP, Requena P. Phthalate exposure and risk of metabolic syndrome components: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122714. [PMID: 37844863 DOI: 10.1016/j.envpol.2023.122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Metabolic syndrome is a cluster of conditions that increase the risk of cardiovascular disease, i.e. obesity, insulin resistance, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-c) levels and arterial hypertension. Phthalates are environmental chemicals which might influence the risk of the aforementioned disturbances, although the evidence is still controversial. The objective of this work was to synthesize the evidence on the association between human phthalate exposure and metabolic syndrome or any of its components. In this systematic review, the PRISMA guidelines were followed and the literature was search in PubMed, Web of Science and Scopus. Longitudinal and cross-sectional studies were included, the later only if a subclinical marker of disease was evaluated. The methodological quality was assessed with the Newcastle Ottawa Scale and a checklist for Analytical Cross-Sectional Studies developed in the Joanna Briggs Institute. A total of 58 articles were identified that showed high heterogenicity in the specific phthalates assessed, time-window of exposure and duration of follow-up. The quality of the studies was evaluated as high (n = 46, score >7 points) or medium (n = 12, score 4-6). The most frequently studied phthalates were DEHP-MEHP, MBzP and MEP. The evidence revealed a positive association between prenatal (in utero) exposure to most phthalates and markers of obesity in the offspring, but contradictory results when postnatal exposure and obesity were assessed. Moreover, postnatal phthalate exposure showed positive and very consistent associations with markers of diabetes and, to a lesser extent, with triglyceride levels. However, fewer evidence and contradictory results were found for HDL-c levels and markers of hypertension. The suggested mechanisms for these metabolic effects include transcription factor PPAR activation, antagonism of thyroid hormone function, antiandrogenic effects, oxidative stress and inflammation, and epigenetic changes. Nevertheless, as the inconsistency of some results could be related to differences in the study design, future research should aim to standardise the exposure assessment.
Collapse
Affiliation(s)
- Celia Perez-Diaz
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain
| | - Maialen Uriz-Martínez
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain
| | - Carmen Ortega-Rico
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain
| | - Ester Leno-Duran
- Universidad de Granada. Department of Obstetrics and Gynaecology, Medicine School. Parque Tecnologico de La Salud, Av. de La Investigación, 11, 18016, Granada, Spain.
| | - Rocío Barrios-Rodríguez
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Juan Pedro Arrebola
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Pilar Requena
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| |
Collapse
|
21
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
22
|
Saikia UK, Kumar A. Endocrine disruptors in the pathogenesis of metabolic syndrome. METABOLIC SYNDROME 2024:235-248. [DOI: 10.1016/b978-0-323-85732-1.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Llopis M, Ventura PS, Brachowicz N, Sangüesa J, Murcia M, Lopez-Espinosa MJ, García-Baquero G, Lertxundi A, Vrijheid M, Casas M, Petrone P. Sociodemographic, lifestyle, and environmental determinants of vitamin D levels in pregnant women in Spain. ENVIRONMENT INTERNATIONAL 2023; 182:108293. [PMID: 37984291 DOI: 10.1016/j.envint.2023.108293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Vitamin D deficiency (<20 ng/mL circulating levels) is a worldwide public health concern and pregnant women are especially vulnerable, affecting the health of the mother and the fetus. This study aims to evaluate the sociodemographic, lifestyle, and environmental determinants associated with circulating vitamin D levels in Spanish pregnant women. METHODS We used data from the Spanish INMA ("Infancia y Medio Ambiente") prospective birth cohort study from the regions of Gipuzkoa, Sabadell, and Valencia. 25-hydroxyvitamin D3 (25(OH)D3) was measured in plasma collected in the first trimester of pregnancy. Information on 108 determinants was gathered: 13 sociodemographic, 48 lifestyle including diet, smoking and physical activity, and 47 environmental variables, representing the urban and the chemical exposome. Association of the determinants with maternal 25(OH)D3 levels was estimated in single- and multiple-exposure models. Machine learning techniques were used to predict 25(OH)D3 levels below sufficiency (30 ng/mL). RESULTS The prevalence of < 30 ng/mL 25(OH)D3 levels was 51 %. In the single-exposure analysis, older age, higher socioeconomic status, taking vitamin D, B12 and other sup*plementation, and higher humidity, atmospheric pressure and UV rays were associated with higher levels of 25(OH)D3 (IQR increase of age: 1.2 [95 % CI: 0.6, 1.8] ng/mL 25(OH)D3). In the multiple-exposures model, most of these associations remained and others were revealed. Higher body mass index, PM2.5 and high deprivation area were associated with lower 25(OH)D3 levels (i.e., Quartile 4 of PM2.5 vs Q1: -3.6 [95 % CI: -5.6, -1.5] ng/mL of 25(OH)D3). History of allergy and asthma, being multiparous, intake of vegetable fat, vitamin B6, alcohol consumption and molybdenum were associated with higher levels. The machine learning classification model confirmed some of these associations. CONCLUSIONS This comprehensive study shows that younger age, higher body mass index, higher deprived areas, higher air pollution and lower UV rays and humidity are associated with lower 25(OH)D3 levels.
Collapse
Affiliation(s)
- Maria Llopis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain
| | - Paula Sol Ventura
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | | | - Júlia Sangüesa
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mario Murcia
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Servei de Planificació i Avaluació de Polítiques de Salut, Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Gonzalo García-Baquero
- Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto s/n, Salamanca, Spain; Health Research Institute BIODONOSTIA, Donostia, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain; Health Research Institute BIODONOSTIA, Donostia, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | | |
Collapse
|
24
|
Montazeri P, Güil-Oumrait N, Marquez S, Cirugeda L, Beneito A, Guxens M, Lertxundi A, Lopez-Espinosa MJ, Santa-Marina L, Sunyer J, Casas M, Vrijheid M. Prenatal Exposure to Multiple Endocrine-Disrupting Chemicals and Childhood BMI Trajectories in the INMA Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107006. [PMID: 37850789 PMCID: PMC10583704 DOI: 10.1289/ehp11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Prenatal exposure to endocrine-disrupting chemicals (EDCs) may disrupt normal fetal and postnatal growth. Studies have mainly focused on individual aspects of growth at specific time points using single chemical exposure models. However, humans are exposed to multiple EDCs simultaneously, and growth is a dynamic process. OBJECTIVE The objective of this study was to evaluate the associations between prenatal exposure to EDCs and children's body mass index (BMI) growth trajectories using single exposure and mixture modeling approaches. METHODS Using data from the INfancia y Medio Ambiente (INMA) Spanish birth cohort (n = 1,911 ), prenatal exposure to persistent chemicals [hexachlorobenzene (HCB), 4-4'-dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCB-138, -150, and -180), 4 perfluoroalkyl substances (PFAS)] and nonpersistent chemicals (8 phthalate metabolites, 7 phenols) was assessed using blood and spot urine concentrations. BMI growth trajectories were calculated from birth to 9 years of age using latent class growth analysis. Multinomial regression was used to assess associations for single exposures, and Bayesian weighted quantile sum (BWQS) regression was used to evaluate the EDC mixture's association with child growth trajectories. RESULTS In single exposure models exposure to HCB, DDE, PCBs, and perfluorononanoic acid (PFNA) were associated with increased risk of belonging to a trajectory of lower birth size followed by accelerated BMI gain by 19%-32%, compared with a trajectory of average birth size and subsequent slower BMI gain [e.g., relative risk ratio (RRR) per doubling in DDE concentration = 1.19 (95% CI: 1.05, 1.35); RRR for PFNA = 1.32 (95% CI: 1.05, 1.66)]. HCB and DDE exposure were also associated with higher probability of belonging to a trajectory of higher birth size and accelerated BMI gain. Results from the BWQS regression showed the mixture was positively associated with increased odds of belonging to a BMI trajectory of lower birth size and accelerated BMI gain (odds ratio per 1-quantile increase of the mixture = 1.70 ; credible interval: 1.03, 2.61), with HCB, DDE, and PCBs contributing the most. DISCUSSION This study provides evidence that prenatal EDC exposure, particularly persistent EDCs, may lead to BMI trajectories in childhood characterized by accelerated BMI gain. Given that accelerated growth is linked to a higher disease risk in later life, continued research is important. https://doi.org/10.1289/EHP11103.
Collapse
Affiliation(s)
- Parisa Montazeri
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
| | - Nuria Güil-Oumrait
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
| | - Sandra Marquez
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
| | - Lourdes Cirugeda
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Mònica Guxens
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Biodonostia, Environmental Epidemiology and Child Development Group, Donostia-San Sebastian, Spain
- Preventive Medicine and Public Health Department, University of the Basque Country, Bizkaia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Biodonostia, Environmental Epidemiology and Child Development Group, Donostia-San Sebastian, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Hospital de Mar Medical Research Institute, Barcelona, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
25
|
Li BA, Li BM, Bao Z, Li Q, Xing M, Li B. Dichlorodiphenyltrichloroethane for Malaria and Agricultural Uses and Its Impacts on Human Health. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:45. [PMID: 37730942 DOI: 10.1007/s00128-023-03789-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/12/2023] [Indexed: 09/22/2023]
Abstract
Pesticides are widely used in agriculture and disease control, and dichlorodiphenyltrichloroethane (DDT) is one of the most used pesticides in human history. Besides its significant contributions in pest control in agriculture, DDT was credited as having saved millions of human lives for controlling malaria and other deadly insect-transmitted diseases. Even today, the use of DDT in some countries for malaria control cannot be replaced without endangering people who live there. The recent COVID-19 pandemic has changed our lives and reminded us of the challenges in dealing with infectious diseases, especially deadly ones including malaria. However, DDT and its metabolites are stable, persist long, are found in almost every corner of the world, and their persistent effects on humans, animals, and the environment must be seriously considered. This review will focus on the history of DDT use for agriculture and malaria control, the pathways for the spread of DDT, benefits and risks of DDT use, DDT exposure to animals, humans, and the environment, and the associated human health risks. These knowledge and findings of DDT will benefit the selection and management of pesticides worldwide.
Collapse
Affiliation(s)
- Benjamin A Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
- Morgantown High School, Morgantown, WV, USA
| | | | - Zhenghong Bao
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Qingyang Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, MB, Winnipeg, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA.
| |
Collapse
|
26
|
Svensson K, Gennings C, Lindh C, Kiviranta H, Rantakokko P, Wikström S, Bornehag CG. Prenatal exposures to mixtures of endocrine disrupting chemicals and sex-specific associations with children's BMI and overweight at 5.5 years of age in the SELMA study. ENVIRONMENT INTERNATIONAL 2023; 179:108176. [PMID: 37672941 PMCID: PMC12011282 DOI: 10.1016/j.envint.2023.108176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Prenatal exposure to mixtures of endocrine disrupting chemicals (EDC) has the potential to disrupt human metabolism. Prenatal periods are especially sensitive as many developmental processes are regulated by hormones. Prenatal exposure to EDCs has inconsistently been associated with children's body mass index (BMI) and obesity. The objective of this study was to investigate if prenatal exposure to a mixture of EDCs was associated with children's BMI and overweight (ISO-BMI ≥ 25) at 5.5 years of age, and if there were sex-specific effects. METHODS A total of 1,105 mother-child pairs with complete data on prenatal EDCs concentrations (e.g., phthalates, non-phthalate plasticizers, phenols, PAH, pesticides, PFAS, organochlorine pesticides, and PCBs), children's measured height and weight, and selected covariates in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study were included in this analysis. The mixture effect of EDCs with children's BMI and overweight was assessed using WQS regression with 100 repeated holdouts. A positively associated WQS index with higher BMI and odds of overweight was derived. Models with interaction term and stratified weights by sex was applied in order to evaluate sex-specific associations. RESULTS A significant WQS*sex interaction term was identified and associations for boys and girls were in opposite directions. Higher prenatal exposure to a mixture of EDCs was associated with lower BMI (Mean β = -0.19, 95%CI: -0.40, 0.01) and lower odds of overweight (Mean OR = 0.72, 95%CI: 0.48, 1.04) among girls with borderline significance. However, the association among boys did not reach statistical significance. Among girls, the possible chemicals of concern were MEP, 2-OHPH, BPF, BPS, DPP and PFNA. CONCLUSION Prenatal exposure to a mixture of EDCs was associated with lower BMI and overweight among girls, and non-significant associations among boys. Chemicals of concern for girls included phthalates, non-phthalate plasticizers, bisphenols, PAHs, and PFAS.
Collapse
Affiliation(s)
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sverre Wikström
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Centre for Clinical Research and Education, County Council of Värmland, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Rouxel E, Costet N, Monfort C, Audouze K, Cirugeda L, Gaudreau E, Grimalt JO, Ibarluzea J, Lainé F, Llop S, Lopez-Espinosa MJ, Rouget F, Santa-Marina L, Vrijheid M, Chevrier C, Casas M, Warembourg C. Prenatal exposure to multiple persistent organic pollutants in association with adiposity markers and blood pressure in preadolescents. ENVIRONMENT INTERNATIONAL 2023; 178:108056. [PMID: 37379720 DOI: 10.1016/j.envint.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Several studies have reported that prenatal exposure to some persistent organic pollutants (POPs) is associated with higher adiposity in childhood. Few studies have assessed whether this finding persists into adolescence, and few have considered exposure to POPs as a mixture. This study aims to assess the association between prenatal exposure to multiple POPs and adiposity markers and blood pressure in preadolescents. METHODS This study included 1667 mother-child pairs enrolled in the PELAGIE (France) and the INMA (Spain) mother-child cohorts. Three polychlorobiphenyls (PCB 138, 153 and 180, treated as a sum of PCBs) and three organochlorine pesticides (p,p'-Dichlorodiphenyldichloroethylene [p,p'-DDE], β-hexachlorocyclohexane [β-HCH], and hexachlorobenzene [HCB]) were assessed in maternal or cord serum. Body mass index z-score (zBMI), abdominal obesity (waist-to-height ratio > 0.5), percentage of fat mass, and blood pressure (mmHg) were measured at around 12 years of age. Single-exposure associations were studied using linear or logistic regressions, and the POP mixture effect was evaluated using quantile G-computation (qgComp) and Bayesian Kernel Machine Regression (BKMR). All models were adjusted for potential confounders and performed for boys and girls together and separately. RESULTS Prenatal exposure to the POP mixture was associated with higher zBMI (beta [95 % CI] of the qgComp = 0.15 [0.07; 0.24]) and percentage of fat mass (0.83 [0.31; 1.35]), with no evidence of sex-specific association. These mixture effects were also statistically significant using BKMR. These associations were driven mainly by exposure to HCB and, to a lesser extent, to β-HCH. In addition, the single-exposure models showed an association between β-HCH and p,p'-DDE and higher systolic blood pressure, especially in girls (p,p'-DDE for girls = 1.00 [0.15; 1.86]). No significant associations were found for PCBs. CONCLUSION This study suggests that prenatal exposure to POPs, particularly organochlorine pesticides, remains associated with unfavorable cardiometabolic health up to the age of 12.
Collapse
Affiliation(s)
- Elke Rouxel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Christine Monfort
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMR S-1124, 75006 Paris, France
| | - Lourdes Cirugeda
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Canada
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Jesus Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014 Donostia-San Sebastián, Spain; Faculty of Psychology, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018 Donostia - San Sebastián, Spain
| | - Fabrice Lainé
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000 Rennes, France
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain
| | - Florence Rouget
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014 Donostia-San Sebastián, Spain; Ministry of Health of the Basque Government, SubDirectorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
28
|
Mariana M, Castelo-Branco M, Soares AM, Cairrao E. Phthalates' exposure leads to an increasing concern on cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131680. [PMID: 37269565 DOI: 10.1016/j.jhazmat.2023.131680] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Being an essential component in the plastics industry, phthalates are ubiquitous in the environment and in everyday life. They are considered environmental contaminants that have been classified as endocrine-disrupting compounds. Despite di-2-ethylhexyl phthalate (DEHP) being the most common plasticizer and the most studied to date, there are many others that, in addition to being widely used in the plastic, are also applied in the medical and pharmaceutical industries and cosmetics. Due to their wide use, phthalates are easily absorbed by the human body where they can disrupt the endocrine system by binding to molecular targets and interfering with hormonal homeostasis. Thus, phthalates exposure has been implicated in the development of several diseases in different age groups. Collecting information from the most recent available literature, this review aims to relate human phthalates' exposure with the development of cardiovascular diseases throughout all ages. Overall, most of the studies presented demonstrated an association between phthalates and several cardiovascular diseases, either from prenatal or postnatal exposure, affecting foetuses, infants, children, young and older adults. However, the mechanisms underlying these effects remain poorly explored. Thus, considering the cardiovascular diseases incidence worldwide and the constant human exposure to phthalates, this topic should be extensively studied to understand the mechanisms involved.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Miguel Castelo-Branco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Amadeu M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Cairrao
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
29
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
30
|
Cano-Sancho G, Warembourg C, Güil N, Stratakis N, Lertxundi A, Irizar A, Llop S, Lopez-Espinosa MJ, Basagaña X, González JR, Coumoul X, Fernández-Barrés S, Antignac JP, Vrijheid M, Casas M. Nutritional Modulation of Associations between Prenatal Exposure to Persistent Organic Pollutants and Childhood Obesity: A Prospective Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37011. [PMID: 36927187 PMCID: PMC10019508 DOI: 10.1289/ehp11258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Prenatal exposure to persistent organic pollutants (POPs) may contribute to the development of childhood obesity and metabolic disorders. However, little is known about whether the maternal nutritional status during pregnancy can modulate these associations. OBJECTIVES The main objective was to characterize the joint associations and interactions between prenatal levels of POPs and nutrients on childhood obesity. METHODS We used data from to the Spanish INfancia y Medio Ambiente-Environment and Childhood (INMA) birth cohort, on POPs and nutritional biomarkers measured in maternal blood collected at the first trimester of pregnancy and child anthropometric measurements at 7 years of age. Six organochlorine compounds (OCs) [dichlorodiphenyldichloroethylene, hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH) and polychlorinated biphenyls 138, 153, 180] and four per- and polyfluoroalkyl substances (PFAS) were measured. Nutrients included vitamins (D, B12, and folate), polyunsaturated fatty acids (PUFAs), and dietary carotenoids. Two POPs-nutrients mixtures data sets were established: a) OCs, PFAS, vitamins, and carotenoids (n=660), and b) OCs, PUFAs, and vitamins (n=558). Joint associations of mixtures on obesity were characterized using Bayesian kernel machine regression (BKMR). Relative importance of biomarkers and two-way interactions were identified using gradient boosting machine, hierarchical group lasso regularization, and BKMR. Interactions were further characterized using multivariate regression models in the multiplicative and additive scale. RESULTS Forty percent of children had overweight or obesity. We observed a positive overall joint association of both POPs-nutrients mixtures on overweight/obesity risk, with HCB and vitamin B12 the biomarkers contributing the most. Recurrent interactions were found between HCB and vitamin B12 across screening models. Relative risk for a natural log increase of HCB was 1.31 (95% CI: 1.11, 1.54, pInteraction=0.02) in the tertile 2 of vitamin B12 and in the additive scale a relative excess risk due to interaction of 0.11 (95% CI: 0.02, 0.20) was found. Interaction between perfluorooctane sulfonate and β-cryptoxanthin suggested a protective effect of the antioxidant on overweight/obesity risk. CONCLUSION These results support that maternal nutritional status may modulate the effect of prenatal exposure to POPs on childhood overweight/obesity. These findings may help to develop a biological hypothesis for future toxicological studies and to better interpret inconsistent findings in epidemiological studies. https://doi.org/10.1289/EHP11258.
Collapse
Affiliation(s)
- German Cano-Sancho
- Laboratory for the Study of Residues and Contaminants in Foods (LABERCA), Oniris, Institut national de la recherche agronomique (INRAE), Nantes, France
| | - Charline Warembourg
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institut de recherche en santé, environnement et travail (IRSET), Ecole des hautes études en santé publique (EHESP), Unité Mixte de Recherche (UMR) 1085 Institut national de la santé et de la recherche médicale (INSERM), Université de Rennes, Rennes, France
| | - Nuria Güil
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Biodonostia, Unidad de Epidemiologia Ambiental y Desarrollo Infantil, San Sebastian, Gipuzkoa, Spain
- Facultad de Medicina, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Bizkaia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Biodonostia, Unidad de Epidemiologia Ambiental y Desarrollo Infantil, San Sebastian, Gipuzkoa, Spain
- Facultad de Medicina, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Bizkaia, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO)–Public Health, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO)–Public Health, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Valencia, Valencia, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Juan Ramon González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Xavier Coumoul
- Institut national de la santé et de la recherche médicale (INSERM) UMR-S1124, Université de Paris, Paris, France
| | - Sílvia Fernández-Barrés
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jean-Philippe Antignac
- Laboratory for the Study of Residues and Contaminants in Foods (LABERCA), Oniris, Institut national de la recherche agronomique (INRAE), Nantes, France
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
31
|
Ramírez V, González-Palacios P, Baca MA, González-Domenech PJ, Fernández-Cabezas M, Álvarez-Cubero MJ, Rodrigo L, Rivas A. Effect of exposure to endocrine disrupting chemicals in obesity and neurodevelopment: The genetic and microbiota link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158219. [PMID: 36007653 DOI: 10.1016/j.scitotenv.2022.158219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Current evidence highlights the importance of the genetic component in obesity and neurodevelopmental disorders (attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID)), given that these diseases have reported an elevated heritability. Additionally, environmental stressors, such as endocrine disrupting chemicals (EDCs) have been classified as obesogens, neuroendocrine disruptors, and microbiota disrupting chemicals (MDCs). For this reason, the importance of this work lies in examining two possible biological mechanistic pathways linking obesity and neurodevelopmental/behavioural disorders: EDCs - gene and EDCs - microbiota interactions. First, we summarise the shared mechanisms of action of EDCs and the common genetic profile in the bidirectional link between obesity and neurodevelopment. In relation to interaction models, evidence from the reviewed studies reveals significant interactions between pesticides/heavy metals and gene polymorphisms of detoxifying and neurotransmission systems and metal homeostasis on cognitive development, ASD and ADHD symptomatology. Nonetheless, available literature about obesity is quite limited. Importantly, EDCs have been found to induce gut microbiota changes through gut-brain-microbiota axis conferring susceptibility to obesity and neurodevelopmental disorders. In view of the lack of studies assessing the impact of EDCs - gene interactions and EDCs - mediated dysbiosis jointly in obesity and neurodevelopment, we support considering genetics, EDCs exposure, and microbiota as interactive factors rather than individual contributors to the risk for developing obesity and neurodevelopmental disabilities at the same time.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | | | | | - María Fernández-Cabezas
- Department of Developmental and Educational Psychology, Faculty of Educational Sciences, University of Granada, 18011 Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| |
Collapse
|
32
|
Güil-Oumrait N, Cano-Sancho G, Montazeri P, Stratakis N, Warembourg C, Lopez-Espinosa MJ, Vioque J, Santa-Marina L, Jimeno-Romero A, Ventura R, Monfort N, Vrijheid M, Casas M. Prenatal exposure to mixtures of phthalates and phenols and body mass index and blood pressure in Spanish preadolescents. ENVIRONMENT INTERNATIONAL 2022; 169:107527. [PMID: 36126421 DOI: 10.1016/j.envint.2022.107527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pregnant women are simultaneously exposed to several non-persistent endocrine-disrupting chemicals, which may influence the risk of childhood obesity and cardiovascular diseases later in life. Previous prospective studies have mostly examined single-chemical effects, with inconsistent findings. We assessed the association between prenatal exposure to phthalates and phenols, individually and as a mixture, and body mass index (BMI) and blood pressure (BP) in preadolescents. METHODS We used data from the Spanish INMA birth cohort study (n = 1,015), where the 1st and 3rd- trimester maternal urinary concentrations of eight phthalate metabolites and six phenols were quantified. At 11 years of age, we calculated BMI z-scores and measured systolic and diastolic BP. We estimated individual chemical effects with linear mixed models and joint effects of the chemical mixture with hierarchical Bayesian kernel machine regression (BKMR). Analyses were stratified by sex and by puberty status. RESULTS In single-exposure models, benzophenone-3 (BP3) was nonmonotonically associated with higher BMI z-score (e.g. Quartile (Q) 3: β = 0.23 [95% CI = 0.03, 0.44] vs Q1) and higher diastolic BP (Q2: β = 1.27 [0.00, 2.53] mmHg vs Q1). Methyl paraben (MEPA) was associated with lower systolic BP (Q4: β = -1.67 [-3.31, -0.04] mmHg vs Q1). No consistent associations were observed for the other compounds. Results from the BKMR confirmed the single-exposure results and showed similar patterns of associations, with BP3 having the highest importance in the mixture models, especially among preadolescents who reached puberty status. No overall mixture effect was found, except for a tendency of higher BMI z-score and lower systolic BP in girls. CONCLUSIONS Prenatal exposure to UV-filter BP3 may be associated with higher BMI and diastolic BP during preadolescence, but there is little evidence for an overall phthalate and phenol mixture effect.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Parisa Montazeri
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maria-Jose Lopez-Espinosa
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; FISABIO-Universitat Jaume I-Universitat de Valencia, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad Miguel Hernández, Alicante, Spain
| | - Loreto Santa-Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Spain
| | - Alba Jimeno-Romero
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
33
|
Kupsco A, Sjödin A, Cowell W, Jones R, Oberfield S, Wang S, Hoepner LA, Gallagher D, Baccarelli AA, Goldsmith J, Rundle AG, Herbstman JB. Prenatal exposure to polybrominated diphenyl ethers and BMI Z-scores from 5 to 14 years. Environ Health 2022; 21:82. [PMID: 36076289 PMCID: PMC9454187 DOI: 10.1186/s12940-022-00893-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/27/2022] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are flame-retardant compounds widely used in household products until phase out in 2004. PBDEs are endocrine disruptors and are suggested to influence signaling related to weight control. Prenatal exposures to PBDEs may alter childhood adiposity, yet few studies have examined these associations in human populations. METHODS Data were collected from a birth cohort of Dominican and African American mother-child pairs from New York City recruited from 1998 to 2006. PBDE congeners BDE-47, - 99, - 100, and - 153 were measured in cord plasma (ng/μL) and dichotomized into low (< 80th percentile) and high (>80th percentile) exposure categories. Height and weight were collected at ages 5, 7, 9, 11, and an ancillary visit from 8 to 14 years (n = 289). Mixed-effects models with random intercepts for participant were used to assess associations between concentrations of individual PBDE congeners or the PBDE sum and child BMI z-scores (BMIz). To assess associations between PBDEs and the change in BMIz over time, models including interactions between PBDE categories and child age and (child age)2 were fit. Quantile g-computation was used to investigate associations between BMIz and the total PBDE mixture. Models were adjusted for baseline maternal covariates: ethnicity, age, education, parity, partnership status, and receipt of public assistance, and child covariates: child sex and cord cholesterol and triglycerides. RESULTS The prevalence of children with obesity at age 5 was 24.2% and increased to 30% at age 11. Neither cord levels of individual PBDEs nor the total PBDE mixture were associated with overall BMIz in childhood. The changes in BMIz across childhood were not different between children with low or high PBDEs. Results were similar when adjusting for postnatal PBDE exposures. CONCLUSIONS Prenatal PBDE exposures were not associated with child growth trajectories in a cohort of Dominican and African American children.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St. Room 1105, New York, NY, 10032, USA.
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sharon Oberfield
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Pediatrics, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori A Hoepner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St. Room 1105, New York, NY, 10032, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Dympna Gallagher
- Nutrition Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St. Room 1105, New York, NY, 10032, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St. Room 1105, New York, NY, 10032, USA
| |
Collapse
|
34
|
Hu Y, Lu Q, Huang C, Gao Y, Tian Y, Fan L, Liu S. Associations between prenatal exposure to polybrominated diphenyl ethers and physical growth in a seven year cohort study. CHEMOSPHERE 2022; 303:135049. [PMID: 35618052 DOI: 10.1016/j.chemosphere.2022.135049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Although evidence suggests that prenatal exposure to polybrominated diphenyl ethers (PBDEs) alter offspring's physical growth, most studies rely upon physical growth at a single timepoint, and little is known regarding their longitudinal effects over time. In the current study, we determined the associations between prenatal PBDEs exposure and child physical growth by following up 207 mother-child pairs from the Laizhou Wan Birth Cohort (LWBC) from pregnancy until the children were seven years old. Child physical growth including weight, height, and body mass index (BMI) was assessed at birth, and at one, two and seven years of age. Prenatal exposure to PBDEs was quantified by measuring eight PBDE congeners (BDE-28, BDE-47, BDE-85, BDE-99, BDE-100, BDE-153, BDE-154, and BDE-183) in maternal serum samples collected upon hospital admission for delivery. Linear mixed models were applied to examine the associations between prenatal PBDEs exposure and repeated measures of child physical growth, and to determine whether these associations were modified by child's sex. Our findings indicated that BDE-28, BDE-85, BDE-153, BDE-183, and Σ7PBDEs were positively associated with child weight z-score; and that BDE-28, BDE-47, BDE-85, BDE-99, BDE-153, and Σ7PBDEs were positively associated with child height z-score. In addition, these associations were modified by the child's sex as reflected by pronounced positive associations among boys, while negative associations were noted among girls. In conclusion, our findings indicated the sex-specific associations between prenatal PBDE exposures and child physical growth during the first seven years of life.
Collapse
Affiliation(s)
- Yi Hu
- Department of Pediatrics, Hainan Women and Children's Medical Center, Haikou, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuican Huang
- Department of Child Health Care, Hainan Women and Children's Medical Center, Haikou, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hainan Women and Children's Medical Center, Haikou, China.
| | - Lichun Fan
- Department of Child Health Care, Hainan Women and Children's Medical Center, Haikou, China.
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Gao H, Geng ML, Gan H, Huang K, Zhang C, Zhu BB, Sun L, Wu X, Zhu P, Tao FB. Prenatal single and combined exposure to phthalates associated with girls' BMI trajectory in the first six years. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113837. [PMID: 36068761 DOI: 10.1016/j.ecoenv.2022.113837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Evidence of the influence of prenatal phthalate exposure on childhood longitudinal obesity markers is limited. Nested on the Ma'anshan birth cohort study, 990 mother-daughter pairs were included. Seven phthalate metabolites were determined in urine collected in each trimester. Each child underwent a physical examination from birth to 6 years of age twelve times. Latent class growth models were used to identify three trajectories of girls' body mass index (BMI). Logistic regression, quantile g-computation and Bayesian kernel machine regression models analyzed the relationships of prenatal exposure to individual and mixed phthalates with girls' body mass index (BMI) trajectory. Compared to the "lowest trajectory" class, prenatal average concentrations of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP, ORcrude = 2.095, 95 % CI = 1.014-4.328) and di(2-ethylhexyl) phthalate (DEHP, ORcrude = 2.336, 95 % CI = 1.022-5.338) during pregnancy were associated with an increased probability of being in the "highest trajectory" class. The average concentration of DEHP (ORcrude = 1.879, 95 % CI = 1.002-3.522) was associated with an increased probability of being in the "moderate trajectory" class. Stratified analyses by trimester of pregnancy mainly showed that third-trimester exposure to monoethyl phthalate (MEP, ORadjusted = 1.584, 95 % CI = 1.094-2.292), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP, ORadjusted = 2.885, 95 % CI = 1.367-6.088), MEHHP (ORadjusted = 2.425, 95 % CI = 1.335-4.407), DEHP (ORadjusted = 2.632, 95 % CI = 1.334-5.193) and high molecular weight phthalate (ORadjusted = 2.437, 95 % CI = 1.239-4.792) was associated with an increased probability of being in the "highest trajectory" class. However, the mixture of phthalates was not significantly related to the girl's BMI trajectory. In conclusion, in utero exposure to phthalates, including MEP and DEHP metabolites (MEHHP and MEOHP), was significantly associated with early childhood high BMI trajectories in girls. The third trimester of pregnancy seemed to be the window of vulnerability to phthalate exposure for girls' high BMI trajectory at periods of prenatal development. No evidence supported a significant relationship between combined exposure to phthalate metabolites and girls' high BMI trajectory.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Meng-Long Geng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hong Gan
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Zhang
- Anhui Provincial Cancer Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Bei-Bei Zhu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Sun
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiulong Wu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
36
|
Colicino E, Margetaki K, Valvi D, Pedretti NF, Stratakis N, Vafeiadi M, Roumeliotaki T, Kyrtopoulos SA, Kiviranta H, Stephanou EG, Kogevinas M, McConnell R, Berhane KT, Chatzi L, Conti DV. Prenatal exposure to multiple organochlorine compounds and childhood body mass index. Environ Epidemiol 2022; 6:e201. [PMID: 35702503 PMCID: PMC9187184 DOI: 10.1097/ee9.0000000000000201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Prenatal exposure to organochlorine compounds (OCs) has been associated with increased childhood body mass index (BMI); however, only a few studies have focused on longitudinal BMI trajectories, and none of them used multiple exposure mixture approaches. Aim To determine the association between in-utero exposure to eight OCs and childhood BMI measures (BMI and BMI z-score) at 4 years and their yearly change across 4-12 years of age in 279 Rhea child-mother dyads. Methods We applied three approaches: (1) linear mixed-effect regressions (LMR) to associate individual compounds with BMI measures; (2) Bayesian weighted quantile sum regressions (BWQSR) to provide an overall OC mixture association with BMI measures; and (3)Bayesian varying coefficient kernel machine regressions (BVCKMR) to model nonlinear and nonadditive associations. Results In the LMR, yearly change of BMI measures was consistently associated with a quartile increase in hexachlorobenzene (HCB) (estimate [95% Confidence or Credible interval] BMI: 0.10 [0.06, 0.14]; BMI z-score: 0.02 [0.01, 0.04]). BWQSR results showed that a quartile increase in mixture concentrations was associated with yearly increase of BMI measures (BMI: 0.10 [0.01, 0.18]; BMI z-score: 0.03 [0.003, 0.06]). In the BVCKMR, a quartile increase in dichlorodiphenyldichloroethylene concentrations was associated with higher BMI measures at 4 years (BMI: 0.33 [0.24, 0.43]; BMI z-score: 0.19 [0.15, 0.24]); whereas a quartile increase in HCB and polychlorinated biphenyls (PCB)-118 levels was positively associated with BMI measures yearly change (BMI: HCB:0.10 [0.07, 0.13], PCB-118:0.08 [0.04, 012]; BMI z-score: HCB:0.03 [0.02, 0.05], PCB-118:0.02 [0.002,04]). BVCKMR suggested that PCBs had nonlinear relationships with BMI measures, and HCB interacted with other compounds. Conclusions All analyses consistently demonstrated detrimental associations between prenatal OC exposures and childhood BMI measures.
Collapse
Affiliation(s)
- Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York
| | - Katerina Margetaki
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York
| | - Nicolo Foppa Pedretti
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York
| | | | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | | | - Hannu Kiviranta
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Euripides G. Stephanou
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kiros T. Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - David V. Conti
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
37
|
Lee DW, Lim HM, Lee JY, Min KB, Shin CH, Lee YA, Hong YC. Prenatal exposure to phthalate and decreased body mass index of children: a systematic review and meta-analysis. Sci Rep 2022; 12:8961. [PMID: 35624195 PMCID: PMC9142490 DOI: 10.1038/s41598-022-13154-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/29/2022] [Indexed: 01/24/2023] Open
Abstract
Phthalates are well-known endocrine-disrupting chemicals. Many detrimental health effects of phthalates were investigated, but studies on the association of phthalates with obesity in children showed inconsistent results. Thus, this systematic review and meta-analysis were performed to clarify whether prenatal and postnatal exposures to phthalates are associated with physical growth disturbances in children. We performed the systematic review and meta-analysis following the PRISMA 2020 statement guidelines, and found 39 studies that met our inclusion criteria, including 22 longitudinal and 17 cross-sectional studies. We observed a significant negative association between the prenatal exposure to DEHP and the body mass index (BMI) z-score of the offspring (β = - 0.05; 95% CI: - 0.10, - 0.001) in the meta-analysis, while no significant association between the prenatal exposure to DEHP and the body fat percentage of the offspring was observed (β = 0.01; 95% CI: - 0.41, 0.44). In the systematic review, studies on the association between phthalates exposure in childhood and obesity were inconsistent. Prenatal exposure to phthalates was found to be associated with decreased BMI z-score in children, but not associated with body fat percentage. Our findings suggest that phthalates disturb the normal muscle growth of children, rather than induce obesity, as previous studies have hypothesized.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Public Healthcare Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyun-Mook Lim
- COMWEL Daejeon Hospital, Korea Workers' Compensation & Welfare Service, Daejeon, Republic of Korea
| | - Joong-Yub Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyung-Bok Min
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Choong-Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young-Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yun-Chul Hong
- Department of Humans Systems Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
38
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Frenoy P, Perduca V, Cano-Sancho G, Antignac JP, Severi G, Mancini FR. Application of two statistical approaches (Bayesian Kernel Machine Regression and Principal Component Regression) to assess breast cancer risk in association to exposure to mixtures of brominated flame retardants and per- and polyfluorinated alkylated substances in the E3N cohort. Environ Health 2022; 21:27. [PMID: 35216589 PMCID: PMC8881807 DOI: 10.1186/s12940-022-00840-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/16/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Brominated flame retardants (BFR) and per- and polyfluorinated alkylated substances (PFAS) are two groups of substances suspected to act as endocrine disruptors. Such substances could therefore be implicated in the occurrence of breast cancer, nevertheless, previous studies have led to inconstant results. Due to the large correlation between these substances, and the possibly non-linear effects they exert, evaluating their joint impact as mixtures on health remains challenging. This exploratory study aimed to generate hypotheses on the relationship between circulating levels of 7 BFR (6 polybrominated diphenyl ethers and 1 polybrominated biphenyls) and 11 PFAS and the risk of breast cancer in a case-control study nested in the E3N French prospective cohort by performing two methods: Principal Component Regression (PCR) models, and Bayesian Kernel Machine Regression (BKMR) models. METHODS 194 post-menopausal breast cancer cases and 194 controls were included in the present study. Circulating levels of BFR and PFAS were measured by gas chromatography coupled to high-resolution mass spectrometry and liquid chromatography coupled to tandem mass spectrometry, respectively. The first statistical approach was based on Principal Component Analysis (PCA) followed by logistic regression models that included the identified principal components as main exposure variables. The second approach used BKMR models with hierarchical variable selection, this latter being suitable for highly correlated exposures. Both approaches were also run separately for Estrogen Receptor positive (ER +) and Estrogen Receptor negative (ER-) breast cancer cases. RESULTS PCA identified four principal components accounting for 67% of the total variance. Component 3 showed a marginal association with ER + breast cancer risk. No clear association between BFR and PFAS mixtures and breast cancer was identified using BKMR models, and the credible intervals obtained were very wide. Finally, the BKMR models suggested a negative cumulative effect of BFR and PFAS on ER- breast cancer risk, and a positive cumulative effect on ER + breast cancer risk. CONCLUSION Although globally no clear association was identified, both approaches suggested a differential effect of BFR and PFAS mixtures on ER + and ER- breast cancer risk. However, the results for ER- breast cancer should be interpreted carefully due to the small number of ER- cases included in the study. Further studies evaluating mixtures of substances on larger study populations are needed.
Collapse
Affiliation(s)
- Pauline Frenoy
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
| | - Vittorio Perduca
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
- Laboratoire MAP5 (UMR CNRS 8145), Université de Paris, Paris, France
| | | | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France.
| |
Collapse
|
40
|
Choi JY, Lee J, Huh DA, Moon KW. Urinary bisphenol concentrations and its association with metabolic disorders in the US and Korean populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118679. [PMID: 34915096 DOI: 10.1016/j.envpol.2021.118679] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a representative endocrine disrupting compound used in a vast array of consumer products, and are being frequently substituted by its analogues, bisphenol S (BPS) and bisphenol F (BPF). We aimed to examine the association between urinary bisphenol levels with obesity and lipid profiles in the general population to comprehensively evaluate its potential of metabolic disturbance. A representative sample of 1046 US adults from the National Health and Nutrition Examination Survey (2013-2016) and 3268 Korean adults from the Korean National Environmental Health Survey (2015-2017) was analyzed. We examined the exposure levels of bisphenols and determined their associations with obesity, high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels, and hypercholesterolemia prevalence through multiple linear, and binary/ordinal logistic regression models. In both populations, high BPA levels (lowest tertile vs. 2nd, 3rd tertiles) showed corresponding associations with lipid profile and obesity. BPA levels were associated with decreased HDL-C levels (Q3: β = -0.053, p = 0.08 (US); Q2: β = -0.030, p-0.03), increased TG levels (Q3: β = 0.121, p = 0.029 (US); Q3: β = 0.089, p = 0.021, and higher odds for obesity (Q3: OR = 1.58, 95% CI: 1.06, 2.35 (US); Q3: OR = 1.41, 95% CI: 1.11, 1.78). Higher BPS levels were positively associated with obesity status, especially in US men (Q2: OR = 1.84, 95% CI: 1.15, 2.96) and Korean women (Q3: OR = 1.27, 95% CI: 0.99, 1.64). A significant decrease in HDL-C (Q3: β = -0.088, p = 0.01) and elevated odds for obesity at higher BPF levels (Q3: OR = 1.60, 95% CI: 1.00, 2.56) was observed in US women. The findings of our study indicate that BPA and its analogues, BPS and BPF, are associated with lipid metabolism disorders in addition to obesity in adults. Given the increase in exposure to BPA alternatives, continuous biomonitoring, and further investigation of their health effects through prospective cohort studies are warranted.
Collapse
Affiliation(s)
- Ji Yoon Choi
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiyun Lee
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyong Whan Moon
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
41
|
Stratakis N, Rock S, La Merrill MA, Saez M, Robinson O, Fecht D, Vrijheid M, Valvi D, Conti DV, McConnell R, Chatzi VL. Prenatal exposure to persistent organic pollutants and childhood obesity: A systematic review and meta-analysis of human studies. Obes Rev 2022; 23 Suppl 1:e13383. [PMID: 34766696 PMCID: PMC9512275 DOI: 10.1111/obr.13383] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023]
Abstract
We conducted a systematic review and meta-analysis of the associations between prenatal exposure to persistent organic pollutants (POPs) and childhood obesity. We focused on organochlorines (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB], and polychlorinated biphenyls [PCBs]), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and polybrominated diphenyl ethers (PBDEs) that are the POPs more widely studied in environmental birth cohorts so far. We search two databases (PubMed and Embase) through July/09/2021 and identified 33 studies reporting associations with prenatal organochlorine exposure, 21 studies reporting associations with prenatal PFAS, and five studies reporting associations with prenatal PBDEs. We conducted a qualitative review. Additionally, we performed random-effects meta-analyses of POP exposures, with data estimates from at least three prospective studies, and BMI-z. Prenatal DDE and HCB levels were associated with higher BMI z-score in childhood (beta: 0.12, 95% CI: 0.03, 0.21; I2 : 28.1% per study-specific log increase of DDE and beta: 0.31, 95% CI: 0.09, 0.53; I2 : 31.9% per study-specific log increase of HCB). No significant associations between PCB-153, PFOA, PFOS, or pentaPBDEs with childhood BMI were found in meta-analyses. In individual studies, there was inconclusive evidence that POP levels were positively associated with other obesity indicators (e.g., waist circumference).
Collapse
Affiliation(s)
- Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sarah Rock
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Daniela Fecht
- UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Vaia Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
42
|
Velarde MC, Chan AFO, Sajo MEJV, Zakharevich I, Melamed J, Uy GLB, Teves JMY, Corachea AJM, Valparaiso AP, Macalindong SS, Cabaluna ND, Dofitas RB, Giudice LC, Gerona RR. Elevated levels of perfluoroalkyl substances in breast cancer patients within the Greater Manila Area. CHEMOSPHERE 2022; 286:131545. [PMID: 34293563 DOI: 10.1016/j.chemosphere.2021.131545] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Several studies have reported exposure of humans to various endocrine disrupting chemicals (EDCs) worldwide. However, there is a lack of data regarding EDC exposures in humans living in Southeast Asian countries, such as the Philippines. Hence, this study measured levels of 41 EDCs in women residing in the Greater Manila Area, home to the second largest city in Southeast Asia. Urine samples from women with versus without breast cancer were analyzed for 11 phthalate metabolites, 8 environmental phenols, and 10 bisphenols, while serum samples were analyzed for 12 perfluoroalkyl substances (PFAS). Out of the four groups of EDCs analyzed, PFAS were significantly associated with breast cancer (adjusted OR = 13.63, 95% CI: 3.24-94.88 p-trend = 0.001 for PFDoA; adjusted OR = 9.26, 95% CI 2.54-45.10, p-trend = 0.002 for PFDA; and adjusted OR = 2.66, 95% CI: 0.95-7.66, p-trend = 0.004 for PFHxA). Long-chain PFAS levels were positively correlated with age and were significantly higher in women from Region IV-A, a heavily industrialized region, than from the National Capital Region. Overall, this study showed baseline information regarding the level of EDCs in Filipinas, providing a glimpse of EDC exposure in women living in a megalopolis city in Southeast Asia.
Collapse
Affiliation(s)
- Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| | - Alison Faye O Chan
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ma Easter Joy V Sajo
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines; Department of Biology, College of Science, University of the Philippines Baguio, Baguio City, Philippines
| | - Igor Zakharevich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Melamed
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Gemma Leonora B Uy
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Joji Marie Y Teves
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Allen Joy M Corachea
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Apple P Valparaiso
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Shiela S Macalindong
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Nelson D Cabaluna
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Rodney B Dofitas
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Roy R Gerona
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Vilcins D, Cortes-Ramirez J, Currie D, Preston P. Early environmental exposures and life-long risk of chronic non-respiratory disease. Paediatr Respir Rev 2021; 40:33-38. [PMID: 34140237 DOI: 10.1016/j.prrv.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Exposure to environmental hazards occurs from the earliest stages of development. There are a broad range of environmental hazards, and virtually all children are exposed to these hazards during the critical period of growth and development. The burden of many chronic diseases continues to rise, and life course studies have shown that early exposure to environmental hazards is associated with non-communicable disease in later years. This review will discuss the environmental exposures associated with four non-respiratory chronic diseases: obesity, diabetes, cardiovascular disease and neurodevelopmental /neurodegenerative conditions.
Collapse
Affiliation(s)
- Dwan Vilcins
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia.
| | - Javier Cortes-Ramirez
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | | | - Paige Preston
- School of Public Health, The University of Queensland, Brisbane, Australia
| |
Collapse
|
44
|
Vrijheid M, Basagaña X, Gonzalez JR, Jaddoe VWV, Jensen G, Keun HC, McEachan RRC, Porcel J, Siroux V, Swertz MA, Thomsen C, Aasvang GM, Andrušaitytė S, Angeli K, Avraam D, Ballester F, Burton P, Bustamante M, Casas M, Chatzi L, Chevrier C, Cingotti N, Conti D, Crépet A, Dadvand P, Duijts L, van Enckevort E, Esplugues A, Fossati S, Garlantezec R, Gómez Roig MD, Grazuleviciene R, Gützkow KB, Guxens M, Haakma S, Hessel EVS, Hoyles L, Hyde E, Klanova J, van Klaveren JD, Kortenkamp A, Le Brusquet L, Leenen I, Lertxundi A, Lertxundi N, Lionis C, Llop S, Lopez-Espinosa MJ, Lyon-Caen S, Maitre L, Mason D, Mathy S, Mazarico E, Nawrot T, Nieuwenhuijsen M, Ortiz R, Pedersen M, Perelló J, Pérez-Cruz M, Philippat C, Piler P, Pizzi C, Quentin J, Richiardi L, Rodriguez A, Roumeliotaki T, Sabin Capote JM, Santiago L, Santos S, Siskos AP, Strandberg-Larsen K, Stratakis N, Sunyer J, Tenenhaus A, Vafeiadi M, Wilson RC, Wright J, Yang T, Slama R. Advancing tools for human early lifecourse exposome research and translation (ATHLETE): Project overview. Environ Epidemiol 2021; 5:e166. [PMID: 34934888 PMCID: PMC8683140 DOI: 10.1097/ee9.0000000000000166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Early life stages are vulnerable to environmental hazards and present important windows of opportunity for lifelong disease prevention. This makes early life a relevant starting point for exposome studies. The Advancing Tools for Human Early Lifecourse Exposome Research and Translation (ATHLETE) project aims to develop a toolbox of exposome tools and a Europe-wide exposome cohort that will be used to systematically quantify the effects of a wide range of community- and individual-level environmental risk factors on mental, cardiometabolic, and respiratory health outcomes and associated biological pathways, longitudinally from early pregnancy through to adolescence. Exposome tool and data development include as follows: (1) a findable, accessible, interoperable, reusable (FAIR) data infrastructure for early life exposome cohort data, including 16 prospective birth cohorts in 11 European countries; (2) targeted and nontargeted approaches to measure a wide range of environmental exposures (urban, chemical, physical, behavioral, social); (3) advanced statistical and toxicological strategies to analyze complex multidimensional exposome data; (4) estimation of associations between the exposome and early organ development, health trajectories, and biological (metagenomic, metabolomic, epigenetic, aging, and stress) pathways; (5) intervention strategies to improve early life urban and chemical exposomes, co-produced with local communities; and (6) child health impacts and associated costs related to the exposome. Data, tools, and results will be assembled in an openly accessible toolbox, which will provide great opportunities for researchers, policymakers, and other stakeholders, beyond the duration of the project. ATHLETE's results will help to better understand and prevent health damage from environmental exposures and their mixtures from the earliest parts of the life course onward.
Collapse
Affiliation(s)
- Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Corresponding Author. Address: ISGlobal, Institute for Global Health, C. Doctor Aiguader 88, 08003 Barcelona, Spain. E-mail: (M. Vrijheid)
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan R. Gonzalez
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Genon Jensen
- Health & Environment Alliance (HEAL), Brussels, Belgium
| | - Hector C. Keun
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Rosemary R. C. McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Joana Porcel
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Valerie Siroux
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Morris A. Swertz
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Karine Angeli
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Risk Assessment Department, Maisons-Alfort, France
| | - Demetris Avraam
- Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Paul Burton
- Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cécile Chevrier
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | | | - David Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amélie Crépet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Risk Assessment Department, Maisons-Alfort, France
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esther van Enckevort
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ana Esplugues
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ronan Garlantezec
- CHU de Rennes, University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | - María Dolores Gómez Roig
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Kristine B. Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescence Psychiatry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sido Haakma
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ellen V. S. Hessel
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Eleanor Hyde
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Jana Klanova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jacob D. van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andreas Kortenkamp
- Brunel University London, College of Health, Medicine and Life Sciences, Uxbridge, United Kingdom
| | - Laurent Le Brusquet
- University Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
| | - Ivonne Leenen
- Health & Environment Alliance (HEAL), Brussels, Belgium
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- University of Basque Country UPV/EHU, Basque Country, Bilbao, Spain
- Biodonostia, Research Health Institute, Donostia-San Sebastian, Spain
| | - Nerea Lertxundi
- University of Basque Country UPV/EHU, Basque Country, Bilbao, Spain
- Biodonostia, Research Health Institute, Donostia-San Sebastian, Spain
| | - Christos Lionis
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Lea Maitre
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Sandrine Mathy
- University Grenoble Alpes, CNRS, INRAE, Grenoble INP, GAEL, Grenoble, France
| | - Edurne Mazarico
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Centre for Health and Environment, Leuven University, Leuven, Belgium
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rodney Ortiz
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Míriam Pérez-Cruz
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Pavel Piler
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Costanza Pizzi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joane Quentin
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | | | - Susana Santos
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexandros P. Siskos
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | | | - Nikos Stratakis
- ISGlobal, Barcelona, Spain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Arthur Tenenhaus
- University Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Rebecca C. Wilson
- Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Remy Slama
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| |
Collapse
|
45
|
Pearce JL, Neelon B, Bloom MS, Buckley JP, Ananth CV, Perera F, Vena J, Hunt K. Exploring associations between prenatal exposure to multiple endocrine disruptors and birth weight with exposure continuum mapping. ENVIRONMENTAL RESEARCH 2021; 200:111386. [PMID: 34087191 PMCID: PMC8403640 DOI: 10.1016/j.envres.2021.111386] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Improved understanding of how prenatal exposure to environmental mixtures influences birth weight or other adverse outcomes is essential in protecting child health. OBJECTIVE We illustrate a novel exposure continuum mapping (ECM) framework that combines the self-organizing map (SOM) algorithm with generalized additive modeling (GAM) in order to integrate spatially-correlated learning into the study mixtures of environmental chemicals. We demonstrate our method using biomarker data on chemical mixtures collected from a diverse mother-child cohort. METHODS We obtained biomarker concentrations for 16 prevalent endocrine disrupting chemicals (EDCs) collected in the first-trimester from a large, ethnically/racially diverse cohort of healthy pregnant women (n = 604) during 2009-2012. This included 4 organochlorine pesticides (OCPs), 4 polybrominated diphenyl ethers (PBDEs), 4 polychlorinated biphenyls (PCBs), and 4 perfluoroalkyl substances (PFAS). We applied a two-stage exposure continuum mapping (ECM) approach to investigate the combined impact of the EDCs on birth weight. First, we analyzed our EDC data with SOM in order to reduce the dimensionality of our exposure matrix into a two-dimensional grid (i.e., map) where nodes depict the types of EDC mixture profiles observed within our data. We define this map as the 'exposure continuum map', as the gridded surface reflects a continuous sequence of exposure profiles where adjacent nodes are composed of similar mixtures and profiles at more distal nodes are more distinct. Lastly, we used GAM to estimate a joint-dose response based on the coordinates of our ECM in order to capture the relationship between participant location on the ECM and infant birth weight after adjusting for maternal age, race/ethnicity, pre-pregnancy body mass index (BMI), education, serum cotinine, total plasma lipids, and infant sex. Single chemical regression models were applied to facilitate comparison. RESULTS We found that an ECM with 36 mixture profiles retained 70% of the total variation in the exposure data. Frequency analysis showed that the most common profiles included relatively low concentrations for most EDCs (~10%) and that profiles with relatively higher concentrations (for single or multiple EDCs) tended to be rarer (~1%) but more distinct. Estimation of a joint-dose response function revealed that lower birth weights mapped to locations where profile compositions were dominated by relatively high PBDEs and select OCPs. Higher birth weights mapped to locations where profiles consisted of higher PCBs. These findings agreed well with results from single chemical models. CONCLUSIONS Findings from our study revealed a wide range of prenatal exposure scenarios and found that combinations exhibiting higher levels of PBDEs were associated with lower birth weight and combinations with higher levels of PCBs and PFAS were associated with increased birth weight. Our ECM approach provides a promising framework for supporting studies of other exposure mixtures.
Collapse
Affiliation(s)
- John L Pearce
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Brian Neelon
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael S Bloom
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, VA, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cande V Ananth
- Division of Epidemiology and Biostatistics, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - John Vena
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kelly Hunt
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Nidens N, Vogel M, Körner A, Kiess W. Prenatal exposure to phthalate esters and its impact on child development. Best Pract Res Clin Endocrinol Metab 2021; 35:101478. [PMID: 33608224 DOI: 10.1016/j.beem.2020.101478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endocrine disruptive chemicals (EDCs) cause adverse health effects through interaction with endocrine systems. They are classified by chemical structure, effects on specific endocrine systems, their bioaccumulation and/or persistence in the environment, and/or clinically observable effects. In industrial nations, people are exposed to complex mixtures of many different substances all of which may have multiple and deleterious effects upon the individual. The clinical importance of epigenetic changes caused by the action of EDCs during vulnerable phases of development is currently unclear but of particular relevance. Epidemiological studies are criticized because reproducibility is not always guaranteed. Nevertheless, they remain the method of choice for the development and analysis of suitable model systems. Positive associations, despite of sometimes conflicting results, are the key in the selection of factors that can then be analyzed in model systems in an unbiased way. This article reports EDC-caused effects in the fields of growth and metabolism, neurocognitive development and sexual development and reproduction focusing mainly on phthalates and their metabolites. However, research will have to focus on the interactions of different EDCs and their consequences of prenatal and early life exposure.
Collapse
Affiliation(s)
- Nathalie Nidens
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Paediatric Research, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Mandy Vogel
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Paediatric Research, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Antje Körner
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Paediatric Research, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Wieland Kiess
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Paediatric Research, Liebigstraße 20a, D-04103, Leipzig, Germany.
| |
Collapse
|
47
|
Papadopoulou E, Botton J, Caspersen IH, Alexander J, Eggesbø M, Haugen M, Iszatt N, Jacobsson B, Knutsen HK, Meltzer HM, Sengpiel V, Stratakis N, Vejrup K, Brantsæter AL. Maternal seafood intake during pregnancy, prenatal mercury exposure and child body mass index trajectories up to 8 years. Int J Epidemiol 2021; 50:1134-1146. [PMID: 33713119 PMCID: PMC8407875 DOI: 10.1093/ije/dyab035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Maternal seafood intake during pregnancy and prenatal mercury exposure may influence children's growth trajectories. METHODS This study, based on the Norwegian Mother, Father and Child Cohort Study (MoBa), includes 51 952 mother-child pairs recruited in pregnancy during 2002-08 and a subsample (n = 2277) with maternal mercury concentrations in whole blood. Individual growth trajectories were computed by modelling based on child's reported weight and length/height from 1 month to 8 years. We used linear mixed-effects regression analysis and also conducted discordant-sibling analysis. RESULTS Maternal lean fish was the main contributor to total seafood intake in pregnancy and was positively but weakly associated with child body mass index (BMI) growth trajectory. Higher prenatal mercury exposure (top decile) was associated with a reduction in child's weight growth trajectory, with the estimates ranging from -130 g [95% Confidence Intervals (CI) = -247, -12 g] at 18 months to -608 g (95% CI = -1.102, -113 g) at 8 years. Maternal fatty fish consumption was positively associated with child weight and BMI growth trajectory, but only in the higher mercury-exposed children (P-interaction = 0.045). Other seafood consumption during pregnancy was negatively associated with child weight growth compared with no intake, and this association was stronger for higher mercury-exposed children (P-interaction = 0.004). No association was observed between discordant maternal seafood intake and child growth in the sibling analysis. CONCLUSIONS Within a population with moderate seafood consumption and low mercury exposure, we found that maternal seafood consumption in pregnancy was associated with child growth trajectories, and the direction of the association varied by seafood type and level of prenatal mercury exposure. Prenatal mercury exposure was negatively associated with child growth. Our findings on maternal seafood intake are likely non-causal.
Collapse
Affiliation(s)
| | - Jérémie Botton
- Faculty of Pharmacy, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | - Jan Alexander
- Norwegian Institute of Public Health, Skoyen, Oslo, Norway
| | - Merete Eggesbø
- Norwegian Institute of Public Health, Skoyen, Oslo, Norway
| | | | - Nina Iszatt
- Norwegian Institute of Public Health, Skoyen, Oslo, Norway
| | - Bo Jacobsson
- Norwegian Institute of Public Health, Skoyen, Oslo, Norway
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Gothenburg/Östra, Gothenburg, Sweden
| | | | | | - Verena Sengpiel
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Gothenburg/Östra, Gothenburg, Sweden
| | - Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
48
|
Perinatal effects of persistent organic pollutants on thyroid hormone concentration in placenta and breastmilk. Mol Aspects Med 2021; 87:100988. [PMID: 34238594 DOI: 10.1016/j.mam.2021.100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Thyroid hormones (TH) are known to play a critical role in regulating many biological processes including growth and development, energy homeostasis, thermogenesis, lipolysis and metabolism of cholesterol. Severe TH deficiency especially during fetal development results in cretinism, but can also lead to an imbalance in metabolism with, among others, an alteration in body weight composition. Over the past two decades, increasing evidence has shown that certain persistent organic pollutants (POP) can interfere with the endocrine system. These POP referred to as "endocrine disrupting chemicals" are widely present in the environment and populations are exposed globally. Moreover, epidemiological studies have shown that a particularly sensitive period is the pre- and postnatal time. Indeed, perinatal exposure to such chemicals could lead to the onset diseases in later life. It is known, that, maternal thyroid hormones are transported by the placenta to the fetus from 6 weeks of gestation and it seems that during the first trimester, and part of the second, the fetus is entirely dependent on maternal TH supply for its development. Interferences in the TH-network as a consequence of the exposure to such pollutants could cause variations in TH concentration. Only small changes in maternal thyroid hormone levels in early stages of pregnancy can influence fetal neurological and cardiovascular development, as well as according to recent studies, have effect on childhood body composition. With this review, we will report the most recent and important studies concerning the association between thyroid hormone concentration and POP levels measured during the perinatal period. We will mostly focus on the data recently reported on placenta and breastmilk as main sources for understanding the potential consequences of exposure. The possible link between exposure to pollutants, TH dysregulation and possible adverse outcome will also be briefly discussed. From our literature search, several studies support the hypothesis that pre- and postnatal exposure to different pollutants might play a role in causing variation in thyroid hormone concentration. However, few research papers have so far studied the relationship linking exposure to pollutants, TH concentration and possible health consequences. Therefore, this review highlights the need for further research in this direction.
Collapse
|
49
|
Pinos H, Carrillo B, Merchán A, Biosca-Brull J, Pérez-Fernández C, Colomina MT, Sánchez-Santed F, Martín-Sánchez F, Collado P, Arias JL, Conejo NM. Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137170. [PMID: 34281107 PMCID: PMC8295932 DOI: 10.3390/ijerph18137170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health.
Collapse
Affiliation(s)
- Helena Pinos
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
- Correspondence: (H.P.); (N.M.C.)
| | - Beatriz Carrillo
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Ana Merchán
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-B.); (M.T.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - María Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-B.); (M.T.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - Fernando Martín-Sánchez
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
- National School of Public Health, Institute of Health Carlos III, University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), 28029 Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33003 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nélida M. Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33003 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
- Correspondence: (H.P.); (N.M.C.)
| |
Collapse
|
50
|
Pérez-Bermejo M, Mas-Pérez I, Murillo-Llorente MT. The Role of the Bisphenol A in Diabetes and Obesity. Biomedicines 2021; 9:666. [PMID: 34200822 PMCID: PMC8230545 DOI: 10.3390/biomedicines9060666] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A is a compound commonly found in products meant for daily use. It was one of the first compounds to be identified as an endocrine disruptor that was capable of disrupting the endocrine system and producing very similar effects to those of metabolic syndrome. It has recently gained popularity in the scientific arena as a risk factor for obesity and diabetes due to its ability to imitate natural oestrogens and bind to their receptors. The aim was to study the possible relationship between the Bisphenol A endocrine disruptor with diabetes and obesity. The analysis of the articles allows us to conclude that Bisphenol A is an additional risk factor to consider in the development of diabetes and obesity, since it is capable of stimulating the hypertrophy of adipocytes and altering the endocrine system by mimicking the effects of the oestrogen molecule, since epidemiological studies carried out have suggested that the same disruptions seen in experimental studies on animals can be found in humans; however, despite many countries having developed policies to limit exposure to this disruptor in their populations, there is a lack of international agreement. Understanding its relationship with obesity and diabetes will help to raise awareness in the population and adopt public health campaigns to prevent exposure-especially among young people-to these substances.
Collapse
Affiliation(s)
- Marcelino Pérez-Bermejo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Irene Mas-Pérez
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Maria Teresa Murillo-Llorente
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| |
Collapse
|