1
|
Huang RG, Li XB, Wang YY, Wu H, Li KD, Jin X, Du YJ, Wang H, Qian FY, Li BZ. Endocrine-disrupting chemicals and autoimmune diseases. ENVIRONMENTAL RESEARCH 2023; 231:116222. [PMID: 37224951 DOI: 10.1016/j.envres.2023.116222] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) widely exist in people's production and life which have great potential to damage human and animal health. Over the past few decades, growing attention has been paid to the impact of EDCs on human health, as well as immune system. So far, researchers have proved that EDCs (such as bisphenol A (BPA), phthalate, tetrachlorodibenzodioxin (TCDD), etc.) affect human immune function and promotes the occurrence and development of autoimmune diseases (ADs). Therefore, in order to better understand how EDCs affect ADs, we summarized the current knowledge about the impact of EDCs on ADs, and elaborated the potential mechanism of the impact of EDCs on ADs in this review.
Collapse
Affiliation(s)
- Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | | | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
2
|
Wang X, Li N, Ma M, Han Y, Rao K. Immunotoxicity In Vitro Assays for Environmental Pollutants under Paradigm Shift in Toxicity Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:273. [PMID: 36612599 PMCID: PMC9819277 DOI: 10.3390/ijerph20010273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
With the outbreak of COVID-19, increasingly more attention has been paid to the effects of environmental factors on the immune system of organisms, because environmental pollutants may act in synergy with viruses by affecting the immunity of organisms. The immune system is a developing defense system formed by all metazoans in the course of struggling with various internal and external factors, whose damage may lead to increased susceptibility to pathogens and diseases. Due to a greater vulnerability of the immune system, immunotoxicity has the potential to be the early event of other toxic effects, and should be incorporated into environmental risk assessment. However, compared with other toxicity endpoints, e.g., genotoxicity, endocrine toxicity, or developmental toxicity, there are many challenges for the immunotoxicity test of environmental pollutants; this is due to the lack of detailed mechanisms of action and reliable assay methods. In addition, with the strong appeal for animal-free experiments, there has been a significant shift in the toxicity test paradigm, from traditional animal experiments to high-throughput in vitro assays that rely on cell lines. Therefore, there is an urgent need to build high-though put immunotoxicity test methods to screen massive environmental pollutants. This paper reviews the common methods of immunotoxicity assays, including assays for direct immunotoxicity and skin sensitization. Direct immunotoxicity mainly refers to immunosuppression, for which the assays mostly use mixed immune cells or isolated single cells from animals with obvious problems, such as high cost, complex experimental operation, strong variability and so on. Meanwhile, there have been no stable and standard cell lines targeting immune functions developed for high-throughput tests. Compared with direct immunotoxicity, skin sensitizer screening has developed relatively mature in vitro assay methods based on an adverse outcome pathway (AOP), which points out the way forward for the paradigm shift in toxicity tests. According to the experience of skin sensitizer screening, this paper proposes that we also should seek appropriate nodes and establish more complete AOPs for immunosuppression and other immune-mediated diseases. Then, effective in vitro immunotoxicity assay methods can be developed targeting key events, simultaneously coordinating the studies of the chemical immunotoxicity mechanism, and further promoting the paradigm shift in the immunotoxicity test.
Collapse
Affiliation(s)
- Xinge Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| |
Collapse
|
3
|
Liu JL, Woo JMP, Parks CG, Costenbader KH, Jacobsen S, Bernatsky S. Systemic Lupus Erythematosus Risk: The Role of Environmental Factors. Rheum Dis Clin North Am 2022; 48:827-843. [PMID: 36332998 DOI: 10.1016/j.rdc.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease. The etiology of SLE is multifactorial and includes potential environmental triggers, which may occur sequentially (the "multi-hit" hypothesis). This review focuses on SLE risk potentially associated with environmental factors including infections, the microbiome, diet, respirable exposures (eg, crystalline silica, smoking, air pollution), organic pollutants, heavy metals, and ultraviolet radiation.
Collapse
Affiliation(s)
- Jia Li Liu
- McGill University, Montreal, Quebec, Canada
| | - Jennifer M P Woo
- Epidemiology Branch, Department of Health and Human Services, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, Department of Health and Human Services, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Sasha Bernatsky
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Lee F, Gallo MV, Schell LM. Associations between autoimmune dysfunction and pollutants in Akwesasne Mohawk women: Dichlorodiphenyltrichloroethane and polychlorinated biphenyl exposure. Am J Hum Biol 2022; 34:e23773. [PMID: 35726969 DOI: 10.1002/ajhb.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pollutant exposures, including polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT), have been found to disrupt normal immune function. Native American communities are disproportionately affected by autoimmune dysfunction and are more likely to be exposed to harmful pollutants than the general population. OBJECTIVE To determine the association between autoimmune dysfunction and pollutant exposure levels, this study evaluates the statistical relationship between the presence of autoimmune dysfunction and pollutant exposure. METHODS Information was collected from Akwesasne Mohawk women (n = 182), 21-39 years of age, between 2009 and 2013. Data collection included anthropometric measurements, medical diagnoses of autoimmune disease and symptoms of autoimmune dysfunction in the medical record, and blood draws for measurement of pollutants. Multivariate analyses determined the association between toxicant exposure and autoimmune dysfunction. RESULTS Toxicant p,p'-DDE was positively associated with an almost two-fold risk of autoimmune dysfunction. p,p'-DDE and PCB congeners 32, 136, and 138 were positively associated in a multivariate analysis with an autoimmune diagnosis. CONCLUSIONS Pollutant exposures, specifically to p,p'-DDE and some PCB congeners, are common exposures that are associated with autoimmune dysfunction and autoimmune disease, although there are other factors and causes related to autoimmune dysfunction incidence.
Collapse
Affiliation(s)
- Florence Lee
- Department of Anthropology, University at Albany, Albany, New York, USA
| | - Mia V Gallo
- Department of Anthropology, University at Albany, Albany, New York, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, New York, USA
| | - Lawrence M Schell
- Department of Anthropology, University at Albany, Albany, New York, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany, Albany, New York, USA
| |
Collapse
|
5
|
Parks CG, Costenbader KH, Long S, Hofmann JN, Beane FLE, Sandler DP. Pesticide use and risk of systemic autoimmune diseases in the Agricultural Health Study. ENVIRONMENTAL RESEARCH 2022; 209:112862. [PMID: 35123967 PMCID: PMC9205340 DOI: 10.1016/j.envres.2022.112862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) risk has been associated with pesticide use, but evidence on specific pesticides or other agricultural exposures is lacking. We investigated history of pesticide use and risk of SLE and a related disease, Sjögren's syndrome (SS), in the Agricultural Health Study. METHODS The study sample (N = 54,419, 52% male, enrolled in 1993-1997) included licensed pesticide applicators from North Carolina and Iowa and spouses who completed any of the follow-up questionnaires (1999-2003, 2005-2010, 2013-2015). Self-reported cases were confirmed by medical records or medication use (total: 107 incident SLE or SS, 79% female). We examined ever use of 31 pesticides and farm tasks and exposures reported at enrollment in association with SLE/SS, using Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI), with age as the timescale and adjusting for gender, state, and correlated pesticides. RESULTS In older participants (>62 years), SLE/SS was associated with ever use of the herbicide metribuzin (HR 5.33; 95%CI 2.19, 12.96) and applying pesticides 20+ days per year (2.97; 1.20, 7.33). Inverse associations were seen for petroleum oil/distillates (0.39; 0.18, 0.87) and the insecticide carbaryl (0.56; 0.36, 0.87). SLE/SS was inversely associated with having a childhood farm residence (0.59; 0.39, 0.91), but was not associated with other farm tasks/exposures (except welding, HR 2.65; 95%CI 0.96, 7.35). CONCLUSIONS These findings suggest that some agricultural pesticides may be associated with higher or lower risk of SLE/SS. However, the overall risk associated with farming appears complex, involving other factors and childhood exposures.
Collapse
Affiliation(s)
- C G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - K H Costenbader
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Long
- Westat, Rockville, MD, USA
| | - J N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freeman L E Beane
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - D P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Woo JMP, Parks CG, Jacobsen S, Costenbader KH, Bernatsky S. The role of environmental exposures and gene-environment interactions in the etiology of systemic lupus erythematous. J Intern Med 2022; 291:755-778. [PMID: 35143075 DOI: 10.1111/joim.13448] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease, whose etiology includes both genetic and environmental factors. Individual genetic risk factors likely only account for about one-third of observed heritability among individuals with a family history of SLE. A large portion of the remaining risk may be attributable to environmental exposures and gene-environment interactions. This review focuses on SLE risk associated with environmental factors, ranging from chemical and physical environmental exposures to lifestyle behaviors, with the weight of evidence supporting positive associations between SLE and occupational exposure to crystalline silica, current smoking, and exogenous estrogens (e.g., oral contraceptives and postmenopausal hormones). Other risk factors may include lifestyle behaviors (e.g., dietary intake and sleep) and other exposures (e.g., ultraviolet [UV] radiation, air pollution, solvents, pesticides, vaccines and medications, and infections). Alcohol use may be associated with decreased SLE risk. We also describe the more limited body of knowledge on gene-environment interactions and SLE risk, including IL-10, ESR1, IL-33, ITGAM, and NAT2 and observed interactions with smoking, UV exposure, and alcohol. Understanding genetic and environmental risk factors for SLE, and how they may interact, can help to elucidate SLE pathogenesis and its clinical heterogeneity. Ultimately, this knowledge may facilitate the development of preventive interventions that address modifiable risk factors in susceptible individuals and vulnerable populations.
Collapse
Affiliation(s)
- Jennifer M P Woo
- Epidemiology Branch, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Christine G Parks
- Epidemiology Branch, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasha Bernatsky
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Hayakawa K, Fujishiro M, Yoshida Y, Kataoka Y, Sakuma S, Nishi T, Ikeda K, Morimoto S, Takamori K, Sekigawa I. Exposure of female NZBWF1 mice to imiquimod-induced lupus nephritis at an early age via a unique mechanism that differed from spontaneous onset. Clin Exp Immunol 2022; 208:33-46. [PMID: 35260898 PMCID: PMC9113305 DOI: 10.1093/cei/uxac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory and representative autoimmune disease. Extremely complicated and multifactorial interactions between various genetic factors and individual susceptibility to environmental factors are involved in the pathogenesis of SLE. Several studies have reported that mutation and activation of toll-like receptor (TLR) 7 are involved in the onset of autoimmunity, including SLE. Thus, we investigated the response of SLE-prone mice to continuous environmental factors, particularly TLR7 agonist exposure, and changes in their phenotypes. Female and male NZBWF1 (BWF1) mice were treated from 20 weeks of age with a TLR7 agonist, imiquimod (IMQ), 3 times weekly for up to 12 weeks. IMQ-exposed female BWF1 mice showed worsened lupus nephritis. However, autoantibody production was not enhanced in IMQ-exposed female BWF1 mice. The Th1 cytokine expression was upregulated in the kidney of IMQ-treated mice. In IMQ-exposed BWF1 mice, neutralization of IFN-γ suppressed early-phase lupus nephritis. Additionally, in male BWF1 mice IMQ exposure induced minor aggravation of lupus nephritis. These results suggest that the induction of aggravated lupus nephritis by TLR7 agonist exposure was related to the expression of IFN-γ via acute TLR7 signal-induced renal inflammation, and that the involvement of genetic factors associated with a predisposition to SLE is also essential. Thus, the activation of TLR7 signaling by exposure to environmental factors may upset the balance of factors that maintain SLE remission. We hypothesize that the inhibition of TLR7 signaling and IFN-γ signaling is effective for preventing the onset and flare and maintaining remission of lupus nephritis.
Collapse
Affiliation(s)
- Kunihiro Hayakawa
- Institute for Environment and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | - Maki Fujishiro
- Institute for Environment and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | - Yuko Yoshida
- Institute for Environment and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | - Yuko Kataoka
- Institute for Environment and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | - Shota Sakuma
- Institute for Environment and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | - Takuya Nishi
- Institute for Environment and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | - Keigo Ikeda
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Shinji Morimoto
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Kenji Takamori
- Institute for Environment and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | - Iwao Sekigawa
- Institute for Environment and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| |
Collapse
|
8
|
Helmy MA, Saad-Hussein A, Rahman HAAE, Shemies RS, Elhelaly M, Enein AF, Helmy MA. Association between toxic organochlorine levels in human serum and systemic lupus erythematosus. Lupus 2021; 30:2204-2212. [PMID: 34677112 DOI: 10.1177/09612033211051947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organochlorines (OCs) are groups of highly toxic pesticides with known immunotoxicity. The present work aimed to study the potential association between serum residues of OCs and the risk of developing systemic lupus erythematosus (SLE) as well as correlating to the clinical-laboratory manifestations in a sample of Egyptian SLE patients. A cross-sectional study was conducted on 132 patients environmentally exposed to OCs. Patients were diagnosed as SLE based on the American College of Rheumatology (ACR) revised criteria. Systemic Lupus Erythematosus Disease Activity Index-2000 (SLEDAI-2K) score was calculated to stratify the disease severity. Blood and urine samples were collected to measure the levels of OCs, serological markers, and urinary protein. The most frequently detected OCs were p,p'-DDE; lindane; and hexachlorobenzene (HCB). The risk of developing SLE was significantly associated with detected p,p'-DDE and HCB (B value 7.704 and 14.33, respectively). Hexachlorobenzene, in addition, was significantly associated with increased SLEDAI-2K score and polycythemia. Lindane was significantly associated with hypocomplementemia, cardiac manifestations of SLE, anemia, and leucopenia. In conclusion, the detected OCs p,p'-DDE and HCB are associated with increased risk of SLE in Egyptian patients and correlates to the manifestations of disease severity.
Collapse
Affiliation(s)
- Manar A Helmy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, 68780Mansoura University, Egypt
| | - Amal Saad-Hussein
- Environmental & Occupational Medicine Department, Former Dean of Environmental Research Division, Former Head of Environmental & Occupational Medicine Department, 583083National Research Centre, Giza, Egypt
| | - Heba Allah Abd El Rahman
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, 68780Mansoura University, Mansoura, Egypt
| | - Rasha S Shemies
- Mansoura Nephrology and Dialysis Unit, 68780Mansoura University, Mansoura, Egypt
| | - Mona Elhelaly
- Medical Biochemistry and Molecular Biology Department, 68780Mansoura University, Mansoura, Egypt
| | - Asmaa F Enein
- Mansoura Rheumatology and Immunology Unit, Internal Medicine Department, 68780Mansoura University, Mansoura, Egypt
| | - Mona A Helmy
- Environmental and Occupational Medicine Department, 583083Environmental Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
9
|
Bou Zerdan M, Moussa S, Atoui A, Assi HI. Mechanisms of Immunotoxicity: Stressors and Evaluators. Int J Mol Sci 2021; 22:8242. [PMID: 34361007 PMCID: PMC8348050 DOI: 10.3390/ijms22158242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends the body against certain tumor cells and against foreign agents such as fungi, parasites, bacteria, and viruses. One of its main roles is to distinguish endogenous components from non-self-components. An unproperly functioning immune system is prone to primary immune deficiencies caused by either primary immune deficiencies such as genetic defects or secondary immune deficiencies such as physical, chemical, and in some instances, psychological stressors. In the manuscript, we will provide a brief overview of the immune system and immunotoxicology. We will also describe the biochemical mechanisms of immunotoxicants and how to evaluate immunotoxicity.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Sara Moussa
- Faculty of Medicine, University of Balamand, 1100 Beirut, Lebanon;
| | - Ali Atoui
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| |
Collapse
|
10
|
Development of Proliferative Response of Thymic Lymphocytes to T-Cell Mitogen in Rats Exposed to Endocrine Disrupter DDT during Ontogeny. Bull Exp Biol Med 2020; 169:60-62. [PMID: 32488775 DOI: 10.1007/s10517-020-04824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 10/24/2022]
Abstract
We studied the formation of proliferative response of thymic lymphocytes to T-cell mitogen in rats exposed to endocrine disrupter DDT during prenatal and postnatal ontogeny. Developmental exposure to the endocrine disruptor was found to attenuate proliferative response during puberty and adulthood due to maintenance of higher proliferation rate of thymic lymphocytes in comparison with age-matched controls. Insufficient proliferative response to mitogens in rats developmentally exposed to the endocrine disrupter increases the risk of impairment of cell-mediated reactions of adaptive immunity.
Collapse
|
11
|
Martyniuk CJ, Mehinto AC, Denslow ND. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol Cell Endocrinol 2020; 507:110764. [PMID: 32112812 PMCID: PMC10603819 DOI: 10.1016/j.mce.2020.110764] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Organochlorine pesticides (OCPs) are persistent environmental contaminants that act as endocrine disruptors and organ system toxicants. These pesticides (e.g. dichlorodiphenyltrichloroethane (DDT), dieldrin, toxaphene, among others) are ranked as some of the most concerning chemicals for human health. These pesticides (1) act as teratogens, (2) are neuroendocrine disruptors, (3) suppress the immune and reproductive systems, and (4) dysregulate lipids and metabolism. Using a computational approach, we revealed enriched endocrine-related pathways in the Comparative Toxicogenomics Database sensitive to this chemical class, and these included reproduction (gonadotropins, estradiol, androgen, steroid biosynthesis, oxytocin), thyroid hormone, and insulin. Insight from the Tox21 and ToxCast programs confirm that these agrochemicals activate estrogen receptors, androgen receptors, and retinoic acid receptors with relatively high affinity, although differences exist in their potency. We propose an adverse outcome pathway for OCPs toxicity in the fish testis as a novel contribution to further understanding of OCP-induced toxicity. Organochlorine pesticides, due to their persistence and high toxicity to aquatic and terrestrial wildlife as well as humans, remain significant agrochemicals of concern.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, CA, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Khan MF, Wang H. Environmental Exposures and Autoimmune Diseases: Contribution of Gut Microbiome. Front Immunol 2020; 10:3094. [PMID: 31998327 PMCID: PMC6970196 DOI: 10.3389/fimmu.2019.03094] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Environmental agents have been gaining more attention in recent years for their role in the pathogenesis of autoimmune diseases (ADs). Increasing evidence has linked environmental exposures, including trichloroethene (TCE), silica, mercury, pristane, pesticides, and smoking to higher risk for ADs. However, potential mechanisms by which these environmental agents contribute to the disease pathogenesis remains largely unknown. Dysbiosis of the gut microbiome is another important environmental factor that has been linked to the onset of different ADs. Altered microbiota composition is associated with impaired intestinal barrier function and dysregulation of mucosal immune system, but it is unclear if gut dysbiosis is a causal factor or an outcome of ADs. In this review article, we first describe the recent epidemiological and mechanistic evidences linking environmental/occupational exposures with various ADs (especially SLE). Secondly, we discuss how changes in the gut microbiome composition (dysbiosis) could contribute to the disease pathogenesis, especially in response to exposure to environmental chemicals.
Collapse
Affiliation(s)
- M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | | |
Collapse
|
13
|
High Incidence of Moderately Reduced Renal Function and Lead Bioaccumulation in Agricultural Workers in Assin South District, Ghana: A Community-Based Case-Control Study. Int J Nephrol 2019; 2019:5368427. [PMID: 31662908 PMCID: PMC6791189 DOI: 10.1155/2019/5368427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background The quest to enhance agricultural productivity and crop yields has led to increased use of agrochemicals on a global scale. Long-term use of these agrochemicals may be associated with adverse health implications. Objective To assess haematological indices, renal function, heavy metal bioaccumulation in farmers and sprayers, and their use of personal protective equipment (PPE). Materials and Methods This community-based case-control study was conducted from January 2018 to June 2018 in the Assin South District, Central Region, Ghana. A total of 144 participants were conveniently sampled: 83 agricultural workers (cases) and 61 indigenes with no direct exposure to agrochemicals (controls). Structured questionnaire was used to obtain demographic data as well as agricultural work practices followed by cases. Venous blood samples were drawn from participants and used for estimating full blood count and renal function (serum creatinine (CRE), blood-urea nitrogen (BUN), BUN : CRE ratio, and estimated GFR (eGFR)). Serum lead, arsenic, and cadmium levels were estimated using the Varian AA 240FS atomic spectrometer in an acetylene-air flame. Results The median RBC (4.49 vs. 4.92 × 1012/L), haemoglobin (12.50 vs. 13.70 g/dL), and platelet (220.00 vs. 268.00) counts were significantly lower in cases. A significantly higher proportion of cases were classified as anaemic or having microcytic cells compared to controls. Also, serum urea (4.08 vs. 3.41; p=0.0009), creatinine (108.10 vs. 101.10; p=0.0286), and BUN : CRE ratio (19.75 vs. 17.84) were significantly higher in cases. Additionally, 18.1% of cases were classified as having moderately reduced renal function compared to only 6.6% of controls. Moreover, a significantly higher proportion of cases had detectable serum lead (55.6% vs. 16.4%) and arsenic (53.1% vs. 9.8%) levels compared to controls. However, on average, 80% of agricultural workers did not use personal protective equipment (PPE) when applying agrochemicals; 84.3% of used agrochemical containments were discarded near the river/canal. Conclusion Neglect of the use of PPE may be predisposing the agrochemical workers and community to lead and arsenic bioaccumulation with a consequent reduced haematological and renal function.
Collapse
|
14
|
Parks CG, Santos ADSE, Lerro CC, DellaValle CT, Ward MH, Alavanja MC, Berndt SI, Beane Freeman LE, Sandler DP, Hofmann JN. Lifetime Pesticide Use and Antinuclear Antibodies in Male Farmers From the Agricultural Health Study. Front Immunol 2019; 10:1476. [PMID: 31354699 PMCID: PMC6637299 DOI: 10.3389/fimmu.2019.01476] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
Farming and pesticide use have been associated with systemic autoimmune diseases, and while certain organochlorine insecticides and other pesticides are suspected to influence risk, the role of specific pesticides in the development of systemic autoimmunity is not known. We measured serum antinuclear autoantibodies (ANA) by immunofluorescence on Hep-2 cells in 668 male farmers in the study of Biomarkers of Exposure and Effect in Agriculture (BEEA; 2010-2013), an Agricultural Health Study (AHS) subcohort. We examined ANA in relation to lifetime use of 46 pesticides first reported at AHS enrollment (1993-1997) and updated at intervals through BEEA enrollment. Odds ratios (OR) and 95% confidence intervals (CI) were estimated after adjusting for age, state, education, season of blood draw, current pesticide use, and correlated pesticides. Having ANA antibodies (3 or 4+ intensity at a 1:80 dilution, 21% of study participants) was associated with a reported history of seeking medical care due to exposure to pesticides (OR 2.15; 95%CI 1.17, 3.95), use of the fumigant methyl bromide (OR 3.16; 95%CI 1.05, 9.5), and use of petroleum oil/distillates (OR 1.50; 95%CI 1.00, 2.25). Using a higher threshold (3 or 4+ at a 1:160 dilution, 9%) ANA positivity was associated with the carbamate insecticide aldicarb (OR 4.82; 95%CI 1.33, 17.5) and greater combined use of four cyclodiene organochlorine insecticides (top tertile of intensity-weighted lifetime days vs. no use; OR T3 3.20; 95%CI 1.10, 9.27). By contrast, greater use of non-cyclodiene organochlorine insecticides was inversely associated with ANA (1:80 dilution 3 or 4+, OR T3 0.24; 95%CI 0.08, 0.72). Specific autoantibodies (to extractable nuclear antigens and anti-dsDNA), measured on those with ANA detected at the 1:80 dilution 3 or 4+, were seen in 15 individuals (2%), and were associated with use of two or more cyclodiene organochlorine insecticides and several other pesticides (e.g., carbofuran, ethylene dibromide). These findings suggest that specific pesticide exposures may have long-term effects on ANA prevalence and support the hypothesis that certain organochlorine insecticides may increase the risk of developing systemic autoimmunity.
Collapse
Affiliation(s)
- Christine G. Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | | | - Catherine C. Lerro
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Curt T. DellaValle
- All of Us Research Program, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Michael C. Alavanja
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Sonja I. Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
15
|
Williams JN, Chang SC, Sinnette C, Malspeis S, Parks CG, Karlson EW, Fraser P, Costenbader K. Pesticide exposure and risk of systemic lupus erythematosus in an urban population of predominantly African-American women. Lupus 2018; 27:2129-2134. [PMID: 30309287 DOI: 10.1177/0961203318805844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Past studies have reported associations between pesticide exposure and the risk of systemic lupus erythematosus (SLE). Residential pesticide exposure has been less well studied than agricultural exposure. The purpose of this study was to assess SLE risk associated with residential pesticide exposure in an urban population of predominantly African-American women. METHODS Adult women with SLE were identified from six hospital databases and community screening in three neighborhoods in Boston, Massachusetts, USA. Controls were adult women volunteers from the same neighborhoods who were screened for the absence of connective tissue disease and anti-nuclear antibodies. Subjects were considered exposed to pesticides if they had ever had an exterminator for an ant, cockroach, or termite problem prior to SLE diagnosis or corresponding reference age in controls. Risks associated with pesticide exposure were analyzed using multivariable logistic regression models, adjusted for sociodemographic factors. RESULTS We identified 93 SLE subjects and 170 controls with similar baseline characteristics. Eighty-three per cent were African-American. Pesticide exposure was associated with SLE, after controlling for potential confounders (odds ratio 2.24, 95% confidence interval 1.28-3.93). CONCLUSION Residential exposure to pesticides in an urban population of predominantly African-American women was associated with increased SLE risk. Additional studies are needed to corroborate these findings.
Collapse
Affiliation(s)
- J N Williams
- 1 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, USA
| | - S-C Chang
- 1 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, USA
| | - C Sinnette
- 1 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, USA
| | - S Malspeis
- 1 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, USA
| | - C G Parks
- 2 Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, USA
| | - E W Karlson
- 1 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, USA
| | - P Fraser
- 1 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, USA
| | - K Costenbader
- 1 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, USA
| |
Collapse
|
16
|
Tabet E, Gelu-Simeon M, Genet V, Lamontagne L, Piquet-Pellorce C, Samson M. Chlordecone potentiates auto-immune hepatitis and promotes brain entry of MHV3 during viral hepatitis in mouse models. Toxicol Lett 2018; 299:129-136. [PMID: 30287270 DOI: 10.1016/j.toxlet.2018.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023]
Abstract
Chlordecone is an organochlorine used in the 1970's as a pesticide in banana plantations. It has a long half-life in the soil and can potentially contaminate humans and animals through food. Chlordecone targets, and mainly accumulates in, the liver, leading to hepatomegaly and neurological signs in mammals. Chlordecone does not cause liver injuries or any inflammation by itself at low doses, but it can potentiate the hepatotoxic effects of other chemicals and drugs. We studied the impact of chlordecone on the progression of acute hepatitis in mouse models of co-exposure to chlordecone with Concanavalin A or murine hepatitis virus type 3. We examined the progression of these two types of hepatitis by measuring hepatic transaminase levels in the serum and inflammatory cells in the liver, liver histological studies. Amplified tremors presented in the MHV3- chlordecone mouse model had led us to study the expression of specific genes in the brain. We show that chlordecone amplifies the auto-immune hepatitis induced by Concanavalin A by increasing the number of liver NKT cells, which are involved in liver damage. Chlordecone also accelerated the death of mice infected by murine hepatitis virus and enhanced the entry of the virus into the cervical spinal cord in infected mice, leading to considerable neurological damage. In conclusion, chlordecone potentiates both the Concanavalin A-induced hepatitis and brain damage caused by an hepatotropic/neurotropic virus.
Collapse
Affiliation(s)
- Elise Tabet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F 35000, Rennes, France
| | - Moana Gelu-Simeon
- Univ Antilles, CHU Pointe-à-Pitre, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-97000, Pointe-à-Pitre, France
| | - Valentine Genet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F 35000, Rennes, France
| | - Lucie Lamontagne
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Claire Piquet-Pellorce
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F 35000, Rennes, France
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F 35000, Rennes, France.
| |
Collapse
|
17
|
Watanabe Y, Makino E, Tajiki-Nishino R, Koyama A, Tajima H, Ishimota M, Fukuyama T. Involvement of estrogen receptor α in pro-pruritic and pro-inflammatory responses in a mouse model of allergic dermatitis. Toxicol Appl Pharmacol 2018; 355:226-237. [DOI: 10.1016/j.taap.2018.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/30/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
18
|
Lanata CM, Chung SA, Criswell LA. DNA methylation 101: what is important to know about DNA methylation and its role in SLE risk and disease heterogeneity. Lupus Sci Med 2018; 5:e000285. [PMID: 30094041 PMCID: PMC6069928 DOI: 10.1136/lupus-2018-000285] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
SLE is a complex autoimmune disease that results from the interplay of genetics, epigenetics and environmental exposures. DNA methylation is an epigenetic mechanism that regulates gene expression and tissue differentiation. Among all the epigenetic modifications, DNA methylation perturbations have been the most widely studied in SLE. It mediates processes relevant to SLE, including lymphocyte development, X-chromosome inactivation and the suppression of endogenous retroviruses. The establishment of most DNA methylation marks occurs in utero; however, a small percentage of epigenetic marks are dynamic and can change throughout a person’s lifetime and in relation to exposures. In this review, we discuss the current understanding of the biology of DNA methylation and its regulators, the measurement and interpretation of methylation marks, the effects of genetics on DNA methylation and the role of environmental exposures with relevance to SLE. We also summarise research findings associated with SLE disease risk and heterogeneity. The robust finding of hypomethylation of interferon-responsive genes in patients with SLE and new associations beyond interferon-responsive genes such as cell-specific methylation abnormalities are described. We also discuss methylation changes associated with lupus nephritis, autoantibody status and disease activity. Lastly, we explore future research directions, emphasising the need for longitudinal studies, cell tissue and context-specific profiling, as well as integrative approaches. With new technologies, DNA methylation perturbations could be targeted and edited, offering novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Parks CG, D’Aloisio AA, Sandler DP. Childhood Residential and Agricultural Pesticide Exposures in Relation to Adult-Onset Rheumatoid Arthritis in Women. Am J Epidemiol 2018; 187:214-223. [PMID: 29020148 DOI: 10.1093/aje/kwx224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/25/2017] [Indexed: 01/10/2023] Open
Abstract
Farming and pesticide exposure may influence risk of rheumatoid arthritis (RA); the role of early-life pesticide exposure is unknown. The Sister Study includes a US national cohort of women aged 35-74 years (enrolled 2004-2009); we examined childhood pesticide exposure in women in this cohort with adult-onset RA. Cases (n = 424) were compared with 48,919 noncases. Data included pesticide use at the longest childhood residence through age 14 years, farm residence of at least 12 months with agricultural pesticide exposure through age 18 years, and maternal farm experience. Odds ratios and 95% confidence intervals were adjusted for age, race or ethnicity, education, smoking, and childhood socioeconomic factors. Cases with RA reported more frequent and direct (personal) residential pesticide use in childhood (for infrequent/indirect pesticide use, odds ratio (OR) = 1.1; for frequent/direct use, OR = 1.8; P for trend = 0.013). Compared with women without residential farm history, odds of having RA increased for those reporting a childhood-only farm residence with personal exposure to pesticides used on crops (OR = 1.8, 95% confidence interval: 1.1, 2.9) or livestock (OR = 2.0, 95% confidence interval: 1.2, 3.3). Our findings suggest adult-onset RA may be related to childhood exposure to residential and agricultural pesticides, and support further investigations of lifetime pesticide use in RA.
Collapse
Affiliation(s)
- Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Aimee A D’Aloisio
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Social & Scientific Systems, Inc., Durham, North Carolina
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
20
|
Abstract
BACKGROUND Recent evidence highlights the reality of unprecedented human exposure to toxic chemical agents found throughout our environment - in our food and water supply, in the air we breathe, in the products we apply to our skin, in the medical and dental materials placed into our bodies, and even within the confines of the womb. With biomonitoring confirming the widespread bioaccumulation of myriad toxicants among population groups, expanding research continues to explore the pathobiological impact of these agents on human metabolism. METHODS This review was prepared by assessing available medical and scientific literature from Medline as well as by reviewing several books, toxicology journals, government publications, and conference proceedings. The format of a traditional integrated review was chosen. RESULTS Toxicant exposure and accrual has been linked to numerous biochemical and pathophysiological mechanisms of harm. Some toxicants effect metabolic disruption via multiple mechanisms. CONCLUSIONS As a primary causative determinant of chronic disease, toxicant exposures induce metabolic disruption in myriad ways, which consequently result in varied clinical manifestations, which are then categorized by health providers into innumerable diagnoses. Chemical disruption of human metabolism has become an etiological determinant of much illness throughout the lifecycle, from neurodevelopmental abnormalities in-utero to dementia in the elderly.
Collapse
Affiliation(s)
- Stephen J Genuis
- a Faculty of Medicine, University of Alberta , Edmonton , Alberta , Canada
| | - Edmond Kyrillos
- b Department of Family Medicine , Faculty of Medicine, University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
21
|
Valcke M, Levasseur ME, Soares da Silva A, Wesseling C. Pesticide exposures and chronic kidney disease of unknown etiology: an epidemiologic review. Environ Health 2017; 16:49. [PMID: 28535811 PMCID: PMC5442867 DOI: 10.1186/s12940-017-0254-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/08/2017] [Indexed: 05/20/2023]
Abstract
The main causes of chronic kidney disease (CKD) globally are diabetes and hypertension but epidemics of chronic kidney disease of unknown etiology (CKDu) occur in Central America, Sri Lanka, India and beyond. Althoug also being observed in women, CKDu concentrates among men in agricultural sectors. Therefore, suspicions fell initially on pesticide exposure, but currently chronic heat stress and dehydration are considered key etiologic factors. Responding to persistent community and scientific concerns about the role of pesticides, we performed a systematic review of epidemiologic studies that addressed associations between any indicator of pesticide exposure and any outcome measure of CKD. Of the 21 analytical studies we identified, seven were categorized as with low, ten with medium and four with relatively high explanation value. Thirteen (62%) studies reported one or more positive associations, but four had a low explanation value and three presented equivocal results. The main limitations of both positive and negative studies were unspecific and unquantified exposure measurement ('pesticides'), the cross-sectional nature of most studies, confounding and selection bias. The four studies with stronger designs and better exposure assessment (from Sri Lanka, India and USA) all showed exposure-responses or clear associations, but for different pesticides in each study, and three of these studies were conducted in areas without CKDu epidemics. No study investigated interactions between pesticides and other concommittant exposures in agricultural occupations, in particular heat stress and dehydration. In conclusion, existing studies provide scarce evidence for an association between pesticides and regional CKDu epidemics but, given the poor pesticide exposure assessment in the majority, a role of nephrotoxic agrochemicals cannot be conclusively discarded. Future research should procure assessment of lifetime exposures to relevant specific pesticides and enough power to look into interactions with other major risk factors, in particular heat stress.
Collapse
Affiliation(s)
- Mathieu Valcke
- WHO-PAHO Collaborating Centre on Environmental and Occupational Health Impact Assessment and Surveillance INSPQ-CHUQ-DSPQ, 945, Avenue Wolfe, Québec, G1V 5B3 Canada
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, H3C 3J7 Canada
| | - Marie-Eve Levasseur
- WHO-PAHO Collaborating Centre on Environmental and Occupational Health Impact Assessment and Surveillance INSPQ-CHUQ-DSPQ, 945, Avenue Wolfe, Québec, G1V 5B3 Canada
| | - Agnes Soares da Silva
- Pan American Health Organization (PAHO), 525 Twenty-third Street, N.W, Washington DC, 20037 USA
| | - Catharina Wesseling
- Department of Occupational Medicine, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77 Stockholm, SE Sweden
| |
Collapse
|
22
|
Mokarizadeh A, Faryabi MR, Rezvanfar MA, Abdollahi M. A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences. Toxicol Mech Methods 2016; 25:258-78. [PMID: 25757504 DOI: 10.3109/15376516.2015.1020182] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, in many communities, there is a growing concern about possible adverse effects of pesticides on human health. Reports indicate that during environmental or occupational exposure, pesticides can exert some intense adverse effects on human health through transient or permanent alteration of the immune system. There is evidence on the relation between pesticide-induced immune alteration and prevalence of diseases associated with alterations of the immune response. In the present study, direct immunotoxicity, endocrine disruption and antigenicity have been introduced as the main mechanisms working with pesticides-induced immune dysregulation. Moreover, the evidence on the relationship between pesticide exposure, dysregulation of the immune system and predisposition to different types of psychiatric disorders, cancers, allergies, autoimmune and infectious diseases are criticized.
Collapse
Affiliation(s)
- Aram Mokarizadeh
- a Department of Immunology, Faculty of Medicine , Cellular and Molecular Research Center, Kurdistan University of Medical Sciences , Sanandaj , Iran and
| | | | | | | |
Collapse
|
23
|
Lebov JF, Engel LS, Richardson D, Hogan SL, Sandler DP, Hoppin JA. Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the Agricultural Health Study. ENVIRONMENTAL RESEARCH 2015; 143:198-210. [PMID: 26505650 PMCID: PMC4662544 DOI: 10.1016/j.envres.2015.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pesticide exposure has been found to cause renal damage and dysfunction in experimental studies, but epidemiological research on the renal effects of chronic low-level pesticide exposure is limited. We investigated the relationships between end-stage renal disease (ESRD) among wives of licensed pesticide applicators (N=31,142) in the Agricultural Health Study (AHS) and (1) personal pesticide use, (2) exposure to the husband's pesticide use, and (3) other pesticide-associated farming and household activities. METHODS AHS participants reported pesticide exposure via self-administered questionnaires at enrollment (1993-1997). ESRD cases were identified via linkage to the United States Renal Data System. Associations between ESRD and pesticide exposures were estimated with Cox proportional hazard regression models controlling for age at enrollment. Models of associations with farming and household factors were additionally adjusted for personal use of pesticides. RESULTS We identified 98 ESRD cases diagnosed between enrollment and 31 December 2011. Although women who ever applied pesticides (56% of cohort) were less likely than those who did not apply to develop ESRD (Hazard Ratio (HR): 0.42; 95% CI: 0.28, 0.64), among women who did apply pesticides, the rate of ESRD was significantly elevated among those who reported the highest (vs. lowest) cumulative general pesticide use (HR: 4.22; 95% CI: 1.26, 14.20). Among wives who never applied pesticides, ESRD was associated with husbands' ever use of paraquat (HR=1.99; 95% CI: 1.14, 3.47) and butylate (HR=1.71; 95% CI: 1.00, 2.95), with a positive exposure-response pattern for husband's cumulative use of these pesticides. CONCLUSIONS ESRD may be associated with direct and/or indirect exposure to pesticides among farm women. Future studies should evaluate indirect exposure risk among other rural populations.
Collapse
Affiliation(s)
- Jill F Lebov
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| | - David Richardson
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| | - Susan L Hogan
- Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, NC, USA.
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Jane A Hoppin
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
24
|
Lebov JF, Engel LS, Richardson D, Hogan SL, Hoppin JA, Sandler DP. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occup Environ Med 2015; 73:3-12. [PMID: 26177651 DOI: 10.1136/oemed-2014-102615] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/22/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Experimental studies suggest a relationship between pesticide exposure and renal impairment, but epidemiological evidence is limited. We evaluated the association between exposure to 39 specific pesticides and end-stage renal disease (ESRD) incidence in the Agricultural Health Study, a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina. METHODS Via linkage to the US Renal Data System, we identified 320 ESRD cases diagnosed between enrolment (1993-1997) and December 2011 among 55 580 male licensed pesticide applicators. Participants provided information on use of pesticides via self-administered questionnaires. Lifetime pesticide use was defined as the product of duration and frequency of use and then modified by an intensity factor to account for differences in pesticide application practices. Cox proportional hazards models, adjusted for age and state, were used to estimate associations between ESRD and: (1) ordinal categories of intensity-weighted lifetime use of 39 pesticides, (2) poisoning and high-level pesticide exposures and (3) pesticide exposure resulting in a medical visit or hospitalisation. RESULTS Positive exposure-response trends were observed for the herbicides alachlor, atrazine, metolachlor, paraquat, and pendimethalin, and the insecticide permethrin. More than one medical visit due to pesticide use (HR=2.13; 95% CI 1.17 to 3.89) and hospitalisation due to pesticide use (HR=3.05; 95% CI 1.67 to 5.58) were significantly associated with ESRD. CONCLUSIONS Our findings support an association between ESRD and chronic exposure to specific pesticides, and suggest pesticide exposures resulting in medical visits may increase the risk of ESRD. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov NCT00352924.
Collapse
Affiliation(s)
- Jill F Lebov
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David Richardson
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Susan L Hogan
- Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jane A Hoppin
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Dale P Sandler
- Epidemiology Branch/Chronic Disease Epidemiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
25
|
Yasunaga S, Nishi K, Nishimoto S, Sugahara T. Methoxychlor enhances degranulation of murine mast cells by regulating FcεRI-mediated signal transduction. J Immunotoxicol 2015; 12:283-9. [PMID: 25418051 DOI: 10.3109/1547691x.2014.962122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methoxychlor, an organochlorine insecticide developed to replace DDT (dichlorodiphenyltrichloroethane), has been reported to induce mast cell degranulation and to enhance IgE-mediated allergic responses. However, the mechanisms underlying these effects are not clear. To clarify potential mechanisms, the effects of methoxychlor on degranulation of mast cells were examined. Degranulation responses were evaluated using RBL-2H3 cells and mouse bone marrow-derived mast cells with either the antigen-induced or calcium ionophore-induced stimulation. Phosphorylation of enzymes related to signaling events associated with mast cell degranulation was analyzed by immunoblotting. Effects on vascular permeability in the passive cutaneous anaphylaxis reaction were evaluated following oral administration of methoxychlor to BALB/c mice. The results indicated that methoxychlor caused increased mast cell degranulation in the presence of antigen, whereas it had no effect on calcium ionophore-induced degranulation of RBL-2H3 cells. Immunoblot analyses demonstrated that the phosphorylation level of phosphoinositide 3-kinase (which plays a central role in mast cell signaling) was increased by methoxychlor during antigen-induced degranulation. In addition, methoxychlor activated the signaling pathway via the high-affinity IgE receptor by inducing phosphorylation of Syk and PLCγ1/2, which transfer the signal for degranulation downstream. Lastly, oral administration of methoxychlor exhibited a tendency to promote vascular permeability in passive cutaneous anaphylaxis model mice. Taken together, the results here suggested that methoxychlor enhanced degranulation through FcεRI-mediated signaling and promoted allergenic symptoms involved in mast cell degranulation.
Collapse
|
26
|
Parks CG, De Roos AJ. Pesticides, chemical and industrial exposures in relation to systemic lupus erythematosus. Lupus 2014; 23:527-36. [PMID: 24763537 DOI: 10.1177/0961203313511680] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Growing evidence suggests exposure to chemicals and industrial pollutants may increase risk of systemic lupus erythematosus (SLE). Here we review research on SLE associations with occupational and industrial exposures, primarily drawing on studies in human populations and summarizing epidemiologic research published in the past decade. The association of occupational silica exposure with SLE is well established, but key questions remain, including the required dose and susceptibility factors, and SLE risk due to other silicate exposures. Research on SLE and other exposures is less well developed, though several potential associations merit further consideration because of the consistency of preliminary human findings, experimental animal research, and biologic plausibility. These include pesticides and solvents, for which experimental findings also support investigation of specific agents, including organochlorines and trichloroethylene. Experimental findings and biologic plausibility suggest research on SLE and occupational exposure to hydrocarbons (i.e. mineral oils) is warranted, especially given the widespread exposures in the population. Experimental and limited human findings support further investigation of SLE related to mercury exposure, especially in dental occupations. Research on environmental risk factors in risk-enriched cohorts (family-based) is recommended, as is further investigation of exposures in relation to intermediate markers of effect (e.g. antinuclear antibodies), clinical features (e.g. nephritis), and outcomes.
Collapse
Affiliation(s)
- C G Parks
- 1Epidemiology Branch, National Institute of Environmental Health Sciences, NC, USA
| | | |
Collapse
|
27
|
Abstract
A dose-dependent combination of environmental exposures, estrogenic hormones and genetic predisposition is thought to be required for lupus to develop and flare, but how the environment modifies the immune system in genetically predisposed people is unclear. Current evidence indicates that environmental agents that inhibit DNA methylation can convert normal antigen-specific CD4+ T lymphocytes into autoreactive, cytotoxic, pro-inflammatory cells that are sufficient to cause lupus-like autoimmunity in animal models, and that the same changes in DNA methylation characterize CD4+ T cells from patients with active lupus. Environmental agents implicated in inhibiting T-cell DNA methylation include the lupus-inducing drugs procainamide and hydralazine, as well as diet, and agents causing oxidative stress, such as smoking, UV light exposure, and infections, which have been associated with lupus onset or disease activity. Other studies demonstrate that demethylated T cells cause only anti-DNA antibodies in mice lacking a genetic predisposition to lupus, but are sufficient to cause lupus-like autoimmunity in genetically predisposed mice and likely people, and that estrogens augment the disease. Collectively, these studies suggest that environmental agents that inhibit DNA methylation, together with lupus genes and estrogens or endocrine disruptors, combine in a dose-dependent fashion to cause lupus flares.
Collapse
Affiliation(s)
- E C Somers
- 1Department of Medicine, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
28
|
Gilbert EL, Ryan MJ. Estrogen in cardiovascular disease during systemic lupus erythematosus. Clin Ther 2014; 36:1901-1912. [PMID: 25194860 DOI: 10.1016/j.clinthera.2014.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/11/2023]
Abstract
PURPOSE Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. METHODS PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. FINDINGS The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in adulthood. In addition, increasing evidence suggests that estrogen may have distinct temporal effects on cardiovascular risk factors during SLE. IMPLICATIONS Data from experimental models of lupus suggest that estrogens may have an important permissive role for developing SLE early in life. However, their role in adulthood remains unclear, particularly for the effect on cardiovascular disease and its risk factors. Additional work is needed to understand the effect of estrogens in human SLE, and preclinical studies in experimental models of SLE may contribute important mechanistic insight to further advance the field.
Collapse
Affiliation(s)
- Emily L Gilbert
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.
| |
Collapse
|
29
|
Gilbert EL, Ryan MJ. Impact of early life ovariectomy on blood pressure and body composition in a female mouse model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol 2014; 307:R990-7. [PMID: 25324553 DOI: 10.1152/ajpregu.00038.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because of the preponderance of women affected by the chronic autoimmune disease systemic lupus erythematosus (SLE), estrogen is thought to contribute to SLE disease progression. This is supported by evidence from experimental animal models of SLE showing that removal of estrogen in young female mice delays autoantibody production and renal injury and lengthens survival. Blood pressure and changes in body composition are important cardiovascular risk factors that can be regulated by estrogens. Because cardiovascular disease is the leading cause of death in patients with SLE, we used an established female mouse model of SLE (NZBWF1) to test whether early life removal of estrogen impacts the development of hypertension and changes in body composition commonly associated with SLE. Eight-week-old female SLE and control mice (NZW/LacJ) underwent either a sham operation or ovariectomy. Body weight, body composition (fat and lean masses), and renal injury (albuminuria) were monitored until mice reached 34 wk of age, at which time mean arterial pressure was assessed in conscious animals by a carotid catheter. Early life removal of the ovaries delayed the onset of autoantibody production and albuminuria while causing an increase in body weight and fat mass. Blood pressure in the adult was not altered by early life removal of the ovaries. These data suggest that estrogens may have a permissive role for the development of SLE while helping to maintain normal body weight and composition, which is associated with reduced cardiovascular risk.
Collapse
Affiliation(s)
- Emily L Gilbert
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
30
|
Abstract
We recently introduced the concept of the infectome as a means of studying all infectious factors which contribute to the development of autoimmune disease. It forms the infectious part of the exposome, which collates all environmental factors contributing to the development of disease and studies the sum total of burden which leads to the loss of adaptive mechanisms in the body. These studies complement genome-wide association studies, which establish the genetic predisposition to disease. The infectome is a component which spans the whole life and may begin at the earliest stages right up to the time when the first symptoms manifest, and may thus contribute to the understanding of the pathogenesis of autoimmunity at the prodromal/asymptomatic stages. We provide practical examples and research tools as to how we can investigate disease-specific infectomes, using laboratory approaches employed from projects studying the “immunome” and “microbiome”. It is envisioned that an understanding of the infectome and the environmental factors that affect it will allow for earlier patient-specific intervention by clinicians, through the possible treatment of infectious agents as well as other compounding factors, and hence slowing or preventing disease development.
Collapse
|
31
|
Gilbert EL, Mathis KW, Ryan MJ. 17β-Estradiol protects against the progression of hypertension during adulthood in a mouse model of systemic lupus erythematosus. Hypertension 2013; 63:616-23. [PMID: 24366082 DOI: 10.1161/hypertensionaha.113.02385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disorder with a high prevalence of hypertension and cardiovascular disease. Because SLE predominantly affects women, estrogen is commonly implicated as a contributor to SLE disease progression. Using an established mouse model of SLE (female NZBWF1), we tested whether estrogen has a causal role in the development of hypertension in adulthood. Thirty-week-old SLE and control mice (NZW/LacJ) underwent either a sham or ovariectomy (OVX) procedure. 17β-Estradiol (E2; 5 μg/mouse, twice/week, subcutaneously) was administered to a subset of OVX mice. Mean arterial pressure (in mm Hg) was increased in SLE mice (134±4 versus 119±3 in controls). Contrary to our hypothesis, OVX exacerbated the hypertension in female SLE mice (153±3; P<0.05 versus SLE sham), and repletion of E2 prevented the OVX-induced increase in blood pressure (132±2). The prevalence of albuminuria was increased in SLE mice compared with controls (37% versus 0%). OVX increased the prevalence in SLE mice (70% versus 37% in SLE shams). Repletion of E2 completely prevented albuminuria in OVX SLE mice. Renal cortical tumor necrosis factor α was increased in SLE mice compared with controls and was further increased in OVX SLE. The OVX-induced increase in renal tumor necrosis factor α expression was prevented by repletion of E2. Treatment of OVX SLE mice with the tumor necrosis factor α inhibitor, etanercept, blunted the OVX-induced increase in blood pressure (140±2) and prevalence of albuminuria (22%). These data suggest that 17β-estradiol protects against the progression of hypertension during adulthood in SLE, in part, by reducing tumor necrosis factor α.
Collapse
Affiliation(s)
- Emily L Gilbert
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216-4505.
| | | | | |
Collapse
|
32
|
Nishino R, Fukuyama T, Tajima Y, Miyashita L, Watanabe Y, Ueda H, Kosaka T. Prior oral exposure to environmental immunosuppressive chemicals methoxychlor, parathion, or piperonyl butoxide aggravates allergic airway inflammation in NC/Nga mice. Toxicology 2013; 309:1-8. [PMID: 23583882 DOI: 10.1016/j.tox.2013.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Immunosuppressive environmental chemicals may increase the potency of allergens and thereby play a role in the development of respiratory tract allergies, such as allergic rhinitis and asthma. OBJECTIVES We investigated the association between environmental immunosuppressive chemicals and the allergic airway inflammation development. METHODS We used a mouse model of ovalbumin (OVA)-induced allergic airway inflammation. NC/Nga mice were exposed orally to pesticides parathion (an organophosphate compound) or methoxychlor (an organochlorine compound), or to an insecticide synergist piperonyl butoxide, prior to OVA intraperitoneal sensitization and inhalation challenge. We assessed serum IgE levels, B-cell counts, cytokine production, IgE production in hilar lymph nodes, eosinophil counts, chemokine levels in bronchoalveolar lavage fluid, and cytokine gene expression in the lung. RESULTS Exposure to environmental immunosuppressive chemicals markedly increased serum IgE - IgE-positive B-cells, IgE and cytokines in lymph nodes - eosinophils and chemokines in BALF - IL-10a and IL-17 in the lung. CONCLUSIONS Allergic airway inflammation can be aggravated by prior exposure to immunosuppressive environmental chemicals.
Collapse
Affiliation(s)
- R Nishino
- Laboratory of Immunotoxicology and Acute Toxicology, Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi 4321, Joso-shi, Ibaraki 303-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S, Shoenfeld Y. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev 2012; 12:726-40. [PMID: 23266520 PMCID: PMC7105216 DOI: 10.1016/j.autrev.2012.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 02/06/2023]
Abstract
The "exposome" is a term recently used to describe all environmental factors, both exogenous and endogenous, which we are exposed to in a lifetime. It represents an important tool in the study of autoimmunity, complementing classical immunological research tools and cutting-edge genome wide association studies (GWAS). Recently, environmental wide association studies (EWAS) investigated the effect of environment in the development of diseases. Environmental triggers are largely subdivided into infectious and non-infectious agents. In this review, we introduce the concept of the "infectome", which is the part of the exposome referring to the collection of an individual's exposures to infectious agents. The infectome directly relates to geoepidemiological, serological and molecular evidence of the co-occurrence of several infectious agents associated with autoimmune diseases that may provide hints for the triggering factors responsible for the pathogenesis of autoimmunity. We discuss the implications that the investigation of the infectome may have for the understanding of microbial/host interactions in autoimmune diseases with long, pre-clinical phases. It may also contribute to the concept of the human body as a superorganism where the microbiome is part of the whole organism, as can be seen with mitochondria which existed as microbes prior to becoming organelles in eukaryotic cells of multicellular organisms over time. A similar argument can now be made in regard to normal intestinal flora, living in symbiosis within the host. We also provide practical examples as to how we can characterise and measure the totality of a disease-specific infectome, based on the experimental approaches employed from the "immunome" and "microbiome" projects.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Corsini E, Sokooti M, Galli CL, Moretto A, Colosio C. Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence. Toxicology 2012; 307:123-35. [PMID: 23116691 DOI: 10.1016/j.tox.2012.10.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/23/2012] [Accepted: 10/22/2012] [Indexed: 01/04/2023]
Abstract
The immune system can be the target of many chemicals, with potentially severe adverse effects on the host's health. In Western countries pesticides, together with new and modified patterns of exposure to chemicals, have been implicated in the increasing prevalence of diseases associated with alterations of the immune response, such as hypersensitivity reactions, certain autoimmune diseases and cancers. Xenobiotics may initiate, facilitate or exacerbate pathological immune processes, resulting in immunotoxicity by induction of mutations in genes coding for immunoregulatory factors, modifying immune tolerance and activation pathways. The purpose of this article is to update the evidence of pesticide immunotoxicity. Even if experimental data as well as sporadic human studies indicate that some pesticides can affect the immune system, overall, existing epidemiological studies are inadequate to raise conclusions on the immunotoxic risk associated to pesticide exposure. The available studies on the effects of pesticides on human immune system have several limitations including poor indication on exposure levels, multiple chemical exposures, heterogeneity of the approach, and difficulty in giving a prognostic significance to the slight changes often observed. Further studies are necessary, and they should be preferably carried out through comparison of pre and post-exposure findings in the same group of subjects with a matched control group. Attempt should be made to define the prognostic significance of slight changes often observed. Animal and in vitro studies are also important and necessary to scientifically support epidemiological evidences on pesticide-induced immunotoxicity.
Collapse
Affiliation(s)
- E Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
35
|
Hayashi K, Fukuyama T, Ohnuma A, Tajima Y, Kashimoto Y, Yoshida T, Kosaka T. Immunotoxicity of the organochlorine pesticide methoxychlor in female ICR, BALB/c, and C3H/He mice. J Immunotoxicol 2012; 10:119-24. [DOI: 10.3109/1547691x.2012.696743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
36
|
Fukuyama T, Kosaka T, Miyashita L, Nishino R, Wada K, Hayashi K, Ueda H, Harada T. Role of regulatory T cells in the induction of atopic dermatitis by immunosuppressive chemicals. Toxicol Lett 2012; 213:392-401. [DOI: 10.1016/j.toxlet.2012.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 01/07/2023]
|
37
|
Immunomodulatory effects of environmental endocrine disrupting chemicals. Kaohsiung J Med Sci 2012; 28:S37-42. [PMID: 22871600 DOI: 10.1016/j.kjms.2012.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 03/15/2012] [Indexed: 02/03/2023] Open
Abstract
During recent decades more than 100,000 new chemicals have been introduced as common consumer products into our environment. Among these chemicals, endocrine-disrupting chemicals (EDCs) are of particular concern owing to their toxicity in animal studies and their impacts on human health. EDCs are ubiquitous in the environment, including the air, water, and soil. The endocrine-disrupting effect of EDCs has been found to imitate the action of steroid hormones and promote several endocrine and reproductive disorders in both animal and human studies. In the present review, we focus on the effects of EDCs on the immune system. EDCs interfere with the synthesis of cytokines, immunoglobulins, and inflammatory mediators, and they also affect the activation and survival of immune cells. The dysfunction of the immune system caused by EDCs may lead to the attenuation of immunity (immunodeficiency) against infection or hyperreactivity of immune responses (allergy and autoimmune disease). In this review, we summarize epidemiologic, animal, and cell studies to demonstrate the potential effects of EDCs on immunity, allergy, and autoimmune diseases. We also address the impact of EDCs on epigenetic regulation.
Collapse
|
38
|
Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J Autoimmun 2012; 39:285-93. [PMID: 22748431 DOI: 10.1016/j.jaut.2012.05.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/23/2022]
Abstract
Autoimmunity is thought to result from a combination of genetics, environmental triggers, and stochastic events. Environmental factors, such as chemicals, drugs or infectious agents, have been implicated in the expression of autoimmune disease, yet human studies are extremely limited in their ability to test isolated exposures to demonstrate causation or to assess pathogenic mechanisms. In this review we examine the research literature on the ability of chemical, physical and biological agents to induce and/or exacerbate autoimmunity in a variety of animal models. There is no single animal model capable of mimicking the features of human autoimmune disease, particularly as related to environmental exposures. An objective, therefore, was to assess the types of information that can be gleaned from the use of animal models, and how well that information can be used to translate back to human health. Our review notes the importance of genetic background to the types and severity of the autoimmune response following exposure to environmental factors, and emphasizes literature where animal model studies have led to increased confidence about environmental factors that affect expression of autoimmunity. A high level of confidence was reached if there were multiple studies from different laboratories confirming the same findings. Examples include mercury, pristane, and infection with Streptococcus or Coxsackie B virus. A second level of consensus identified those exposures likely to influence autoimmunity but requiring further confirmation. To fit into this category, there needed to be significant supporting data, perhaps by multiple studies from a single laboratory, or repetition of some but not all findings in multiple laboratories. Examples include silica, gold, TCE, TCDD, UV radiation, and Theiler's murine encephalomyelitis virus. With the caveat that researchers must keep in mind the limitations and appropriate applications of the various approaches, animal models are shown to be extremely valuable tools for studying the induction or exacerbation of autoimmunity by environmental conditions and exposures.
Collapse
|
39
|
Dar SA, Das S, Ramachandran VG, Bhattacharya SN, Mustafa MD, Banerjee BD, Verma P. Alterations in T-lymphocyte sub-set profiles and cytokine secretion by PBMC of systemic lupus erythematosus patients upon in vitro exposure to organochlorine pesticides. J Immunotoxicol 2012; 9:85-95. [PMID: 22214240 DOI: 10.3109/1547691x.2011.642103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to organochlorine pesticides (OCP) has been suspected of causing immunoregulatory abnormalities that eventually lead to development and progression of systemic lupus erythematosus (SLE), but the role of these non-genetic stimuli has remained poorly understood. The objectives of the study were to quantify the levels of different OCP residues in the blood of SLE patients and to study the effects of in vitro treatment of peripheral blood mononuclear cells (PBMC) from these patients and healthy controls with OCP. Levels of different OCP residues in the blood were measured by gas-liquid chromatography. Isolated PBMC were treated in vitro with hexachlorocyclohexane (HCH), o,p'-dichlorodiphenyltrichloroethane (DDT), or phytohemagglutinin-M (PHA-M) for 72 h, then stained with different dye-labeled monoclonal antibodies to analyze alterations in T-lymphocytes using flow cytometry. Levels of different T(H)1 and T(H)2 cytokines were also estimated by ELISA. Significantly higher levels of p,p'-DDE and β-HCH were detected in the blood of SLE patients than in healthy controls. HCH exposure markedly increased the percentages of CD3(+)CD4(+) T-lymphocytes and expression of CD45RO(+) on CD4(+) and CD8(+) T-lymphocytes, but decreased CD4(+)CD25(+) T-lymphocytes in SLE patients. DDT exposure increased the percentages of CD3(+)CD4(+) T-lymphocytes and decreased those of CD4(+)CD25(+) T-lymphocytes in SLE patients as compared to healthy controls. No significant responsiveness of patient PBMC to PHA-M stimulation was observed indicating suppression of T-lymphocytes by these OCP. Further, both HCH and DDT decreased the levels of IL-2 and IFNγ but had no effect on IL-4 levels in SLE patients. DDT also increased significantly the levels of IL-10 in patients. It is likely that higher levels and prolonged durations of exposure to HCH and DDT may significantly influence T-lymphocyte sub-sets and cytokine expression in vivo that could lead to the development or exacerbation of SLE.
Collapse
|
40
|
Pollard KM. Gender differences in autoimmunity associated with exposure to environmental factors. J Autoimmun 2011; 38:J177-86. [PMID: 22137891 DOI: 10.1016/j.jaut.2011.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 01/23/2023]
Abstract
Autoimmunity is thought to result from a combination of genetics, environmental triggers, and stochastic events. Gender is also a significant risk factor with many diseases exhibiting a female bias. Although the role of environmental triggers, especially medications, in eliciting autoimmunity is well established less is known about the interplay between gender, the environment and autoimmunity. This review examines the contribution of gender in autoimmunity induced by selected chemical, physical and biological agents in humans and animal models. Epidemiological studies reveal that environmental factors can be associated with a gender bias in human autoimmunity. However many studies show that the increased risk of autoimmunity is often influenced by occupational exposure or other gender biased activities. Animal studies, although often prejudiced by the exclusive use of female animals, reveal that gender bias can be strain specific suggesting an interaction between sex chromosome complement and background genes. This observation has important implications because it argues that within a gender biased disease there may be individuals in which gender does not contribute to autoimmunity. Exposure to environmental factors, which encompasses everything around us, adds an additional layer of complexity. Understanding how the environment influences the relationship between sex chromosome complement and innate and adaptive immune responses will be essential in determining the role of gender in environmentally-induced autoimmunity.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
41
|
Fukuyama T, Tajima Y, Hayashi K, Ueda H, Kosaka T. Prior or coinstantaneous oral exposure to environmental immunosuppressive agents aggravates mite allergen-induced atopic dermatitis-like immunoreaction in NC/Nga mice. Toxicology 2011; 289:132-40. [PMID: 21864637 DOI: 10.1016/j.tox.2011.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Immunosuppressive environmental chemicals may increase the potency of allergens and thereby play a role in the development of allergic diseases such as allergic rhinitis, asthma and atopic dermatitis (AD). OBJECTIVES This study's primary objective was to examine the mechanisms behind the development of allergic diseases and immunosuppression induced by some environmental chemicals. We focused on the aggravation of AD by the organophosphorus pesticide O,O-diethyl-O-4-nitro-phenylthiophosphate (parathion) and the organochlorine pesticide 1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane (methoxychlor), in NC/Nga mice sensitized with extract of Dermatophagoides farinae (Df). METHODS NC/Nga mice were exposed orally to parathion or methoxychlor prior or coinstantaneous with sensitization with Df. The mice were subsequently challenged with Df. One day after the last challenge with Df, we analyzed dermatitis severity and expression of genes in the ear auricle, immunoglobulin (Ig) E and IgG(2a) levels in serum, and in auricular lymph nodes, T- or B-cell numbers and cytokine production. RESULTS Prior exposure to parathion or methoxychlor induced marked increases in the following: dermatitis severity and gene expression in the ear auricle, IgE and IgG(2a) levels in serum, expression of surface antigens on helper T-cell and IgE-positive B-cell, production of Th1 and Th2 cytokines, and production of IgE in auricular lymph-node cells. In contrast, coinstantaneous exposure to parathion or methoxychlor yielded, at most, small but significant decreases in all parameters. CONCLUSIONS Our results indicate that atopic dermatitis can be aggravated by prior exposure to immunosuppressive environmental chemicals.
Collapse
Affiliation(s)
- T Fukuyama
- Institute of Environmental Toxicology, Ibaraki 303-0043, Japan.
| | | | | | | | | |
Collapse
|
42
|
Fukuyama T, Tajima Y, Ueda H, Hayashi K, Kosaka T. Prior exposure to immunosuppressive organophosphorus or organochlorine compounds aggravates the TH1- and TH2-type allergy caused by topical sensitization to 2,4-dinitrochlorobenzene and trimellitic anhydride. J Immunotoxicol 2011; 8:170-82. [DOI: 10.3109/1547691x.2011.566231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
43
|
The multi-faceted influences of estrogen on lymphocytes: toward novel immuno-interventions strategies for autoimmunity management. Clin Rev Allergy Immunol 2011; 40:16-26. [PMID: 19943123 DOI: 10.1007/s12016-009-8188-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Early studies of the immune system disclosed that, generally, females exhibit stronger responses to a variety of antigens than males. Perhaps as a result of this response, women are more prone to developing autoimmune diseases than men. Yet, the precise cellular and molecular mechanisms remain under investigation. Recently, interferon-gamma and the related pro-inflammatory interleukin-12 were found to be under effects of sex steroid hormones, with potential implications in regulating immune cells and autoimmune responses. In B lymphocytes, functional binding sites for estrogen receptors were identified in the promoter of the gene encoding activation-induced deaminase, an enzyme required for somatic hypermutation, and class-switch recombination. The observation that estrogen exerts direct impacts on antibody affinity-maturation provides a potential mechanism that could account for generating pathogenic high-affinity auto-antibodies. Further deciphering the multi-faceted influences of sex hormones on the responsiveness of immune cells could lead to novel therapeutic interventions for autoimmunity management.
Collapse
|
44
|
Saha S, Tieng A, Pepeljugoski KP, Zandamn-Goddard G, Peeva E. Prolactin, systemic lupus erythematosus, and autoreactive B cells: lessons learnt from murine models. Clin Rev Allergy Immunol 2011; 40:8-15. [PMID: 19937157 DOI: 10.1007/s12016-009-8182-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The predominant prevalence of autoimmune diseases in women of reproductive age has led to the investigation of the effects of sex hormones on immune regulation and in autoimmune diseases, in particular the prototypic systemic autoimmune disease lupus. The female hormone prolactin has receptors beyond the reproductive axis including immune cells, and it is thought to promote autoimmunity in human and murine lupus. Induced hyperprolactinemia in experimental lupus models, regardless of gender, exacerbates disease activity and leads to premature death. Prolactin treatment in mice that are not prone to develop lupus leads to the development of a lupus-like phenotype. Persistent mild-moderate hyperprolactinemia alters the selection of the naïve B cell repertoire. Recent studies demonstrate that prolactin impairs all three mechanisms of B cell tolerance induction (negative selection, receptor editing, and anergy) and thereby contributes to the pathogenesis of autoimmunity. The effects of prolactin are genetically determined as shown by the differential response to the hormone in the different mice strains. Bromocriptine, a drug that inhibits prolactin secretion, abrogates some of the immune effects of this hormone. Further research is required to elucidate molecular mechanisms involved in immune effects of prolactin and to develop novel targeted treatments for SLE patients with prolactin-responsive disease.
Collapse
Affiliation(s)
- Subhrajit Saha
- Albert Einstein College of Medicine, Montefiore Hospital, DTC Bldg 440, 111 E 210th St, Bronx, NY 10467, USA
| | | | | | | | | |
Collapse
|
45
|
Parks CG, Walitt BT, Pettinger M, Chen JC, de Roos AJ, Hunt J, Sarto G, Howard BV. Insecticide use and risk of rheumatoid arthritis and systemic lupus erythematosus in the Women's Health Initiative Observational Study. Arthritis Care Res (Hoboken) 2011; 63:184-94. [PMID: 20740609 PMCID: PMC3593584 DOI: 10.1002/acr.20335] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Farming and agricultural pesticide use has been associated with 2 autoimmune rheumatic diseases, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). However, risk associated with other residential or work place insecticide use is unknown. METHODS We analyzed data from the Women's Health Initiative Observational Study (n=76,861 postmenopausal women, ages 50-79 years). Incident cases (n=213: 178 for RA, 27 for SLE, and 8 for both) were identified based on self-report and use of disease-modifying antirheumatic drugs at year 3 of followup. We examined self-reported residential or work place insecticide use (personally mixing/applying by self and application by others) in relation to RA/SLE risk, overall and in relation to farm history. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were adjusted for age, race, region, education, occupation, smoking, reproductive factors, asthma, other autoimmune diseases, and comorbidities. RESULTS Compared with never used, personal use of insecticides was associated with increased RA/SLE risk, with significant trends for greater frequency (HR 2.04, 95% CI 1.17-3.56 for ≥6 times/year) and duration (HR 1.97, 95% CI 1.20-3.23 for ≥20 years). Risk was also associated with long-term insecticide application by others (HR 1.85, 95% CI 1.07-3.20 for ≥20 years) and frequent application by others among women with a farm history (HR 2.73, 95% CI 1.10-6.78 for ≥6 times/year). CONCLUSION These results suggest residential and work place insecticide exposure is associated with the risk of autoimmune rheumatic diseases in postmenopausal women. Although these findings require replication in other populations, they support a role for environmental pesticide exposure in the development of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Christine G Parks
- National Institute for Environmental Health Science, Durham, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Prior exposure to organophosphorus and organochlorine pesticides increases the allergic potential of environmental chemical allergens in a local lymph node assay. Toxicol Lett 2010; 199:347-56. [DOI: 10.1016/j.toxlet.2010.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 12/20/2022]
|
47
|
Venegas-Pont M, Ryan MJ. Can estrogens promote hypertension during systemic lupus erythematosus? Steroids 2010; 75:766-71. [PMID: 20178809 PMCID: PMC2896984 DOI: 10.1016/j.steroids.2010.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/10/2010] [Accepted: 02/14/2010] [Indexed: 11/29/2022]
Abstract
SLE is a chronic autoimmune inflammatory disorder that predominantly affects young women. Based on this observation, it has been speculated that sex steroids, particularly estrogens, contribute to SLE disease progression. Young women with SLE are at an increased risk for the development of hypertension yet the reasons for this are unclear. One potential mechanism for the increased risk of hypertension during SLE is the chronic inflammation caused by immune complex mediated tissue injury. Estrogens are known to have an immunomodulatory role that can lead to the production of characteristic autoantibodies important for immune complex formation. Therefore, it is conceivable that during SLE estrogens contribute to tissue injury, increased inflammation and hypertension. This brief review discusses the increased risk for hypertension during SLE, the role of estrogens in immune system function, evidence for estrogens in SLE, and a possible link between estrogens and SLE hypertension.
Collapse
Affiliation(s)
- Marcia Venegas-Pont
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States
| | | |
Collapse
|
48
|
Fortes C. Lupus erythematosus. Are residential insecticides exposure the missing link? Med Hypotheses 2010; 75:590-3. [PMID: 20719436 DOI: 10.1016/j.mehy.2010.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/23/2010] [Indexed: 11/16/2022]
Abstract
Although the etiology of systemic lupus erythematosus (SLE) remains to be fully elucidated, it is now apparent that multiple genetic and environmental factors are at play. Because lupus has a strong female preponderance, several studies have examined the role of female hormones in disease etiology. Yet this knowledge has not helped to explain lupus etiology or to prevent it. Estrogens exist not only as natural or drug compounds, but also as environmental chemical contaminant and women are highly exposed to all of them. Estrogenic activity has been found in a number of pesticides including pyrethroids that are largely used in the household. Although there is only a small amount of published data examining a possible causal relationship between lupus and pesticides it can be hypothesized that pesticides, in particular insecticides, through their estrogenic activity and capacity to induce oxidative stress provoke autoimmune reaction influencing lupus development.
Collapse
Affiliation(s)
- Cristina Fortes
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata, IDI, Via dei Monti di Creta 104, 00167 Roma, Italy.
| |
Collapse
|
49
|
Abstract
Susceptibility to most autoimmune diseases is dependent on polygenic inheritance, environmental factors, and poorly defined stochastic events. One of the significant challenges facing autoimmune disease research is in identifying the specific events that trigger loss of tolerance and autoimmunity. Although many intrinsic factors, including age, sex, and genetics, contribute to autoimmunity, extrinsic factors such as drugs, chemicals, microbes, or other environmental factors can also act as important initiators. This review explores how certain extrinsic factors, namely, drugs and chemicals, can promote the development of autoimmunity, focusing on a few better characterized agents that, in most instances, have been shown to produce autoimmune manifestations in human populations. Mechanisms of autoimmune disease induction are discussed in terms of research obtained using specific animal models. Although a number of different pathways have been delineated for drug/chemical-induced autoimmunity, some similarities do exist, and a working model is proposed.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | |
Collapse
|
50
|
Li J, McMurray RW. Effects of chronic exposure to DDT and TCDD on disease activity in murine systemic lupus erythematosus. Lupus 2010; 18:941-9. [PMID: 19762394 DOI: 10.1177/0961203309104431] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oestrogens contribute to the female preponderance of autoimmune diseases such as systemic lupus erythematosus (SLE). Environmental xenoestrogens superimposed upon endogenous pituitary-gonadal axis may affect the development of autoimmunity. This study examined the effects of chronic exposure to xenoestrogens -- o,p'-dichlorodiphenyltrichloroethane (DDT) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on disease activity in the New Zealand Black/New Zealand White F1 hybrid (B/W) mouse model of SLE. Intact female mice had repeatedly received injections of DDT, TCDD or control vehicle since 6 weeks of age. Weight change, albuminuria, mortality, relevant immunological and histological parameters were assessed. DDT exposure markedly increased the incidence of albuminuria and reduced uterine weight but had no measured effects on immunity or mortality in this study. TCDD-exposed mice had significantly lower incidence of albuminuria, serum anti-DNA antibody and total IgG levels, and mortality compared to controls. Also, TCDD group had significantly lower thymic and splenic weights, decreased percentages of CD4(+)CD8(+) thymocytes and splenic CD4(+) T cells, increased percentage of splenic B220(+)sIgM(+) B cells and higher serum interferon gamma concentration. Taken together, DDT exposure appeared to accelerate the development of albuminuria in lupus-prone mice. TCDD was immunosuppressive to murine SLE. Xenoestrogens may have compound- and tissue-specific effects that require further elucidation in future work.
Collapse
Affiliation(s)
- J Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, China Medical University, Shenyang, PR China.
| | | |
Collapse
|