1
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
2
|
Xu T, Kirkpatrick A, Toperzer J, Ripp S, Close D. Improving Estrogenic Compound Screening Efficiency by Using Self-Modulating, Continuously Bioluminescent Human Cell Bioreporters Expressing a Synthetic Luciferase. Toxicol Sci 2020; 168:551-560. [PMID: 30629247 PMCID: PMC6432866 DOI: 10.1093/toxsci/kfz004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A synthetic bacterial luciferase-based autobioluminescent bioreporter, HEK293ERE/Gal4-Lux, was developed in a human embryonic kidney (HEK293) cell line for the surveillance of chemicals displaying endocrine disrupting activity. Unlike alternative luminescent reporters, this bioreporter generates bioluminescence autonomously without requiring an external light-activating chemical substrate or cellular destruction. The bioreporter's performance was validated against a library of 76 agonistic and antagonistic estrogenic endocrine disruptor chemicals and demonstrated reproducible half maximal effective concentration (EC50) values meeting the U.S. Environmental Protection Agency (EPA) guidelines for Tier 1 endocrine disrupting chemical screening assays. For model compounds, such as the estrogen receptor (ER) agonist 17β-estradiol, HEK293ERE/Gal4-Lux demonstrated an EC50 value (7.9 × 10-12 M) comparable to that of the current EPA-approved HeLa-9903 firefly luciferase-based estrogen receptor transcription assay (4.6 × 10-12 M). Screening against an expanded array of common ER agonists likewise produced similar relative effect potencies as compared with existing assays. The self-initiated autobioluminescent signal of the bioreporter permitted facile monitoring of the effects of endocrine disrupting chemicals, which decreased the cost and hands-on time required to perform these assays. These characteristics make the HEK293ERE/Gal4-Lux bioreporter potentially suitable as a high-throughput human cell-based assay for screening estrogenic activity.
Collapse
Affiliation(s)
- Tingting Xu
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996
| | | | | | - Steven Ripp
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996
| | - Dan Close
- 490 BioTech, Inc., Knoxville, Tennessee 37996
| |
Collapse
|
3
|
Choi SI, Lee JS, Lee S, Sim WS, Kim YC, Lee OH. Potentilla rugulosa Nakai Extract Attenuates Bisphenol A-, S- and F-Induced ROS Production and Differentiation of 3T3-L1 Preadipocytes in the Absence of Dexamethasone. Antioxidants (Basel) 2020; 9:antiox9020113. [PMID: 32012803 PMCID: PMC7071078 DOI: 10.3390/antiox9020113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) disrupt the physiological metabolism, thus playing an important role in the development of obesity. EDCs, the so-called ‘obesogens’, might predispose some individuals to gain weight. This study investigated the effects of bisphenol A (BPA) and its alternatives (BPS and BPF) on adipocyte differentiation and the effects of the leaves of Potentilla rugulosa Nakai extract (LPE) as a functional food ingredient on obesogen-induced lipid production and adipogenesis in 3T3-L1 cells. The results showed that LPE has high total phenolic and flavonoid contents (77.58 ± 0.57 mg gallic acid equivalents (GAE)/g and 57.31 ± 1.72 mg quercetin equivalents (QE)/g, respectively). In addition, LPE exerted significant antioxidant effects in terms of DPPH radical scavenging activity, reducing power, ferric-ion reducing antioxidant power, and oxygen radical absorbance capacity. BPA, BPS, and BPF increased lipid accumulation, protein expressions of adipogenic transcription factors (PPAR-γ, C/EBP-α, and aP2), and reactive oxygen species (ROS) production in 3T3-L1 cells. However, LPE suppressed the BPA-, BPS-, and BPF-induced effects on adipogenesis. Therefore, LPE has potential as a functional food supplement that can prevent bisphenol-induced lipid metabolism disorders.
Collapse
Affiliation(s)
- Sun-Il Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (W.-S.S.)
| | - Jong Seok Lee
- National Institute of Biological Resources, Incheon 22689, Korea; (J.S.L.); (S.L.)
| | - Sarah Lee
- National Institute of Biological Resources, Incheon 22689, Korea; (J.S.L.); (S.L.)
| | - Wan-Sup Sim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (W.-S.S.)
| | - Young-Cheul Kim
- Department of Nutrition, University of Massachusetts Amherst, MA 01003, USA;
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (W.-S.S.)
- Correspondence: ; Tel.: +82-33-250-6454; Fax: +82-33-259-5565
| |
Collapse
|
4
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Myers JP, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT. Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reprod Toxicol 2013; 38:1-15. [PMID: 23411111 PMCID: PMC3902067 DOI: 10.1016/j.reprotox.2013.02.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 02/05/2023]
Abstract
For years, scientists from various disciplines have studied the effects of endocrine disrupting chemicals (EDCs) on the health and wellbeing of humans and wildlife. Some studies have specifically focused on the effects of low doses, i.e. those in the range that are thought to be safe for humans and/or animals. Others have focused on the existence of non-monotonic dose-response curves. These concepts challenge the way that chemical risk assessment is performed for EDCs. Continued discussions have clarified exactly what controversies and challenges remain. We address several of these issues, including why the study and regulation of EDCs should incorporate endocrine principles; what level of consensus there is for low dose effects; challenges to our understanding of non-monotonicity; and whether EDCs have been demonstrated to produce adverse effects. This discussion should result in a better understanding of these issues, and allow for additional dialog on their impact on risk assessment.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Center for Regenerative & Developmental Biology, and Department of Biology, Tufts University, Medford, MA, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ocampo-Duque W, Juraske R, Kumar V, Nadal M, Domingo JL, Schuhmacher M. A concurrent neuro-fuzzy inference system for screening the ecological risk in rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:983-999. [PMID: 22544552 DOI: 10.1007/s11356-011-0595-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/23/2011] [Indexed: 05/31/2023]
Abstract
PURPOSE A conceptual model to assess water quality in river basins was developed here. The model was based on ecological risk assessment principles, and incorporated a novel ranking and scoring system, based on self-organizing maps, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater. This approach was used to study the chemical pollution in the Ebro River basin (Spain), whose currently applied environmental indices must be revised in terms of scientific accuracy. METHODS Ecological hazard indexes for chemical substances were calculated by pattern recognition of persistence, bioaccumulation, and toxicity properties. A fuzzy inference system was proposed to compute ecological risk points (ERP), which are a combination of the ecological hazard to aquatic sensitive organisms and environmental concentrations. By aggregating ERP, changes in water quality over time were estimated. RESULTS The proposed concurrent neuro-fuzzy model was applied to a comprehensive dataset of the network controlling the levels of dangerous substances, such as metals, pesticides, and polycyclic aromatic hydrocarbons, in the Ebro river basin. The approach was verified by comparison versus biological monitoring. The results showed that water quality in the Ebro river basin is affected by presence of micro-pollutants. CONCLUSIONS The ERP approach is suitable to analyze overall trends of potential threats to freshwater ecosystems by anticipating the likely impacts from multiple substances, although it does not account for synergies among pollutants. Anyhow, the model produces a convenient indicator to search for pollutant levels of concern.
Collapse
|
6
|
Milligan SR, Holt WV, Lloyd R. Impacts of climate change and environmental factors on reproduction and development in wildlife. Philos Trans R Soc Lond B Biol Sci 2010; 364:3313-9. [PMID: 19833643 DOI: 10.1098/rstb.2009.0175] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The robustness of the growth of the human population in the face of environmental impacts is in contrast to the sensitivity of wildlife. There is a danger that the success of reproduction of humans provides a false sense of security for the public, media and politicians with respect to wildlife survival, the maintenance of viable ecosystems and the capacity for recovery of damaged ecosystems and endangered species. In reality, the success of humans to populate the planet has been dependent on the combination of the ability to reproduce successfully and to minimize loss of offspring through controlling and manipulating their own micro-environment. In contrast, reproduction in wildlife is threatened by environmental changes operating at many different physiological levels.
Collapse
Affiliation(s)
- Stuart R Milligan
- School of Biomedical and Health Sciences, King's College London, London Bridge Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|
7
|
Scholz S, Mayer I. Molecular biomarkers of endocrine disruption in small model fish. Mol Cell Endocrinol 2008; 293:57-70. [PMID: 18619515 DOI: 10.1016/j.mce.2008.06.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/05/2008] [Accepted: 06/11/2008] [Indexed: 12/25/2022]
Abstract
A wide range of environmental contaminants can interfere with hormonal regulation in vertebrates. These endocrine disrupting chemicals (EDCs) are of high relevance for human and wildlife health, since endocrine signalling controls many essential physiological processes which impact on the individual's health, such as growth and development, stress response, and ultimately reproduction and population development. Small fish represent a cost-effective model for testing potential EDCs allowing the possibility to integrate from molecular to phenotypic and functional effects. We have comprehensively reviewed exposure-effect data from four different small model fish: zebrafish, medaka, fathead minnow, and the three-spined stickleback. The majority of available data refer to EDCs interfering with reproductive hormones. However, we have also included interactions with other hormone systems, particularly the thyroid hormones. We demonstrate that the available data clearly indicates the predictive potential of molecular biomarkers, supporting the development and regulatory application of simple molecular-based screening assays using small model fish for EDC testing.
Collapse
|
8
|
Fickel J, Wagener A, Ludwig A. Semen cryopreservation and the conservation of endangered species. EUR J WILDLIFE RES 2007. [DOI: 10.1007/s10344-007-0089-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Meyer KJ, Reif JS, Veeramachaneni DR, Luben TJ, Mosley BS, Nuckols JR. Agricultural pesticide use and hypospadias in eastern Arkansas. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1589-95. [PMID: 17035148 PMCID: PMC1626392 DOI: 10.1289/ehp.9146] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 07/05/2006] [Indexed: 05/05/2023]
Abstract
INTRODUCTION We assessed the relationship between hypospadias and proximity to agricultural pesticide applications using a GIS-based exposure method. METHODS We obtained information for 354 cases of hypospadias born between 1998 and 2002 in eastern Arkansas; 727 controls were selected from birth certificates. We classified exposure on pounds of pesticides (estimated by crop type) applied or persisting within 500 m of each subject's home during gestational weeks 6 to 16. We restricted our analyses to 38 pesticides with some evidence of reproductive, developmental, estrogenic, and/or antiandrogenic effects. We estimated timing of pesticide applications using crop phenology and published records. RESULTS Gestational age at birth [odds ratio (OR) = 0.91; 95% confidence interval (CI), 0.83-0.99], parity (OR = 0.79; 95% CI, 0.65-0.95), and delaying prenatal care until the third trimester (OR = 4.04; 95% CI, 1.46-11.23) were significantly associated with hypospadias. Risk of hypospadias increased by 8% for every 0.05-pound increase in estimated exposure to diclofop-methyl use (OR = 1.08; 95% CI, 1.01-1.15). Pesticide applications in aggregate (OR = 0.82; 95% CI, 0.70-0.96) and applications of alachlor (OR = 0.56; 95% CI, 0.35-0.89) and permethrin (OR = 0.37; 95% CI, 0.16-0.86) were negatively associated with hypospadias. CONCLUSIONS Except for diclofop-methyl, we did not find evidence that estimated exposure to pesticides known to have reproductive, developmental, or endocrine-disrupting effects increases risk of hypospadias. Further research on the potential effects of exposure to diclofop-methyl is recommended.
Collapse
Affiliation(s)
- Kristy J. Meyer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John S. Reif
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Thomas J. Luben
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bridget S. Mosley
- Arkansas Center for Birth Defects Research and Prevention, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, USA
| | - John R. Nuckols
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
10
|
Jobling S, Tyler CR. Introduction: The ecological relevance of chemically induced endocrine disruption in wildlife. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114 Suppl 1:7-8. [PMID: 16818239 PMCID: PMC1874178 DOI: 10.1289/ehp.8046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Susan Jobling
- Beyond The Basics Ltd, Burnham, Bucks, United Kingdom
| | | |
Collapse
|