1
|
Chen Q, Yi S, Sun Y, Zhu Y, Ma K, Zhu L. Contribution of Continued Dermal Exposure of PFAS-Containing Sunscreens to Internal Exposure: Extrapolation from In Vitro and In Vivo Tests to Physiologically Based Toxicokinetic Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39155535 DOI: 10.1021/acs.est.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely present in sunscreen products as either active ingredients or impurities. They may penetrate the human skin barrier and then pose potential health risks. Herein, we aimed to develop a physiologically based toxicokinetic (PBTK) model capable of predicting the body loading of PFASs after repeated, long-term dermal application of commercial sunscreens. Ten laboratory-prepared sunscreens, generally falling into two categories of water-in-oil (W/O) and oil-in-water (O/W) sunscreens, were subject to in vitro percutaneous penetration test to assess the impacts of four sunscreen ingredients on PFAS penetration. According to the results, two sunscreen formulas representing W/O and O/W types that mostly enhanced PFAS dermal absorption were then selected for a subsequent 30 day in vivo exposure experiment in mice. PBTK models were successfully established based on the time-dependent PFAS concentrations in mouse tissues (R2 = 0.885-0.947) and validated through another 30 day repeated exposure experiment in mice using two commercially available sunscreens containing PFASs (R2 = 0.809-0.835). The PBTK model results suggest that applying sunscreen of the same amount on a larger skin area is more conducive to PFAS permeation, thus enhancing the exposure risk. This emphasizes the need for caution in practical sunscreen application scenarios, particularly during the summer months.
Collapse
Affiliation(s)
- Qiaoying Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kaiyuan Ma
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Zhu Y, Pan X, Jia Y, Yang X, Song X, Ding J, Zhong W, Feng J, Zhu L. Exploring Route-Specific Pharmacokinetics of PFAS in Mice by Coupling in Vivo Tests and Physiologically Based Toxicokinetic Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127012. [PMID: 38088889 PMCID: PMC10718298 DOI: 10.1289/ehp11969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Oral ingestion, inhalation, and skin contact are important exposure routes for humans to uptake per- and polyfluoroalkyl substances (PFAS). However, nasal and dermal exposure to PFAS remains unclear, and accurately predicting internal body burden of PFAS in humans via multiple exposure pathways is urgently required. OBJECTIVES We aimed to develop multiple physiologically based toxicokinetic (PBTK) models to unveil the route-specific pharmacokinetics and bioavailability of PFAS via respective oral, nasal, and dermal exposure pathways using a mouse model and sought to predict the internal concentrations in various tissues through multiple exposure routes and extrapolate it to humans. METHODS Mice were administered the mixed solution of perfluorohexane sulfonate, perfluorooctane sulfonate, and perfluorooctanoic acid through oral, nasal, and dermal exposure separately or jointly. The time-dependent concentrations of PFAS in plasma and tissues were determined to calibrate and validate the individual and combined PBTK models, which were applied in single- and repeated-dose scenarios. RESULTS The developed route-specific PBTK models successfully simulated the tissue concentrations of PFAS in mice following single or joint exposure routes as well as long-term repeated dose scenarios. The time to peak concentration of PFAS in plasma via dermal exposure was much longer (34.1-83.0 h) than that via nasal exposure (0.960 h). The bioavailability of PFAS via oral exposure was the highest (73.2%-98.0%), followed by nasal (33.9%-66.8%) and dermal exposure (4.59%-7.80%). This model was extrapolated to predict internal levels in human under real environment. DISCUSSION Based on these data, we predict the following: PFAS were absorbed quickly via nasal exposure, whereas a distinct hysteresis effect was observed for dermal exposure. Almost all the PFAS to which mice were exposed via gastrointestinal route were absorbed into plasma, which exhibited the highest bioavailability. Exhalation clearance greatly depressed the bioavailability of PFAS via nasal exposure, whereas the lowest bioavailability in dermal exposure was because of the interception of PFAS within the skin layers. https://doi.org/10.1289/EHP11969.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaoyu Pan
- Beijing Sankuai Online Technology Co., Ltd., Beijing, P. R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jiaqi Ding
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| |
Collapse
|
3
|
Kapraun DF, Schlosser PM, Nylander-French LA, Kim D, Yost EE, Druwe IL. A Physiologically Based Pharmacokinetic Model for Naphthalene With Inhalation and Skin Routes of Exposure. Toxicol Sci 2021; 177:377-391. [PMID: 32687177 DOI: 10.1093/toxsci/kfaa117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Naphthalene, a volatile organic compound present in moth repellants and petroleum-based fuels, has been shown to induce toxicity in mice and rats during chronic inhalation exposures. Although simpler default methods exist for extrapolating toxicity points of departure from animals to humans, using a physiologically based pharmacokinetic (PBPK) model to perform such extrapolations is generally preferred. Confidence in PBPK models increases when they have been validated using both animal and human in vivo pharmacokinetic (PK) data. A published inhalation PBPK model for naphthalene was previously shown to predict rodent PK data well, so we sought to evaluate this model using human PK data. The most reliable human data available come from a controlled skin exposure study, but the inhalation PBPK model does not include a skin exposure route; therefore, we extended the model by incorporating compartments representing the stratum corneum and the viable epidermis and parameters that determine absorption and rate of transport through the skin. The human data revealed measurable blood concentrations of naphthalene present in the subjects prior to skin exposure, so we also introduced a continuous dose-rate parameter to account for these baseline blood concentration levels. We calibrated the three new parameters in the modified PBPK model using data from the controlled skin exposure study but did not modify values for any other parameters. Model predictions then fell within a factor of 2 of most (96%) of the human PK observations, demonstrating that this model can accurately predict internal doses of naphthalene and is thus a viable tool for use in human health risk assessment.
Collapse
Affiliation(s)
- Dustin F Kapraun
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711
| | - Paul M Schlosser
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711
| | - Leena A Nylander-French
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - David Kim
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Erin E Yost
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711
| | - Ingrid L Druwe
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711
| |
Collapse
|
4
|
Yost EE, Galizia A, Kapraun DF, Persad AS, Vulimiri SV, Angrish M, Lee JS, Druwe IL. Health Effects of Naphthalene Exposure: A Systematic Evidence Map and Analysis of Potential Considerations for Dose-Response Evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:76002. [PMID: 34251878 PMCID: PMC8274693 DOI: 10.1289/ehp7381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Naphthalene is a polycyclic aromatic hydrocarbon that has been associated with health effects, including cancer. As the state of the science on naphthalene toxicity continues to evolve, updated toxicity reference value(s) may be required to support human health risk assessment. OBJECTIVES We present a systematic evidence map of studies that could be used to derive toxicity reference value(s) for naphthalene. METHODS Human and animal health effect studies and physiologically based pharmacokinetic (PBPK) models were identified from a literature search based on populations, exposures, comparators, and outcomes (PECO) criteria. Human and animal studies meeting PECO criteria were refined to a smaller subset considered most informative for deriving chronic reference value(s), which are preferred for assessing risk to the general public. This subset was evaluated for risk of bias and sensitivity, and the suitability of each study for dose-response analysis was qualitatively assessed. Lowest observed adverse effect levels (LOAELs) were extracted and summarized. Other potentially relevant studies (e.g., mechanistic and toxicokinetic studies) were tracked as supplemental information but not evaluated further. Existing reference values for naphthalene are also summarized. RESULTS We identified 26 epidemiology studies and 16 animal studies that were considered most informative for further analysis. Eleven PBPK models were identified. The available epidemiology studies generally had significant risk of bias and/or sensitivity concerns and were mostly found to have low suitability for dose-response analysis due to the nature of the exposure measurements. The animal studies had fewer risk of bias and sensitivity concerns and were mostly found to be suitable for dose-response analysis. CONCLUSION Although both epidemiological and animal studies of naphthalene provide weight of evidence for hazard identification, the available animal studies appear more suitable for reference value derivation. PBPK models and mechanistic and toxicokinetic data can be applied to extrapolate these animal data to humans, considering mode of action and interspecies metabolic differences. https://doi.org/10.1289/EHP7381.
Collapse
Affiliation(s)
- Erin E. Yost
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Audrey Galizia
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Dustin F. Kapraun
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Amanda S. Persad
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Suryanarayana V. Vulimiri
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Janice S. Lee
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Ingrid L. Druwe
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Kamal A, Cincinelli A, Martellini T, Malik RN. A review of PAH exposure from the combustion of biomass fuel and their less surveyed effect on the blood parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4076-4098. [PMID: 25410307 DOI: 10.1007/s11356-014-3748-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Many epidemiological studies from all over the world have reported that populations of rural and urban environments differ in their health issues due to the differences in the countrywide pollution pattern. In developing countries, various occupational cohorts and subsections of the population in urban and rural areas are routinely exposed to several environmentally widespread contaminants. Polycyclic aromatic hydrocarbons (PAHs) are a group of over hundred different compounds and have ubiquitous presence in rural and urban environments. Smoke from the combustion of biomass fuel contains a high concentration of carcinogenic PAHs, which are related with several human morbidities. The sources and types of biomass fuel are diverse and wide in distribution. Limited numbers of literature reports have focused the significant impact of PAHs on several components of blood, both in human and wildlife. The toxicity of PAHs to rapidly dividing cells (e.g., bone marrow cells) and other tissues is largely attributed to their reactive oxygenated metabolites, potential of causing oxidative stress, and the adducts of their metabolites with DNA. This review aims to encompass the blood-related effects of PAHs and associated human health risks-an aspect that needs further research-on the population of developing countries of the world in particular.
Collapse
Affiliation(s)
- Atif Kamal
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan,
| | | | | | | |
Collapse
|
6
|
Pleil JD, Stiegel MA, Fent KW. Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns. J Breath Res 2014; 8:037107. [DOI: 10.1088/1752-7155/8/3/037107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Campbell JL, Andersen ME, Clewell HJ. A hybrid CFD-PBPK model for naphthalene in rat and human with IVIVE for nasal tissue metabolism and cross-species dosimetry. Inhal Toxicol 2014; 26:333-44. [PMID: 24666369 DOI: 10.3109/08958378.2014.896059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A PBPK model for naphthalene in the rat and human that incorporates a hybrid CFD-PBPK description of the upper respiratory tract was developed to support cross-species dosimetry comparisons of naphthalene concentrations and tissue normalized rate of metabolism in the nasal respiratory and olfactory epithelium, lung and liver. In vitro measurements of metabolic rates from microsomal incubations published for rat and monkey (surrogate for human) were scaled to the specific tissue based on the tissue microsomal content and volume of tissue. The model reproduces time courses for naphthalene blood concentrations from intravenous and inhalation exposures in rats and upper respiratory tract extraction data in both naïve rats and rats pre-treated to inhibit nasal metabolism. This naphthalene model was applied to estimate human equivalent inhalation concentrations (HECs) corresponding to several NOAELs or LOAELs for the non-cancer effects of naphthalene in rats. Two approaches for cross-species extrapolation were compared: (1) equivalence based on tissue naphthalene concentration and (2) equivalence based on amount metabolized per minute (normalized to tissue volume). At the NOAEL of 0.1 ppm, the regional gas dosimetry ratio (RGDR) based on naphthalene concentration was 0.18 for the dorsal olfactory region; however, the RGDR rises to 5.4 when based on the normalized amount metabolized due to the lower of expression of CYP isozymes in the nasal epithelium of primates and humans. The resulting HEC is 0.12 ppm (0.63 mg/m(3)) continuous exposure at the rat NOAEL of 0.1 ppm (6 h/day, 5 days/week).
Collapse
Affiliation(s)
- Jerry L Campbell
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences , Research Triangle Park, NC , USA
| | | | | |
Collapse
|
8
|
Krieg EF, Mathias PI, Toennis CA, Clark JC, Marlow KL, B’Hymer C, Singh NP, Gibson RL, Butler MA. Detection of DNA damage in workers exposed to JP-8 jet fuel. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:218-27. [DOI: 10.1016/j.mrgentox.2012.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 11/26/2022]
|
9
|
Wertz MS, Kyriss T, Paranjape S, Glantz SA. The toxic effects of cigarette additives. Philip Morris' project mix reconsidered: an analysis of documents released through litigation. PLoS Med 2011; 8:e1001145. [PMID: 22205885 PMCID: PMC3243707 DOI: 10.1371/journal.pmed.1001145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 11/07/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In 2009, the promulgation of US Food and Drug Administration (FDA) tobacco regulation focused attention on cigarette flavor additives. The tobacco industry had prepared for this eventuality by initiating a research program focusing on additive toxicity. The objective of this study was to analyze Philip Morris' Project MIX as a case study of tobacco industry scientific research being positioned strategically to prevent anticipated tobacco control regulations. METHODS AND FINDINGS We analyzed previously secret tobacco industry documents to identify internal strategies for research on cigarette additives and reanalyzed tobacco industry peer-reviewed published results of this research. We focused on the key group of studies conducted by Phillip Morris in a coordinated effort known as "Project MIX." Documents showed that Project MIX subsumed the study of various combinations of 333 cigarette additives. In addition to multiple internal reports, this work also led to four peer-reviewed publications (published in 2001). These papers concluded that there was no evidence of substantial toxicity attributable to the cigarette additives studied. Internal documents revealed post hoc changes in analytical protocols after initial statistical findings indicated an additive-associated increase in cigarette toxicity as well as increased total particulate matter (TPM) concentrations in additive-modified cigarette smoke. By expressing the data adjusted by TPM concentration, the published papers obscured this underlying toxicity and particulate increase. The animal toxicology results were based on a small number of rats in each experiment, raising the possibility that the failure to detect statistically significant changes in the end points was due to underpowering the experiments rather than lack of a real effect. CONCLUSION The case study of Project MIX shows tobacco industry scientific research on the use of cigarette additives cannot be taken at face value. The results demonstrate that toxins in cigarette smoke increase substantially when additives are put in cigarettes, including the level of TPM. In particular, regulatory authorities, including the FDA and similar agencies elsewhere, could use the Project MIX data to eliminate the use of these 333 additives (including menthol) from cigarettes.
Collapse
Affiliation(s)
- Marcia S. Wertz
- Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, California, United States of America
- Department of Social and Behavioral Sciences, School of Nursing, University of California San Francisco San Francisco, California, United States of America
| | - Thomas Kyriss
- Thoracic Surgery, Schillerhoehe Hospital, Gerlingen, Germany
| | - Suman Paranjape
- Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, California, United States of America
| | - Stanton A. Glantz
- Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
10
|
Sobus JR, Tan YM, Pleil JD, Sheldon LS. A biomonitoring framework to support exposure and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:4875-84. [PMID: 21906784 DOI: 10.1016/j.scitotenv.2011.07.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/17/2011] [Accepted: 07/18/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Biomonitoring is used in exposure and risk assessments to reduce uncertainties along the source-to-outcome continuum. Specifically, biomarkers can help identify exposure sources, routes, and distributions, and reflect kinetic and dynamic processes following exposure events. A variety of computational models now utilize biomarkers to better understand exposures at the population, individual, and sub-individual (target) levels. However, guidance is needed to clarify biomonitoring use given available measurements and models. OBJECTIVE This article presents a biomonitoring research framework designed to improve biomarker use and interpretation in support of exposure and risk assessments. DISCUSSION The biomonitoring research framework is based on a modified source-to-outcome continuum. Five tiers of biomonitoring analyses are included in the framework, beginning with simple cross-sectional and longitudinal analyses, and ending with complex analyses using various empirical and mechanistic models. Measurements and model requirements of each tier are given, as well as considerations to enhance analyses. Simple theoretical examples are also given to demonstrate applications of the framework for observational exposure studies. CONCLUSION This biomonitoring framework can be used as a guide for interpreting existing biomarker data, designing new studies to answer specific exposure- and risk-based questions, and integrating knowledge across scientific disciplines to better address human health risks.
Collapse
Affiliation(s)
- Jon R Sobus
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA.
| | | | | | | |
Collapse
|
11
|
Kang-Sickel JCC, Butler MA, Frame L, Serdar B, Chao YCE, Egeghy P, Rappaport SM, Toennis CA, Li W, Borisova T, French JE, Nylander-French LA. The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure. Biomarkers 2011; 16:590-9. [PMID: 21961652 DOI: 10.3109/1354750x.2011.611598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). The NKA, post-exposure breath naphthalene, and male gender were associated with an increase, while CYP2E1*6 DD and GSTT1-plus (++/+-) genotypes were associated with a decrease in urine naphthalene level (p < 0.0001). The NKA show great promise as biomarkers for dermal exposure to naphthalene. Further studies are warranted to characterize the relationship between NKA, other exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH exposure.
Collapse
Affiliation(s)
- Juei-Chuan C Kang-Sickel
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kang-Sickel JCC, Stober VP, French JE, Nylander-French LA. Exposure to naphthalene induces naphthyl-keratin adducts in human epidermis in vitro and in vivo. Biomarkers 2010; 15:488-97. [PMID: 20500019 PMCID: PMC2923669 DOI: 10.3109/1354750x.2010.485700] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We observed naphthyl-keratin adducts and dose-related metabolic enzyme induction at the mRNA level in reconstructed human epidermis in vitro after exposure to naphthalene. Immunofluorescence detection of 2-naphthyl-keratin-1 adducts confirmed the metabolism of naphthalene and adduction of keratin. We also observed naphthyl-keratin adducts in dermal tape-strip samples collected from naphthalene-exposed workers at levels ranging from 0.004 to 6.104 pmol adduct microg(-1) keratin. We have demonstrated the ability of the human skin to metabolize naphthalene and to form naphthyl-keratin adducts both in vitro and in vivo. The results indicate the potential use of keratin adducts as biomarkers of dermal exposure.
Collapse
Affiliation(s)
- Juei-chuan C. Kang-Sickel
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Vandy P. Stober
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John E. French
- Host Susceptibility Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Kim D, Farthing MW, Miller CT, Nylander-French LA. Mathematical description of the uptake of hydrocarbons in jet fuel into the stratum corneum of human volunteers. Toxicol Lett 2008; 178:146-51. [DOI: 10.1016/j.toxlet.2008.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
|
14
|
Kang-Sickel JCC, Fox DD, Nam TG, Jayaraj K, Ball LM, French JE, Klapper DG, Gold A, Nylander-French LA. S-Arylcysteine−Keratin Adducts as Biomarkers of Human Dermal Exposure to Aromatic Hydrocarbons. Chem Res Toxicol 2008; 21:852-8. [DOI: 10.1021/tx7003773] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juei-Chuan C. Kang-Sickel
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Donii D. Fox
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Tae-gyu Nam
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Karupiah Jayaraj
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Louise M. Ball
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - John E. French
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - David G. Klapper
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Avram Gold
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, School of Public Health, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|