1
|
Friedman C, Niemiec S, Dabelea D, Kechris K, Yang IV, Adgate JL, Glueck DH, Martenies SE, Magzamen S, Starling AP. Prenatal black carbon exposure and DNA methylation in umbilical cord blood. Int J Hyg Environ Health 2025; 263:114464. [PMID: 39332350 DOI: 10.1016/j.ijheh.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND/OBJECTIVES Prenatal exposure to ambient air pollution is associated with adverse cardiometabolic outcomes in childhood. We previously observed that prenatal black carbon (BC) was inversely associated with adiponectin, a hormone secreted by adipocytes, in early childhood. Changes to DNA methylation have been proposed as a potential mediator linking in utero exposures to lasting health impacts. METHODS Among 532 mother-child pairs enrolled in the Colorado-based Healthy Start study, we performed an epigenome-wide association study of the relationship between prenatal exposure to a component of air pollution, BC, and DNA methylation in cord blood. Average pregnancy ambient BC was estimated at the mother's residence using a spatiotemporal prediction model. DNA methylation was measured using the Illumina 450K array. We used multiple linear regression to estimate associations between prenatal ambient BC and 429,246 cysteine-phosphate-guanine sites (CpGs), adjusting for potential confounders. We identified differentially methylated regions (DMRs) using DMRff and ENmix-combp. In a subset of participants (n = 243), we investigated DNA methylation as a potential mediator of the association between prenatal ambient BC and lower adiponectin in childhood. RESULTS We identified 44 CpGs associated with average prenatal ambient BC after correcting for multiple testing. Several genes annotated to the top CpGs had reported functions in the immune system. There were 24 DMRs identified by both DMRff and ENmix-combp. One CpG (cg01123250), located on chromosome 2 and annotated to the UNC80 gene, was found to mediate approximately 20% of the effect of prenatal BC on childhood adiponectin, though the confidence interval was wide (95% CI: 3, 84). CONCLUSIONS Prenatal BC was associated with DNA methylation in cord blood at several sites and regions in the genome. DNA methylation may partially mediate associations between prenatal BC and childhood cardiometabolic outcomes.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sierra Niemiec
- Center for Innovative Design & Analysis, Department of Biostatistics & Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Pulmonary Sciences, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Liao Y, Cavalcante RG, Waller JB, Deng F, Scruggs AM, Huang YJ, Atasoy U, Chen Y, Huang SK. Differences in the DNA methylome of T cells in adults with asthma of varying severity. Clin Epigenetics 2024; 16:139. [PMID: 39380119 PMCID: PMC11459694 DOI: 10.1186/s13148-024-01750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity are less well-defined. OBJECTIVE To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. METHODS Peripheral blood T cells from 35 adults with asthma in Beijing, China, were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. RESULTS Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. CONCLUSION These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to differences in clinical indices of asthma.
Collapse
Affiliation(s)
- Yixuan Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Raymond G Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Waller
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Lee DW, Lim YH, Choi YJ, Kim S, Shin CH, Lee YA, Kim BN, Kim JI, Hong YC. Prenatal and early-life air pollutant exposure and epigenetic aging acceleration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116823. [PMID: 39096687 DOI: 10.1016/j.ecoenv.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND This study investigated the association of prenatal and early childhood exposure to air pollution with epigenetic age acceleration (EAA) at six years of age using the Environment and Development of Children Cohort (EDC Cohort) MATERIALS & METHODS: Air pollution, including particulate matter [< 2.5 µm (PM2.5) and < 10 µm (PM10) in an aerodynamic diameter], nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2) were estimated based on the residential address for two periods: 1) during the whole pregnancy, and 2) for one year before the follow-up in children at six years of age. The methylation levels in whole blood at six years of age were measured, and the methylation clocks, including Horvath's clock, Horvath's skin and blood clock, PedBE, and Wu's clock, were estimated. Multivariate linear regression models were constructed to analyze the association between EAA and air pollutants. RESULTS A total of 76 children in EDC cohort were enrolled in this study. During the whole pregnancy, interquartile range (IQR) increases in exposure to PM2.5 (4.56 μg/m3) and CO (0.156 ppm) were associated with 0.406 years and 0.799 years of EAA (Horvath's clock), respectively. An IQR increase in PM2.5 (4.76 μg/m3) for one year before the child was six years of age was associated with 0.509 years of EAA (Horvath's clock) and 0.289 years of EAA (Wu's clock). PM10 (4.30 μg/m3) and O3 (0.003 ppm) exposure in the period were also associated with EAA in Horvath's clock (0.280 years) and EAA in Horvath's skin and blood clock (0.163 years), respectively. CONCLUSION We found that prenatal and childhood exposure to ambient air pollutants is associated with EAA among children. The results suggest that air pollution could induce excess biological aging even in prenatal and early life.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inha University, Incheon, the Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, the Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, the Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, the Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, the Republic of Korea
| | - Yun-Chul Hong
- Department of Humans Systems Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
4
|
Liao Y, Cavalcante R, Waller J, Deng F, Scruggs A, Huang Y, Atasoy U, Chen Y, Huang S. Differences in the DNA Methylome of T cells in Adults With Asthma of Varying Severity. RESEARCH SQUARE 2024:rs.3.rs-4476948. [PMID: 38946998 PMCID: PMC11213176 DOI: 10.21203/rs.3.rs-4476948/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity or asthma endotypes are less well-defined. Objective To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. Methods Peripheral blood T cells from 35 adults with asthma in Beijing, China were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. Results Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. Conclusion These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to the phenotype and severity of their overall disease.
Collapse
|
5
|
Gu W, Wang T, Lin Y, Wang Y, Chen Y, Dai Y, Duan H. Particulate polycyclic aromatic hydrocarbons and metals, DNA methylation and DNA methyltransferase among middle-school students in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172087. [PMID: 38561129 DOI: 10.1016/j.scitotenv.2024.172087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The main components of particulate matter (PM) had been reported to change DNA methylation levels. However, the mixed effect of PM and its constituents on DNA methylation and the underlying mechanism in children has not been well characterized. To investigate the association between single or mixture exposures and global DNA methylation or DNA methyltransferases (DNMTs), 273 children were recruited (110 in low-exposed area and 163 in high-exposed area) in China. Serum benzo[a]pyridin-7,8-dihydroglycol-9, 10-epoxide (BPDE)-albumin adduct and urinary metals were determined as exposure markers. The global DNA methylation (% 5mC) and the mRNA expression of DNMT1, and DNMT3A were measured. The linear regression, quantile-based g-computation (QGC), and mediation analyses were performed to investigate the effects of individual and mixture exposure. We found that significantly lower levels of % 5mC (P < 0.001) and the mRNA expression of DNMT3A in high-PM exposed group (P = 0.031). After adjustment for age, gender, BMI z-score, detecting status of urinary cotinine, serum folate, and white blood cells, urinary arsenic (As) was negatively correlated with the % 5mC. One IQR increase in urinary As (19.97 μmol/mol creatinine) was associated with a 11.06 % decrease in % 5mC (P = 0.026). Serum BPDE-albumin adduct and urinary cadmium (Cd) were negatively correlated with the levels of DNMT1 and DNMT3A (P < 0.05). Mixture exposure was negatively associated with expression of DNMT3A in QGC analysis (β: -0.19, P < 0.001). Mixture exposure was significantly associated with decreased % 5mC in the children with non-detected cotinine or normal serum folate (P < 0.05), which the most contributors were PAHs and As. The mediated effect of hypomethylation through DNMT1 or DNMT3A pathway was not observed. Our findings indicated that individual and mixture exposure PAHs and metal components had negative associations with global DNA methylation and decreased DNMT3A expression significantly in school-age individuals.
Collapse
Affiliation(s)
- Wen Gu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yang Lin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Beijing Chaoyang District Center for Disease Prevention and Control, Beijing 100021, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; State Key Laboratory of Trauma and Chemical Poisoning, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yufei Dai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; State Key Laboratory of Trauma and Chemical Poisoning, China.
| |
Collapse
|
6
|
Lee S, Sbihi H, MacIsaac JL, Balshaw R, Ambalavanan A, Subbarao P, Mandhane PJ, Moraes TJ, Turvey SE, Duan Q, Brauer M, Brook JR, Kobor MS, Jones MJ. Persistent DNA Methylation Changes across the First Year of Life and Prenatal NO2 Exposure in a Canadian Prospective Birth Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47004. [PMID: 38573328 DOI: 10.1289/ehp13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO 2 ) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO 2 exposure. METHODS Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO 2 (n = 128 ) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n = 124 ). Postnatal-specific DNAm differences (n = 125 ) were isolated, and their association with NO 2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO 2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS At birth (n = 128 ), 18 regions of DNAm were associated with NO 2 , with several annotated to HOX genes. Some of these regions were specifically identified in males (n = 73 ), but not females (n = 55 ). The effect of prenatal NO 2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION Regional cord blood DNAm differences associated with prenatal NO 2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.
Collapse
Affiliation(s)
- Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Hind Sbihi
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Robert Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Padmaja Subbarao
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Theo J Moraes
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Schrott R, Feinberg JI, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Fallin MD, Volk HE, Ladd-Acosta C, Feinberg AP. Exposure to air pollution is associated with DNA methylation changes in sperm. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae003. [PMID: 38559770 PMCID: PMC10980975 DOI: 10.1093/eep/dvae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
Exposure to air pollutants has been associated with adverse health outcomes in adults and children who were prenatally exposed. In addition to reducing exposure to air pollutants, it is important to identify their biologic targets in order to mitigate the health consequences of exposure. One molecular change associated with prenatal exposure to air pollutants is DNA methylation (DNAm), which has been associated with changes in placenta and cord blood tissues at birth. However, little is known about how air pollution exposure impacts the sperm epigenome, which could provide important insights into the mechanism of transmission to offspring. In the present study, we explored whether exposure to particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, nitrogen dioxide (NO2), or ozone (O3) was associated with DNAm in sperm contributed by participants in the Early Autism Risk Longitudinal Investigation prospective pregnancy cohort. Air pollution exposure measurements were calculated as the average exposure for each pollutant measured within 4 weeks prior to the date of sample collection. Using array-based genome-scale methylation analyses, we identified 80, 96, 35, and 67 differentially methylated regions (DMRs) significantly associated with particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, NO2, and O3, respectively. While no DMRs were associated with exposure to all four pollutants, we found that genes overlapping exposure-related DMRs had a shared enrichment for gene ontology biological processes related to neurodevelopment. Together, these data provide compelling support for the hypothesis that paternal exposure to air pollution impacts DNAm in sperm, particularly in regions implicated in neurodevelopment.
Collapse
Affiliation(s)
- Rose Schrott
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA 16802, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA 95616, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Friedman C, Dabelea D, Glueck DH, Allshouse WB, Adgate JL, Keller KP, Martenies SE, Magzamen S, Starling AP. Early-life exposure to residential black carbon and childhood cardiometabolic health. ENVIRONMENTAL RESEARCH 2023; 239:117285. [PMID: 37832765 PMCID: PMC10842121 DOI: 10.1016/j.envres.2023.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Early life exposure to air pollution, such as particulate matter ≤2.5 μm (PM2.5), may be associated with obesity and adverse cardiometabolic health outcomes in childhood. However, the toxicity of PM2.5 varies according to its chemical composition. Black carbon (BC) is a constituent of PM2.5, but few studies have examined its impact on childhood cardiometabolic health. Therefore, we examined relationships between prenatal and early childhood exposure to BC and markers of adiposity and cardiometabolic health in early childhood. METHODS This study included 578 mother-child pairs enrolled in the Healthy Start study (2009-2014) living in the Denver-metro area. Using a spatiotemporal prediction model, we assessed average residential black carbon levels during pregnancy and in the year prior to the early childhood follow-up visit at approximately 5 years old. We estimated associations between prenatal and early childhood BC and indicators of adiposity and cardiometabolic biomarkers in early childhood (mean 4.8 years; range, 4.0, 8.3), using linear regression. RESULTS We found higher early childhood BC was associated with higher percent fat mass, fat mass index, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR), and lower leptin and waist circumference at approximately 5 years old, after adjusting for covariates. For example, per interquartile range (IQR) increase in early childhood BC (IQR, 0.49 μg/m3) there was 3.32% higher fat mass (95% CI; 2.05, 4.49). Generally, we did not find consistent evidence of associations between prenatal BC and cardiometabolic health outcomes in early childhood, except for an inverse association between prenatal BC and adiponectin, an adipocyte-secreted hormone typically inversely associated with adiposity. CONCLUSIONS Higher early childhood, but not in utero, ambient concentrations of black carbon, a component of air pollution, were associated with greater adiposity and altered insulin homeostasis at approximately 5 years old. Future studies should examine whether these changes persist later in life.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayleigh P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Paoin K, Pharino C, Vathesatogkit P, Phosri A, Buya S, Ueda K, Seposo XT, Ingviya T, Saranburut K, Thongmung N, Yingchoncharoen T, Sritara P. Associations between residential greenness and air pollution and the incident metabolic syndrome in a Thai worker cohort. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1965-1974. [PMID: 37735284 DOI: 10.1007/s00484-023-02554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Increasing air pollution and decreasing exposure to greenness may contribute to the metabolic syndrome (MetS). We examined associations between long-term exposure to residential greenness and air pollution and MetS incidence in the Bangkok Metropolitan Region, Thailand. Data from 1369 employees (aged 52-71 years) from the Electricity Generating Authority of Thailand cohort from 2002 to 2017 were analyzed. The greenness level within 500 m of each participant's residence was measured using the satellite-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The kriging approach was used to generate the average concentration of each air pollutant (PM10, CO, SO2, NO2, and O3) at the sub-district level. The average long-term exposure to air pollution and greenness for each participant was calculated over the same period of person-time. Cox proportional hazards models were used to analyze the greenness-air pollution-MetS associations. The adjusted hazard ratio of MetS was 1.42 (95% confidence interval (CI): 1.32, 1.53), 1.22 (95% CI: 1.15, 1.30), and 2.0 (95% CI: 1.82, 2.20), per interquartile range increase in PM10 (9.5 μg/m3), SO2 (0.9 ppb), and CO (0.3 ppm), respectively. We found no clear association between NDVI or EVI and the incidence of MetS. On the contrary, the incident MetS was positively associated with NDVI and EVI for participants exposed to PM10 at concentrations more than 50 μg/m3. In summary, the incidence of MetS was positively associated with long-term exposure to air pollution. In areas with high levels of air pollution, green spaces may not benefit health outcomes.
Collapse
Affiliation(s)
- Kanawat Paoin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Wangmai, Pratumwan, Bangkok, 10330, Thailand.
| | - Chanathip Pharino
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Wangmai, Pratumwan, Bangkok, 10330, Thailand.
| | - Prin Vathesatogkit
- Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arthit Phosri
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Suhaimee Buya
- School of Information, Computer and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Khlong Nueng, Pathum Thani, Thailand
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Graduate School of Global Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Xerxes Tesoro Seposo
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Thammasin Ingviya
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Songkhla, Thailand
- Medical Data Center for Research and Innovation, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Krittika Saranburut
- Cardiovascular and Metabolic Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nisakron Thongmung
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapat Yingchoncharoen
- Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piyamitr Sritara
- Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Emon IM, Al-Qazazi R, Rauh MJ, Archer SL. The Role of Clonal Hematopoiesis of Indeterminant Potential and DNA (Cytosine-5)-Methyltransferase Dysregulation in Pulmonary Arterial Hypertension and Other Cardiovascular Diseases. Cells 2023; 12:2528. [PMID: 37947606 PMCID: PMC10650407 DOI: 10.3390/cells12212528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression without altering gene sequences in health and disease. DNA methyltransferases (DNMTs) are enzymes responsible for DNA methylation, and their dysregulation is both a pathogenic mechanism of disease and a therapeutic target. DNMTs change gene expression by methylating CpG islands within exonic and intergenic DNA regions, which typically reduces gene transcription. Initially, mutations in the DNMT genes and pathologic DNMT protein expression were found to cause hematologic diseases, like myeloproliferative disease and acute myeloid leukemia, but recently they have been shown to promote cardiovascular diseases, including coronary artery disease and pulmonary hypertension. We reviewed the regulation and functions of DNMTs, with an emphasis on somatic mutations in DNMT3A, a common cause of clonal hematopoiesis of indeterminant potential (CHIP) that may also be involved in the development of pulmonary arterial hypertension (PAH). Accumulation of somatic mutations in DNMT3A and other CHIP genes in hematopoietic cells and cardiovascular tissues creates an inflammatory environment that promotes cardiopulmonary diseases, even in the absence of hematologic disease. This review summarized the current understanding of the roles of DNMTs in maintenance and de novo methylation that contribute to the pathogenesis of cardiovascular diseases, including PAH.
Collapse
Affiliation(s)
- Isaac M. Emon
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| |
Collapse
|
11
|
Rios FJ, Montezano AC, Camargo LL, Touyz RM. Impact of Environmental Factors on Hypertension and Associated Cardiovascular Disease. Can J Cardiol 2023; 39:1229-1243. [PMID: 37422258 DOI: 10.1016/j.cjca.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular diseases and is responsible for nearly 9 million deaths worldwide annually. Increasing evidence indicates that in addition to pathophysiologic processes, numerous environmental factors, such as geographic location, lifestyle choices, socioeconomic status, and cultural practices, influence the risk, progression, and severity of hypertension, even in the absence of genetic risk factors. In this review, we discuss the impact of some environmental determinants on hypertension. We focus on clinical data from large population studies and discuss some potential molecular and cellular mechanisms. We highlight how these environmental determinants are interconnected, as small changes in one factor might affect others, and further affect cardiovascular health. In addition, we discuss the crucial impact of socioeconomic factors and how these determinants influence diverse communities with economic disparities. Finally, we address opportunities and challenges for new research to address gaps in knowledge on understanding molecular mechanisms whereby environmental factors influence development of hypertension and associated cardiovascular disease.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Liu Y, Li Y, Xu H, Zhao X, Zhu Y, Zhao B, Yao Q, Duan H, Guo C, Li Y. Pre- and postnatal particulate matter exposure and blood pressure in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 223:115373. [PMID: 36731599 DOI: 10.1016/j.envres.2023.115373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Early life is a susceptible period of air pollution-related adverse health effects. Hypertension in children might be life-threatening without prevention or treatment. Nevertheless, the causative association between environmental factors and childhood hypertension was limited. In the light of particulate matter (PM) as an environmental risk factor for cardiovascular diseases, this study investigated the association of pre- and postnatal PM exposure with blood pressure (BP) and hypertension among children and adolescents. METHOD Four electronic databases were searched for related epidemiological studies published up to September 13, 2022. Stata 14.0 was applied to examine the heterogeneity among the studies and evaluate the combined effect sizes per 10 μg/m3 increase of PM by selecting the corresponding models. Besides, subgroup analysis, sensitivity analysis, and publication bias test were also conducted. RESULTS Prenatal PM2.5 exposure was correlated with increased diastolic blood pressure (DBP) in offspring [1.14 mmHg (95% CI: 0.12, 2.17)]. For short-term postnatal exposure effects, PM2.5 (7-day average) was significantly associated with systolic blood pressure (SBP) [0.20 mmHg (95% CI: 0.16, 0.23)] and DBP [0.49 mmHg (95% CI: 0.45, 0.53)]; and also, PM10 (7-day average) was significantly associated with SBP [0.14 mmHg (95% CI: 0.12, 0.16)]. For long-term postnatal exposure effects, positive associations were manifested in SBP with PM2.5 [β = 0.44, 95% CI: 0.40, 0.48] and PM10 [β = 0.35, 95% CI: 0.19, 0.51]; DBP with PM1 [β = 0.45, 95% CI: 0.42, 0.49], PM2.5 [β = 0.31, 95% CI: 0.27, 0.35] and PM10 [β = 0.32, 95% CI: 0.19, 0.45]; and hypertension with PM1 [OR = 1.43, 95% CI: 1.40, 1.46], PM2.5 [OR = 1.65, 95% CI: 1.29, 2.11] and PM10 [OR = 1.26, 95% CI: 1.09, 1.45]. CONCLUSION Both prenatal and postnatal exposure to PM can increase BP, contributing to a higher prevalence of hypertension in children and adolescents.
Collapse
Affiliation(s)
- Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
13
|
Feil D, Abrishamcar S, Christensen GM, Vanker A, Koen N, Kilanowski A, Hoffman N, Wedderburn CJ, Donald KA, Kobor MS, Zar HJ, Stein DJ, Hüls A. DNA methylation as a potential mediator of the association between indoor air pollution and neurodevelopmental delay in a South African birth cohort. Clin Epigenetics 2023; 15:31. [PMID: 36855151 PMCID: PMC9972733 DOI: 10.1186/s13148-023-01444-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Exposure to indoor air pollution during pregnancy has been linked to neurodevelopmental delay in toddlers. Epigenetic modification, particularly DNA methylation (DNAm), may explain this link. In this study, we employed three high-dimensional mediation analysis methods (HIMA, DACT, and gHMA) followed by causal mediation analysis to identify differentially methylated CpG sites and genes that mediate the association between indoor air pollution and neurodevelopmental delay. Analyses were performed using data from 142 mother to child pairs from a South African birth cohort, the Drakenstein Child Health Study. DNAm from cord blood was measured using the Infinium MethylationEPIC and HumanMethylation450 arrays. Neurodevelopment was assessed at age 2 years using the Bayley Scores of Infant and Toddler Development, 3rd edition across four domains (cognitive development, general adaptive behavior, language, and motor function). Particulate matter with an aerodynamic diameter of 10 μm or less (PM10) was measured inside participants' homes during the second trimester of pregnancy. RESULTS A total of 29 CpG sites and 4 genes (GOPC, RP11-74K11.1, DYRK1A, RNMT) were identified as significant mediators of the association between PM10 and cognitive neurodevelopment. The estimated proportion mediated (95%-confidence interval) ranged from 0.29 [0.01, 0.86] for cg00694520 to 0.54 [0.11, 1.56] for cg05023582. CONCLUSIONS Our findings suggest that DNAm may mediate the association between prenatal PM10 exposure and cognitive neurodevelopment. DYRK1A and several genes that our CpG sites mapped to, including CNKSR1, IPO13, IFNGR1, LONP2, and CDH1, are associated with biological pathways implicated in cognitive neurodevelopment and three of our identified CpG sites (cg23560546 [DAPL1], cg22572779 [C6orf218], cg15000966 [NT5C]) have been previously associated with fetal brain development. These findings are novel and add to the limited literature investigating the relationship between indoor air pollution, DNAm, and neurodevelopment, particularly in low- and middle-income country settings and non-white populations.
Collapse
Affiliation(s)
- Dakotah Feil
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anna Kilanowski
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
- German Research Center for Environmental Health, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Nadia Hoffman
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Karamanos A, Lu Y, Mudway IS, Ayis S, Kelly FJ, Beevers SD, Dajnak D, Fecht D, Elia C, Tandon S, Webb AJ, Grande AJ, Molaodi OR, Maynard MJ, Cruickshank JK, Harding S. Associations between air pollutants and blood pressure in an ethnically diverse cohort of adolescents in London, England. PLoS One 2023; 18:e0279719. [PMID: 36753491 PMCID: PMC9907839 DOI: 10.1371/journal.pone.0279719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/13/2022] [Indexed: 02/09/2023] Open
Abstract
Longitudinal evidence on the association between air pollution and blood pressure (BP) in adolescence is scarce. We explored this association in an ethnically diverse cohort of schoolchildren. Sex-stratified, linear random-effects modelling was used to examine how modelled residential exposure to annual average nitrogen dioxide (NO2), particulate matter (PM2.5, PM10) and ozone (O3), measures in μg/m3, associated with blood pressure. Estimates were based on 3,284 adolescents; 80% from ethnic minority groups, recruited from 51 schools, and followed up from 11-13 to 14-16 years old. Ethnic minorities were exposed to higher modelled annual average concentrations of pollution at residential postcode level than their White UK peers. A two-pollutant model (NO2 & PM2.5), adjusted for ethnicity, age, anthropometry, and pubertal status, highlighted associations with systolic, but not diastolic BP. A μg/m3 increase in NO2 was associated with a 0.30 mmHg (95% CI 0.18 to 0.40) decrease in systolic BP for girls and 0.19 mmHg (95% CI 0.07 to 0.31) decrease in systolic BP for boys. In contrast, a 1 μg/m3 increase in PM2.5 was associated with 1.34 mmHg (95% CI 0.85 to 1.82) increase in systolic BP for girls and 0.57 mmHg (95% CI 0.04 to 1.03) increase in systolic BP for boys. Associations did not vary by ethnicity, body size or socio-economic advantage. Associations were robust to adjustments for noise levels and lung function at 11-13 years. In summary, higher ambient levels of NO2 were associated with lower and PM2.5 with higher systolic BP across adolescence, with stronger associations for girls.
Collapse
Affiliation(s)
- A. Karamanos
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - Y. Lu
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
- Clinical Research Center of The Third Xiangya Hospital, Central South University, Changsha, China
| | - I. S. Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - S. Ayis
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| | - F. J. Kelly
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - S. D. Beevers
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - D. Dajnak
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - D. Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - C. Elia
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - S. Tandon
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| | - A. J. Webb
- Faculty of Life Sciences & Medicine, Department of Clinical Pharmacology, King’s College London BHF Centre of Excellence, School of Cardiovascular Medicine and Sciences, King’s College, London, United Kingdom
| | - A. J. Grande
- Curso de Medicina, Universidade Estadual do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - O. R. Molaodi
- MRC/CSO Social and Public Health Sciences Unit, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - M. J. Maynard
- School of Clinical & Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - J. K. Cruickshank
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - S. Harding
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
15
|
Goobie GC, Li X, Ryerson CJ, Carlsten C, Johannson KA, Fabisiak JP, Lindell KO, Chen X, Gibson KF, Kass DJ, Nouraie SM, Zhang Y. PM 2.5 and constituent component impacts on global DNA methylation in patients with idiopathic pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120942. [PMID: 36574806 DOI: 10.1016/j.envpol.2022.120942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) whose outcomes are worsened with air pollution exposures. DNA methylation (DNAm) patterns are altered in lungs and blood from patients with IPF, but the relationship between air pollution exposures and DNAm patterns in IPF remains unexplored. This study aimed to evaluate the association of PM2.5 and constituent components with global DNAm in patients with IPF. Patients enrolled in either the University of Pittsburgh Simmons Center for ILD Registry (Simmons) or the U.S.-wide Pulmonary Fibrosis Foundation (PFF) Patient Registry with peripheral blood DNA samples were included. The averages of monthly exposures to PM2.5 and constituents over 1-year and 3-months pre-blood collection were matched to patient residential coordinates using satellite-derived hybrid models. Global DNAm percentage (%5 mC) was determined using the ELISA-based MethylFlash assay. Associations of pollutants with %5 mC were assessed using beta-regression, Cox models for mortality, and linear regression for baseline lung function. Mediation proportion was determined for models where pollutant-mortality and pollutant-%5 mC associations were significant. Inclusion criteria were met by 313 Simmons and 746 PFF patients with IPF. Higher PM2.5 3-month exposures prior to blood collection were associated with higher %5 mC in Simmons (β = 0.02, 95%CI 0.0003-0.05, p = 0.047), with trends in the same direction in the 1-year period in both cohorts. Higher exposures to sulfate, nitrate, ammonium, and black carbon constituents were associated with higher %5 mC in multiple models. Percent 5 mC was not associated with IPF mortality or lung function, but was found to mediate between 2 and 5% of the associations of PM2.5, sulfate, and ammonium with mortality. In conclusion, we found that higher global DNAm is a novel biomarker for increased PM2.5 and anthropogenic constituent exposure in patients with IPF. Mechanistic research is needed to determine if DNAm has pathogenic relevance in mediating associations between pollutants and mortality in IPF.
Collapse
Affiliation(s)
- Gillian C Goobie
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Christopher J Ryerson
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Kerri A Johannson
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, AB, Canada.
| | - James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kathleen O Lindell
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; College of Nursing, Medical University of South Carolina, Charleston, SC, USA.
| | - Xiaoping Chen
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kevin F Gibson
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Daniel J Kass
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yingze Zhang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Tandon S, Grande AJ, Karamanos A, Cruickshank JK, Roever L, Mudway IS, Kelly FJ, Ayis S, Harding S. Association of Ambient Air Pollution with Blood Pressure in Adolescence: A Systematic-review and Meta-analysis. Curr Probl Cardiol 2023; 48:101460. [PMID: 36265590 DOI: 10.1016/j.cpcardiol.2022.101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 01/04/2023]
Abstract
We systematically reviewed the association of ambient air pollution with blood pressure (BP) as a primary outcome in adolescents (10-19 years). Five databases (Ovid Medline, Ovid Embase, Web of Science, The Cochrane Library, and LILACS) were searched for relevant articles published up to August 2022. Meta-analyses were conducted using STATA v17 (Protocol - OSF Registries https://doi.org/10.17605/OSF.IO/96G5Q). Eight studies (5 cohort, 3 cross-sectional) with approximately 15,000 adolescents were included. Data from 6 studies were suitable for inclusion in the meta-analyses. In sub-group analyses, non-significant positive associations were observed for cohort studies assessing long-term exposure to PM10, PM2.5, and NO2 on systolic and diastolic BP. At age 12 years old (3702 adolescents), we found significant positive associations for long-term exposure to PM2.5(β=5.33 (1.56, 9.09) mmHg) and PM10 (β=2.47 (0.10, 4.85) mmHg) on diastolic BP. Significant positive associations were observed (3,592 adolescents) for long-term exposure to PM10(β=0.34 (0.19, 0.50) mmHg) and NO2 on diastolic BP (β=0.40 (0.09, 0.71) mmHg), and PM10 on systolic BP (β=0.48 (0.19, 0.77) mmHg). The overall quality of evidence analysed was graded as "low/very low." Insufficient data for short-term exposures to PM2.5, PM10, NO2, CO on BP led to their exclusion from the meta-analysis. Inconsistent associations were reported for gender-stratified results. The evidence, though of low-quality and limited, indicated that ambient air pollution was positively associated with adolescent BP. Future studies need improved measures of air pollutant exposures, consideration of gender and socio-economic circumstances on the observed pollution effects, as well as adjustment for other potential confounding factors.
Collapse
Affiliation(s)
- Saniya Tandon
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Antonio Jose Grande
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Curso de Medicina, Universidade Estadual do Mato Grosso do Sul, Campo Grande, Brazil
| | - Alexis Karamanos
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - John Kennedy Cruickshank
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlandia, Uberlândia, Brazil
| | - Ian Stanley Mudway
- MRC Centre for Environment and Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Frank James Kelly
- MRC Centre for Environment and Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Salma Ayis
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Seeromanie Harding
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
17
|
Nagrani R, Marron M, Bongaerts E, Nawrot TS, Ameloot M, de Hoogh K, Vienneau D, Lequy E, Jacquemin B, Guenther K, De Ruyter T, Mehlig K, Molnár D, Moreno LA, Russo P, Veidebaum T, Ahrens W, Buck C. Association of urinary and ambient black carbon, and other ambient air pollutants with risk of prediabetes and metabolic syndrome in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120773. [PMID: 36455765 DOI: 10.1016/j.envpol.2022.120773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The effects of exposure to black carbon (BC) on various diseases remains unclear, one reason being potential exposure misclassification following modelling of ambient air pollution levels. Urinary BC particles may be a more precise measure to analyze the health effects of BC. We aimed to assess the risk of prediabetes and metabolic syndrome (MetS) in relation to urinary BC particles and ambient BC and to compare their associations in 5453 children from IDEFICS/I. Family cohort. We determined the amount of BC particles in urine using label-free white-light generation under femtosecond pulsed laser illumination. We assessed annual exposure to ambient air pollutants (BC, PM2.5 and NO2) at the place of residence using land use regression models for Europe, and we calculated the residential distance to major roads (≤250 m vs. more). We analyzed the cross-sectional relationships between urinary BC and air pollutants (BC, PM2.5 and NO2) and distance to roads, and the associations of all these variables to the risk of prediabetes and MetS, using logistic and linear regression models. Though we did not observe associations between urinary and ambient BC in overall analysis, we observed a positive association between urinary and ambient BC levels in boys and in children living ≤250 m to a major road compared to those living >250 m away from a major road. We observed a positive association between log-transformed urinary BC particles and MetS (ORper unit increase = 1.72, 95% CI = 1.21; 2.45). An association between ambient BC and MetS was only observed in children living closer to a major road. Our findings suggest that exposure to BC (ambient and biomarker) may contribute to the risk of MetS in children. By measuring the internal dose, the BC particles in urine may have additionally captured non-residential sources and reduced exposure misclassification. Larger studies, with longitudinal design including measurement of urinary BC at multiple time-points are warranted to confirm our findings.
Collapse
Affiliation(s)
- Rajini Nagrani
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Kreuzenstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Kreuzenstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Emeline Lequy
- Unité "Cohortes en Population" UMS 011 Inserm/Université Paris-Cité/Université Paris Saclay/UVSQ Villejuif, France
| | - Bénédicte Jacquemin
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherché en Santé, Environnement et Travail) - UMR_S 1085,Rennes, France
| | - Kathrin Guenther
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Thaïs De Ruyter
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, Ghent University, 9000, Ghent, Belgium
| | - Kirsten Mehlig
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Dénes Molnár
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IIS Aragón) Zaragoza, Spain and Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Paola Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | | | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany; Institute of Statistics, Faculty of Mathematics and Computer Science, Bremen University, Bremen, Germany
| | - Christoph Buck
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| |
Collapse
|
18
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
19
|
Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA Methylation, and Air Pollution: A Malicious Triad. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15050. [PMID: 36429769 PMCID: PMC9690025 DOI: 10.3390/ijerph192215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) remains elusive to this day; however, genetic, epigenetic, and environmental factors have been implicated to be involved in disease pathogenesis. Recently, it was demonstrated that in systemic lupus erythematosus (SLE) patients, interferon-regulated genes are hypomethylated in naïve CD4+ T cells, CD19+ B lymphocytes, and CD14+ monocytes. This suggests that interferon-regulated genes may have been epigenetically poised in SLE patients for rapid expression upon stimulation by different environmental factors. Additionally, environmental studies have identified DNA (hypo)methylation changes as a potential mechanism of environmentally induced health effects in utero, during childhood and in adults. Finally, epidemiologic studies have firmly established air pollution as a crucial SLE risk factor, as studies showed an association between fine particulate matter (PM2.5) and traditional SLE biomarkers related to disease flare, hospital admissions, and an increased SLEDAI score. In this review, the relationship between aberrant epigenetic regulation, the environment, and the development of SLE will be discussed.
Collapse
Affiliation(s)
- Leen Rasking
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Céline Roelens
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
| | - Ben Sprangers
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Leuven University, 3000 Leuven, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Department of Public Health and Primary Care, Environment and Health Unit, Leuven University, 3000 Leuven, Belgium
| | - Katrien De Vusser
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| |
Collapse
|
20
|
Starling AP, Wood C, Liu C, Kechris K, Yang IV, Friedman C, Thomas DSK, Peel JL, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D. Ambient air pollution during pregnancy and DNA methylation in umbilical cord blood, with potential mediation of associations with infant adiposity: The Healthy Start study. ENVIRONMENTAL RESEARCH 2022; 214:113881. [PMID: 35835166 PMCID: PMC10402394 DOI: 10.1016/j.envres.2022.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollution has been associated with adverse offspring health outcomes. Childhood health effects of prenatal exposures may be mediated through changes to DNA methylation detectable at birth. METHODS Among 429 non-smoking women in a cohort study of mother-infant pairs in Colorado, USA, we estimated associations between prenatal exposure to ambient fine particulate matter (PM2.5) and ozone (O3), and epigenome-wide DNA methylation of umbilical cord blood cells at delivery (2010-2014). We calculated average PM2.5 and O3 in each trimester of pregnancy and the full pregnancy using inverse-distance-weighted interpolation. We fit linear regression models adjusted for potential confounders and cell proportions to estimate associations between air pollutants and methylation at each of 432,943 CpGs. Differentially methylated regions (DMRs) were identified using comb-p. Previously in this cohort, we reported positive associations between 3rd trimester O3 exposure and infant adiposity at 5 months of age. Here, we quantified the potential for mediation of that association by changes in DNA methylation in cord blood. RESULTS We identified several DMRs for each pollutant and period of pregnancy. The greatest number of significant DMRs were associated with third trimester PM2.5 (21 DMRs). No single CpGs were associated with air pollutants at a false discovery rate <0.05. We found that up to 8% of the effect of 3rd trimester O3 on 5-month adiposity may be mediated by locus-specific methylation changes, but mediation estimates were not statistically significant. CONCLUSIONS Differentially methylated regions in cord blood were identified in association with maternal exposure to PM2.5 and O3. Genes annotated to the significant sites played roles in cardiometabolic disease, immune function and inflammation, and neurologic disorders. We found limited evidence of mediation by DNA methylation of associations between third trimester O3 exposure and 5-month infant adiposity.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
21
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
22
|
Yi W, Zhao F, Pan R, Zhang Y, Xu Z, Song J, Sun Q, Du P, Fang J, Cheng J, Liu Y, Chen C, Lu Y, Li T, Su H, Shi X. Associations of Fine Particulate Matter Constituents with Metabolic Syndrome and the Mediating Role of Apolipoprotein B: A Multicenter Study in Middle-Aged and Elderly Chinese Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10161-10171. [PMID: 35802126 DOI: 10.1021/acs.est.1c08448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) was reported to be associated with metabolic syndrome (MetS), but how PM2.5 constituents affect MetS and the underlying mediators remains unclear. We aimed to investigate the associations of long-term exposure to 24 kinds of PM2.5 constituents with MetS (defined by five indicators) in middle-aged and elderly adults and to further explore the potential mediating role of apolipoprotein B (ApoB). A multicenter study was conducted by recruiting subjects (n = 2045) in the Beijing-Tianjin-Hebei region from the cohort of Sub-Clinical Outcomes of Polluted Air in China (SCOPA-China Cohort). Relationships among PM2.5 constituents, serum ApoB levels, and MetS were estimated by multiple logistic/linear regression models. Mediation analysis quantified the role of ApoB in "PM2.5 constituents-MetS" associations. Results indicated PM2.5 was significantly related to elevated MetS prevalence. The MetS odds increased after exposure to sulfate (SO42-), calcium ion (Ca2+), magnesium ion (Mg2+), Si, Zn, Ca, Mn, Ba, Cu, As, Cr, Ni, or Se (odds ratios ranged from 1.103 to 3.025 per interquartile range increase in each constituent). PM2.5 and some constituents (SO42-, Ca2+, Mg2+, Ca, and As) were positively related to serum ApoB levels. ApoB mediated 22.10% of the association between PM2.5 and MetS. Besides, ApoB mediated 24.59%, 50.17%, 12.70%, and 9.63% of the associations of SO42-, Ca2+, Ca, and As with MetS, respectively. Our findings suggest that ApoB partially mediates relationships between PM2.5 constituents and MetS risk in China.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, 4006 Queensland, Australia
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Yingchun Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
23
|
Poursafa P, Kamali Z, Fraszczyk E, Boezen HM, Vaez A, Snieder H. DNA methylation: a potential mediator between air pollution and metabolic syndrome. Clin Epigenetics 2022; 14:82. [PMID: 35773726 PMCID: PMC9245491 DOI: 10.1186/s13148-022-01301-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
Given the global increase in air pollution and its crucial role in human health, as well as the steep rise in prevalence of metabolic syndrome (MetS), a better understanding of the underlying mechanisms by which environmental pollution may influence MetS is imperative. Exposure to air pollution is known to impact DNA methylation, which in turn may affect human health. This paper comprehensively reviews the evidence for the hypothesis that the effect of air pollution on the MetS is mediated by DNA methylation in blood. First, we present a summary of the impact of air pollution on metabolic dysregulation, including the components of MetS, i.e., disorders in blood glucose, lipid profile, blood pressure, and obesity. Then, we provide evidence on the relation between air pollution and endothelial dysfunction as one possible mechanism underlying the relation between air pollution and MetS. Subsequently, we review the evidence that air pollution (PM, ozone, NO2 and PAHs) influences DNA methylation. Finally, we summarize association studies between DNA methylation and MetS. Integration of current evidence supports our hypothesis that methylation may partly mediate the effect of air pollution on MetS.
Collapse
Affiliation(s)
- Parinaz Poursafa
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Song AY, Feinberg JI, Bakulski KM, Croen LA, Fallin MD, Newschaffer CJ, Hertz-Picciotto I, Schmidt RJ, Ladd-Acosta C, Volk HE. Prenatal Exposure to Ambient Air Pollution and Epigenetic Aging at Birth in Newborns. Front Genet 2022; 13:929416. [PMID: 35836579 PMCID: PMC9274082 DOI: 10.3389/fgene.2022.929416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
In utero air pollution exposure has been associated with adverse birth outcomes, yet effects of air pollutants on regulatory mechanisms in fetal growth and critical windows of vulnerability during pregnancy are not well understood. There is evidence that epigenetic alterations may contribute to these effects. DNA methylation (DNAm) based age estimators have been developed and studied extensively with health outcomes in recent years. Growing literature suggests environmental factors, such as air pollution and smoking, can influence epigenetic aging. However, little is known about the effect of prenatal air pollution exposure on epigenetic aging. In this study, we leveraged existing data on prenatal air pollution exposure and cord blood DNAm from 332 mother-child pairs in the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies-Learning Early Signs (MARBLES), two pregnancy cohorts enrolling women who had a previous child diagnosed with autism spectrum disorder, to assess the relationship of prenatal exposure to air pollution and epigenetic aging at birth. DNAm age was computed using existing epigenetic clock algorithms for cord blood tissue-Knight and Bohlin. Epigenetic age acceleration was defined as the residual of regressing chronological gestational age on DNAm age, accounting for cell type proportions. Multivariable linear regression models and distributed lag models (DLMs), adjusting for child sex, maternal race/ethnicity, study sites, year of birth, maternal education, were completed. In the single-pollutant analysis, we observed exposure to PM2.5, PM10, and O3 during preconception period and pregnancy period were associated with decelerated epigenetic aging at birth. For example, pregnancy average PM10 exposure (per 10 unit increase) was associated with epigenetic age deceleration at birth (weeks) for both Knight and Bohlin clocks (β = -0.62, 95% CI: -1.17, -0.06; β = -0.32, 95% CI: -0.63, -0.01, respectively). Weekly DLMs revealed that increasing PM2.5 during the first trimester and second trimester were associated with decelerated epigenetic aging and that increasing PM10 during the preconception period was associated with decelerated epigenetic aging, using the Bohlin clock estimate. Prenatal ambient air pollution exposure, particularly in early and mid-pregnancy, was associated with decelerated epigenetic aging at birth.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA, United States
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Craig J. Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, PA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, United States
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, United States
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
25
|
Zeng Z, Xu X, Wang Q, Zhang Z, Meng P, Huo X. Maternal exposure to atmospheric PM 2.5 and fetal brain development: Associations with BAI1 methylation and thyroid hormones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119665. [PMID: 35738517 DOI: 10.1016/j.envpol.2022.119665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023]
Abstract
Maternal exposure to atmospheric fine particulate matter (PM2.5) during pregnancy is associated with adverse fetal development, including abnormal brain development. However, the underlying mechanisms and influencing factors remain uncertain. This study investigated the roles of DNA methylation in genes involving neurodevelopment and thyroid hormones (THs) in fetal brain development after maternal exposure to PM2.5 from e-waste. Among 939 healthy pregnant women recruited from June 2011 to September 2012, 101 e-waste-exposed and 103 reference mother-infant pairs (204 pairs totally) were included. Annual ground-level PM2.5 concentrations over e-waste-exposed area (116.38°E, 23.29°N) and reference area (116.67°E, 23.34°N) in 2011, 2012 were obtained by estimates and maternal exposure was evaluated by calculating individual chronic daily intakes (CDIs) of PM2.5. Methylation and THs including thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) level were measured in umbilical cord blood collected shortly after delivery. We found higher ground-level PM2.5 concentrations led to greater individual CDI of PM2.5 in e-waste-exposed pregnant women. After adjustment for gender and birth BMI, significant mediation effects on the adverse associations of maternal PM2.5 exposure with birth head circumference were observed for methylations at positions +13 and + 32 (respectively mediated proportion of 9.8% and 5.3%, P < 0.05 and P < 0.01) in the brain-specific angiogenesis inhibitor 1 (BAI1) gene, but not for methylations in the catenin cadherin-associated protein, alpha 2 (CTNNA2) gene. BAI1 (position +13) methylation was also significantly correlated with FT3 levels (rs = -0.156, P = 0.032), although maternal CDI of PM2.5 was positively associated with higher odds of abnormal TSH levels (OR = 5.03, 95% CI: 1.00, 25.20, P = 0.05) rather than FT3 levels. Our findings suggest that methylation (likely linked to THs) in neonates may play mediation roles associated with abnormal brain development risk due to maternal exposure to atmospheric PM2.5 from e-waste.
Collapse
Affiliation(s)
- Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Peipei Meng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
26
|
Nguyen TM, Le HL, Hwang KB, Hong YC, Kim JH. Predicting High Blood Pressure Using DNA Methylome-Based Machine Learning Models. Biomedicines 2022; 10:biomedicines10061406. [PMID: 35740428 PMCID: PMC9220060 DOI: 10.3390/biomedicines10061406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
DNA methylation modification plays a vital role in the pathophysiology of high blood pressure (BP). Herein, we applied three machine learning (ML) algorithms including deep learning (DL), support vector machine, and random forest for detecting high BP using DNA methylome data. Peripheral blood samples of 50 elderly individuals were collected three times at three visits for DNA methylome profiling. Participants who had a history of hypertension and/or current high BP measure were considered to have high BP. The whole dataset was randomly divided to conduct a nested five-group cross-validation for prediction performance. Data in each outer training set were independently normalized using a min–max scaler, reduced dimensionality using principal component analysis, then fed into three predictive algorithms. Of the three ML algorithms, DL achieved the best performance (AUPRC = 0.65, AUROC = 0.73, accuracy = 0.69, and F1-score = 0.73). To confirm the reliability of using DNA methylome as a biomarker for high BP, we constructed mixed-effects models and found that 61,694 methylation sites located in 15,523 intragenic regions and 16,754 intergenic regions were significantly associated with BP measures. Our proposed models pioneered the methodology of applying ML and DNA methylome data for early detection of high BP in clinical practices.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Hoang Long Le
- Department of Computer Science & Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Kyu-Baek Hwang
- School of Computer Science & Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea;
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
- Correspondence: ; Tel.: +82-2-3408-3655
| |
Collapse
|
27
|
Li Z, Yang M, Duan L, Gong Y, Xia H, Afrim FK, Huang H, Liu X, Yu F, Zhang Y, Ba Y, Zhou G. The neonatal PROC gene rs1799809 polymorphism modifies the association between prenatal air pollutants exposure and PROC promoter methylation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14575-14583. [PMID: 34617212 DOI: 10.1007/s11356-021-16694-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Prenatal air pollution, protein C (PROC) gene abnormal methylation, and genetic mutation can cause a series of neonatal diseases, but the complex relationship between them remains unclear. Here, we recruited 552 mothers and their own babies during January 2010-January 2012 in Zhengzhou to explore such association. The air pollutant data was obtained from the Environmental Monitoring Stations. The rs1799809 genotype and the methylation levels at the promoter region of PROC in genomic DNA samples were detected respectively by TaqMan probe and quantitative methylation specific PCR using real-time PCR system. The results show that the levels of neonatal PROC methylation were negatively associated with concentrations of NO2 during the entire pregnancy, particularly during the third trimester. Of particular significance, only in newborns carrying rs1799809 AA genotype, negatively significant associations between PROC methylation levels and exposure concentrations of air pollutants were observed. Further, we observed a significant interactive effect between neonatal rs1799809 genotype and SO2 exposure during the entire pregnancy on neonatal PROC methylation levels. Prenatal exposure to ambient air pollutants specifically was associated with the neonatal PROC promoter methylation level of newborns carrying the rs1799809 AA genotype. Taken together, these findings suggest that neonatal PROC methylation levels are associated with prenatal exposure to ambient air pollutants, and this association can be modified by rs1799809 genotype.
Collapse
Affiliation(s)
- Zhiyuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Meng Yang
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Leizhen Duan
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yongxiang Gong
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hongxia Xia
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Francis-Kojo Afrim
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiaoxue Liu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Fangfang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yawei Zhang
- Department of Environment Health Science, Yale University School of Public Health, New Haven, CT, USA
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
28
|
Air Pollution and Perinatal Health in the Eastern Mediterranean Region: Challenges, Limitations, and the Potential of Epigenetics. Curr Environ Health Rep 2022; 9:1-10. [PMID: 35080743 DOI: 10.1007/s40572-022-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Even though the burden of disease attributable to air pollution is high in the Eastern Mediterranean Region (EMR), the number of studies linking environmental exposures to negative health outcomes remains scarce and limited in scope. This review aims to assess the literature on exposure to air pollutants and perinatal health in the EMR and to explain the potential of epigenetics in exploring the processes behind adverse birth outcomes. RECENT FINDINGS In the last three decades, hundreds of studies and publications tackled the health effects of air pollution on birth outcomes and early life development, but only a small number of these studies was conducted in the EMR. The existing literature is concentrated in specific geographic locations and is focused on a limited number of exposures and outcomes. Main limitations include inconsistent and poorly funded air quality monitoring, inappropriate study designs, imprecise and/or unreliable assessments of exposures, and outcomes. Even though the studies establish associations between air pollutants and adverse birth outcomes, the mechanisms through which these processes take place are yet to be fully understood. A likely candidate to explain these processes is epigenetics; however, epigenetics research on the impact of air pollution in EMR is still in its infancy. This review highlights the need for future research examining perinatal health and air pollutants, especially the epigenetic processes that underlie the adverse birth outcomes, to better understand them and to develop effective recommendations and intervention strategies.
Collapse
|
29
|
Guo YL, Ampon RD, Hanigan IC, Knibbs LD, Geromboux C, Su TC, Negishi K, Poulos L, Morgan GG, Marks GB, Jalaludin B. Relationship between life-time exposure to ambient fine particulate matter and carotid artery intima-media thickness in Australian children aged 11-12 years. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118072. [PMID: 34592695 DOI: 10.1016/j.envpol.2021.118072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Long-term exposure to air pollutants, especially particulates, in adulthood is related to cardiovascular diseases and vascular markers of atherosclerosis. However, whether vascular changes in children is related to exposure to air pollutants remains unknown. This study examined whether childhood exposure to air pollutants was related to a marker of cardiovascular risk, carotid intima-media thickness (CIMT) in children aged 11-12 years old. Longitudinal Study of Australian Children (LSAC) recruited parents and their children born in 2003-4. Among the participants, CheckPoint examination was conducted when the children were 11-12 years old. Ultrasound of the right carotid artery was performed using standardized protocols. Average and maximum far-wall CIMT, carotid artery distensibility, and elasticity were quantified using semiautomated software. Annual and life-time exposure to air pollutants was estimated using satellite-based land-use regression by residential postcodes. A total of 1063 children (50.4% girls) with CIMT data, serum cholesterol, and modeled estimates of NO2 and PM2.5 exposure for the period 2003 to 2015 were included. The average and maximum CIMT, carotid distensibility, and elasticity were 497 μm (standard deviation, SD 58), 580 μm (SD 44), 17.4% (SD 3.2), and 0.48%/mmHg (SD 0.09), respectively. The life-time average concentrations of PM2.5 and NO2 were 6.4 μg/m3 (SD 1.4) and 6.4 ppb (SD 2.4), respectively. Both average and maximum CIMT were significantly associated with average ambient PM2.5 concentration (average CIMT: +5.5 μm per μg/m3, 95% confidence interval, CI 2.4 to 8.5, and maximum CIMT: +4.9 μm per μg/m3, CI 2.3 to 7.6), estimated using linear regression, adjusting for potential confounders. CIMT was not significantly related to NO2 exposure. Carotid artery diameter, distensibility, and elasticity were not significantly associated with air pollutants. We conclude that life-time exposure to low levels of PM2.5 in children might have measurable adverse impacts on vascular structure by age 11-12 years.
Collapse
Affiliation(s)
- Yue Leon Guo
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, NTU College of Public Health, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan; Respiratory and Environmental Epidemiology, Woolcock Institute of Medical Research, University of Sydney, Australia.
| | - Rosario D Ampon
- Australian Centre for Airways Disease Monitoring, Woolcock Institute of Medical Research, University of Sydney, Australia
| | - Ivan C Hanigan
- University Centre for Rural Health, School of Public Health, The University of Sydney, Sydney, NSW, 2006, Australia; Health Research Institute, University of Canberra, Canberra, ACT, 2617, Australia; Centre for Air Pollution, Energy and Health Research (CAR), Sydney, NSW, 2006, Australia
| | - Luke D Knibbs
- Centre for Air Pollution, Energy and Health Research (CAR), Sydney, NSW, 2006, Australia; School of Public Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Christy Geromboux
- University Centre for Rural Health, School of Public Health, The University of Sydney, Sydney, NSW, 2006, Australia; Health Research Institute, University of Canberra, Canberra, ACT, 2617, Australia; Centre for Air Pollution, Energy and Health Research (CAR), Sydney, NSW, 2006, Australia
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, NTU College of Public Health, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
| | - Kazuaki Negishi
- Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, NSW, Australia
| | - Leanne Poulos
- Australian Centre for Airways Disease Monitoring, Woolcock Institute of Medical Research, University of Sydney, Australia
| | - Geoffrey G Morgan
- University Centre for Rural Health, School of Public Health, The University of Sydney, Sydney, NSW, 2006, Australia; Centre for Air Pollution, Energy and Health Research (CAR), Sydney, NSW, 2006, Australia
| | - Guy B Marks
- Respiratory and Environmental Epidemiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Centre for Air Pollution, Energy and Health Research (CAR), Sydney, NSW, 2006, Australia
| | - Bin Jalaludin
- Centre for Air Pollution, Energy and Health Research (CAR), Sydney, NSW, 2006, Australia; Ingham Institute for Applied Medical Research, University of New South Wales, Liverpool, NSW, Australia
| |
Collapse
|
30
|
Xu R, Li S, Li S, Wong EM, Southey MC, Hopper JL, Abramson MJ, Guo Y. Residential surrounding greenness and DNA methylation: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2021; 154:106556. [PMID: 33862401 DOI: 10.1016/j.envint.2021.106556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND DNA methylation is a potential biological mechanism through which residential greenness affects health, but little is known about its association with greenness and whether the association could be modified by genetic background. We aimed to evaluate the association between surrounding greenness and genome-wide DNA methylation and potential gene-greenness interaction effects on DNA methylation. METHODS We measured blood-derived DNA methylation using the HumanMethylation450 BeadChip array (Illumina) for 479 Australian women, including 66 monozygotic, 66 dizygotic twin pairs, and 215 sisters of these twins. Surrounding greenness was represented by Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) within 300, 500, 1000 or 2000 m surrounding participants' home addresses. For each cytosine-guanine dinucleotide (CpG), the associations between its methylation level and NDVI or EVI were evaluated by generalized estimating equations, after adjusting for age, education, marital status, area-level socioeconomic status, smoking behavior, cell-type proportions, and familial clustering. We used comb-p and DMRcate to identify significant differentially methylated regions (DMRs). For each significant CpG, we evaluated the interaction effects of greenness and single-nucleotide polymorphisms (SNPs) within ±1 Mb window on its methylation level. RESULTS We found associations between surrounding greenness and blood DNA methylation for one CpG (cg04720477, mapped to the promoter region of CNP gene) with false discovery rate [FDR] < 0.05, and for another 9 CpGs with 0.05 ≤ FDR < 0.10. For two of these CpGs, we found 33 SNPs significantly (FDR < 0.05) modified the greenness-methylation association. There were 35 significant DMRs related to surrounding greenness that were identified by both comb-p (Sidak p-value < 0.01) and DMRcate (FDR < 0.01). Those CpGs and DMRs were mapped to genes related to many human diseases, such as mental health disorders and neoplasms as well as nutritional and metabolic diseases. CONCLUSIONS Surrounding greenness was associated with blood DNA methylation of many loci across human genome, and this association could be modified by genetic variations.
Collapse
Affiliation(s)
- Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
31
|
Benbrook C, Perry MJ, Belpoggi F, Landrigan PJ, Perro M, Mandrioli D, Antoniou MN, Winchester P, Mesnage R. Commentary: Novel strategies and new tools to curtail the health effects of pesticides. Environ Health 2021; 20:87. [PMID: 34340709 PMCID: PMC8330079 DOI: 10.1186/s12940-021-00773-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Flaws in the science supporting pesticide risk assessment and regulation stand in the way of progress in mitigating the human health impacts of pesticides. Critical problems include the scope of regulatory testing protocols, the near-total focus on pure active ingredients rather than formulated products, lack of publicly accessible information on co-formulants, excessive reliance on industry-supported studies coupled with reticence to incorporate published results in the risk assessment process, and failure to take advantage of new scientific opportunities and advances, e.g. biomonitoring and "omics" technologies. RECOMMENDED ACTIONS Problems in pesticide risk assessment are identified and linked to study design, data, and methodological shortcomings. Steps and strategies are presented that have potential to deepen scientific knowledge of pesticide toxicity, exposures, and risks. We propose four solutions: (1) End near-sole reliance in regulatory decision-making on industry-supported studies by supporting and relying more heavily on independent science, especially for core toxicology studies. The cost of conducting core toxicology studies at labs not affiliated with or funded directly by pesticide registrants should be covered via fees paid by manufacturers to public agencies. (2) Regulators should place more weight on mechanistic data and low-dose studies within the range of contemporary exposures. (3) Regulators, public health agencies, and funders should increase the share of exposure-assessment resources that produce direct measures of concentrations in bodily fluids and tissues. Human biomonitoring is vital in order to quickly identify rising exposures among vulnerable populations including applicators, pregnant women, and children. (4) Scientific tools across disciplines can accelerate progress in risk assessments if integrated more effectively. New genetic and metabolomic markers of adverse health impacts and heritable epigenetic impacts are emerging and should be included more routinely in risk assessment to effectively prevent disease. CONCLUSIONS Preventing adverse public health outcomes triggered or made worse by exposure to pesticides will require changes in policy and risk assessment procedures, more science free of industry influence, and innovative strategies that blend traditional methods with new tools and mechanistic insights.
Collapse
Affiliation(s)
- Charles Benbrook
- Heartland Health Research Alliance, 10526 SE Vashon Vista Drive, Port Orchard, WA 98367 USA
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, George Washington University, Washington, DC USA
| | | | - Philip J. Landrigan
- Schiller Institute for Integrated Science and Society, Boston College, Newton, MA 02467 USA
| | | | | | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Paul Winchester
- School of Medicine, Department of Pediatrics, Indiana University, Indianapolis, IN USA
| | - Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| |
Collapse
|
32
|
Ahadullah, Yau SY, Lu HX, Lee TMC, Guo H, Chan CCH. PM 2.5 as a potential risk factor for autism spectrum disorder: Its possible link to neuroinflammation, oxidative stress and changes in gene expression. Neurosci Biobehav Rev 2021; 128:534-548. [PMID: 34216652 DOI: 10.1016/j.neubiorev.2021.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral deficits including impairments in social communication, social interaction, and repetitive behaviors. Because the etiology of ASD is still largely unknown, there is no cure for ASD thus far. Although it has been established that genetic components play a vital role in ASD development, the influence of epigenetic regulation induced by environmental factors could also contribute to ASD susceptibility. Accumulated evidence has suggested that exposure to atmospheric particulate matter (PM) in polluted air could affect neurodevelopment, thus possibly leading to ASD. Particles with a size of 2.5 μm (PM2.5) or less have been shown to have negative effects on human health, and could be linked to ASD symptoms in children. This review summarizes evidence from clinical and animal studies to demonstrate the possible linkage between PM2.5 exposure and the incidence of ASD in children. An attempt was made to explore the possible mechanisms of this linkage, including changes of gene expression, oxidative stress and neuroinflammation induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Ahadullah
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, China.
| | - Hao-Xian Lu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China.
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
33
|
Huang M, Chen J, Yang Y, Yuan H, Huang Z, Lu Y. Effects of Ambient Air Pollution on Blood Pressure Among Children and Adolescents: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2021; 10:e017734. [PMID: 33942625 PMCID: PMC8200690 DOI: 10.1161/jaha.120.017734] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Previous studies have investigated the association of ambient air pollution with blood pressure (BP) in children and adolescents, however, the results are not consistent. We conducted a systematic review and meta‐analysis to assess the relationship between short‐term and long‐term ambient air pollutant exposure with BP values among children and adolescents. Methods and Results We searched PubMed, Web of Science, and Embase before September 6, 2020. Two reviewers independently searched and selected studies, extracted data, and assessed study quality. The studies were divided into groups by composition of air pollutants (NO2, particulate matter (PM) with diameter ≤10 μm or ≤2.5 μm) and length of exposure. The beta regression coefficients (β) and their 95% CIs were calculated to evaluate the strength of the effect with each 10 μg/m3 increase in air pollutants. Out of 36 650 articles, 14 articles were included in this meta‐analysis. The meta‐analysis showed short‐term exposure to PM with diameter ≤10 μm (β=0.267; 95% CI, 0.033‒0.501) was significantly associated with elevated systolic BP values. In addition, long‐term exposure to PM with diameter ≤2.5 μm (β=1.809; 95% CI, 0.962‒2.655), PM with diameter ≤10 μm (β=0.526; 95% CI, 0.095‒0.958), and NO2 (β=0.754; 95% CI, 0.541‒0.968) were associated with systolic BP values and long‐term exposure to PM with diameter ≤2.5 μm (β=0.931; 95% CI, 0.157‒1.705), and PM with diameter ≤10 μm (β=0.378; 95% CI, 0.022‒0.735) was associated with diastolic BP. Conclusions Our study indicates that both short‐term and long‐term exposure to some ambient air pollutants may increase BP values among children and adolescents.
Collapse
Affiliation(s)
- Miao Huang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Jingyuan Chen
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Yiping Yang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Hong Yuan
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China
| | - Zhijun Huang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China
| | - Yao Lu
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China.,Department of Life Science and Medicine King's College London London United Kingdom
| |
Collapse
|
34
|
Farzan SF, Habre R, Danza P, Lurmann F, Gauderman WJ, Avol E, Bastain T, Hodis HN, Breton C. Childhood traffic-related air pollution and adverse changes in subclinical atherosclerosis measures from childhood to adulthood. Environ Health 2021; 20:44. [PMID: 33853624 PMCID: PMC8048028 DOI: 10.1186/s12940-021-00726-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Chronic exposure to air pollutants is associated with increased risk of cardiovascular disease (CVD) among adults. However, little is known about how air pollution may affect the development of subclinical atherosclerosis in younger populations. Carotid artery intima-media thickness (CIMT) is a measure of subclinical atherosclerosis that provides insight into early CVD pathogenesis. METHODS In a pilot study of 70 participants from the Southern California Children's Health Study, we investigated CIMT progression from childhood to adulthood. Using carotid artery ultrasound images obtained at age 10 and follow-up images at age 21-22, we examined associations between childhood ambient and traffic-related air pollutants with changes in CIMT over time and attained adult CIMT using linear mixed-effects models adjusted for potential confounders. Average residential childhood exposures (i.e., birth to time of measurement at 10-11 years) were assigned for regional, ambient pollutants (ozone, nitrogen dioxide, particulate matter, interpolated from regulatory air monitoring data) and traffic-related nitrogen oxides (NOx) by road class (modeled using the CALINE4 line source dispersion model). Traffic density was calculated within a 300-m residential buffer. RESULTS For each 1 standard deviation (SD) increase in childhood traffic-related total NOx exposure, we observed greater yearly rate of change in CIMT from childhood to adulthood (β: 2.17 μm/yr, 95% CI: 0.78-3.56). Increases in annual rate of CIMT change from childhood to adulthood also were observed with freeway NOx exposure (β: 2.24 μm/yr, 95% CI: 0.84-3.63) and traffic density (β: 2.11 μm/yr, 95% CI: 0.79-3.43). Traffic exposures were also related to increases in attained CIMT in early adulthood. No associations of CIMT change or attained level were observed with ambient pollutants. CONCLUSIONS Overall, we observed adverse changes in CIMT over time in relation to childhood traffic-related NOx exposure and traffic density in our study population. While these results must be cautiously interpreted given the limited sample size, the observed associations of traffic measures with CIMT suggest a need for future studies to more fully explore this relationship.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Rima Habre
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Phoebe Danza
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | | | - W. James Gauderman
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Edward Avol
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Howard N. Hodis
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089 USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA 90089 USA
| | - Carrie Breton
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| |
Collapse
|
35
|
Legoff L, D'Cruz SC, Bouchekhchoukha K, Monfort C, Jaulin C, Multigner L, Smagulova F. In utero exposure to chlordecone affects histone modifications and activates LINE-1 in cord blood. Life Sci Alliance 2021; 4:4/6/e202000944. [PMID: 33837044 PMCID: PMC8091598 DOI: 10.26508/lsa.202000944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
In utero exposure to chlordecone affects chromatin and leads to activation of retroelements. This study shows the changes induced by chlordecone in human umbilical cord blood and blood-derived cell line. Environmental factors can induce detrimental consequences into adulthood life. In this study, we examined the epigenetic effects induced by in utero chlordecone (CD) exposure on human male cord blood as well as in blood-derived Ke-37 cell line. Genome-wide analysis of histone H3K4me3 distribution revealed that genes related to chromosome segregation, chromatin organization, and cell cycle have altered occupancy in their promoters. The affected regions were enriched in ESR1, SP family, and IKZF1 binding motifs. We also observed a global reduction in H3K9me3, markedly in repeated sequences of the genome. Decrease in H3K9me3 after CD exposure correlates with decreased methylation in LINE-1 promoters and telomere length extension. These observations on human cord blood were assessed in the Ke-37 human cell line. H3K4me3 and the expression of genes related to immune response, DNA repair, and chromatin organization, which were affected in human cord blood were also altered in CD-exposed Ke-37 cells. Our data suggest that developmental exposure to CD leads to profound changes in histone modification patterns and affects the processes controlled by them in human cord blood.
Collapse
Affiliation(s)
- Louis Legoff
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Shereen Cynthia D'Cruz
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Katia Bouchekhchoukha
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Christine Monfort
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Christian Jaulin
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer Group, UMR 6290 CNRS, Université Rennes 1, Rennes Cedex, France
| | - Luc Multigner
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Fatima Smagulova
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| |
Collapse
|
36
|
Ni Y, Szpiro AA, Young MT, Loftus CT, Bush NR, LeWinn KZ, Sathyanarayana S, Enquobahrie DA, Davis RL, Kratz M, Fitzpatrick AL, Sonney JT, Tylavsky FA, Karr CJ. Associations of Pre- and Postnatal Air Pollution Exposures with Child Blood Pressure and Modification by Maternal Nutrition: A Prospective Study in the CANDLE Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47004. [PMID: 33797937 PMCID: PMC8043131 DOI: 10.1289/ehp7486] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Limited data suggest air pollution exposures may contribute to pediatric high blood pressure (HBP), a known predictor of adult cardiovascular diseases. METHODS We investigated this association in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study, a sociodemographically diverse pregnancy cohort in the southern United States with participants enrolled from 2006 to 2011. We included 822 mother-child dyads with available address histories and a valid child blood pressure measurement at 4-6 y. Systolic (SBP) and diastolic blood pressures (DBP) were converted to age-, sex-, and height-specific percentiles for normal-weight U.S. children. HBP was classified based on SBP or DBP ≥ 90 th percentile. Nitrogen dioxide (NO 2 ) and particulate matter ≤ 2.5 μ m in aerodynamic diameter (PM 2.5 ) estimates in both pre- and postnatal windows were obtained from annual national models and spatiotemporal models, respectively. We fit multivariate Linear and Poisson regressions and explored multiplicative joint effects with maternal nutrition, child sex, and maternal race using interaction terms. RESULTS Mean PM 2.5 and NO 2 in the prenatal period were 10.8 [standard deviation (SD): 0.9] μ g / m 3 and 10.0 (SD: 2.4) ppb, respectively, and 9.9 (SD: 0.6) μ g / m 3 and 8.8 (SD: 1.9) ppb from birth to the 4-y-old birthday. On average, SBP percentile increased by 14.6 (95% CI: 4.6, 24.6), and DBP percentile increased by 8.7 (95% CI: 1.4, 15.9) with each 2 - μ g / m 3 increase in second-trimester PM 2.5 . PM 2.5 averaged over the prenatal period was only significantly associated with higher DBP percentiles [β = 11.6 (95% CI: 2.9, 20.2)]. Positive associations of second-trimester PM 2.5 with SBP and DBP percentiles were stronger in children with maternal folate concentrations in the lowest quartile (p interaction = 0.05 and 0.07, respectively) and associations with DBP percentiles were stronger in female children (p interaction = 0.05). We did not detect significant association of NO 2 , road proximity, and postnatal PM 2.5 with any outcomes. CONCLUSIONS The findings suggest that higher prenatal PM 2.5 exposure, particularly in the second trimester, is associated with elevated early childhood blood pressure. This adverse association could be modified by pregnancy folate concentrations. https://doi.org/10.1289/EHP7486.
Collapse
Affiliation(s)
- Yu Ni
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, UW, Seattle, Washington, USA
| | - Michael T. Young
- Department of Environmental and Occupational Health Sciences, School of Public Health, UW, Seattle, Washington, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, UW, Seattle, Washington, USA
| | - Nicole R. Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, UW, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, UW, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Daniel A. Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
- Department of Health Services, School of Public Health, UW, Seattle, Washington, USA
| | - Robert L. Davis
- Center for Biomedical Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
- Department of Pediatrics, UTHSC, Memphis, Tennessee, USA
| | - Mario Kratz
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Annette L. Fitzpatrick
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
- Department of Family Medicine, School of Medicine, UW, Seattle, Washington, USA
- Department of Global Health, School of Public Health, UW, Seattle, Washington, USA
| | - Jennifer T. Sonney
- Department of Child, Family, and Population Health Nursing, School of Nursing, UW, Seattle, Washington, USA
| | | | - Catherine J. Karr
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, UW, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, UW, Seattle, Washington, USA
| |
Collapse
|
37
|
Suhaimi NF, Jalaludin J, Abu Bakar S. Deoxyribonucleic acid (DNA) methylation in children exposed to air pollution: a possible mechanism underlying respiratory health effects development. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:77-93. [PMID: 32857724 DOI: 10.1515/reveh-2020-0065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Air pollution is a substantial environmental threat to children and acts as acute and chronic disease risk factors alike. Several studies have previously evaluated epigenetic modifications concerning its exposure across various life stages. However, findings on epigenetic modifications as the consequences of air pollution during childhood are rather minimal. This review evaluated highly relevant studies in the field to analyze the existing literature regarding exposure to air pollution, with a focus on epigenetic alterations during childhood and their connections with respiratory health effects. The search was conducted using readily available electronic databases (PubMed and ScienceDirect) to screen for children's studies on epigenetic mechanisms following either pre- or post-natal exposure to air pollutants. Studies relevant enough and matched the predetermined criteria were chosen to be reviewed. Non-English articles and studies that did not report both air monitoring and epigenetic outcomes in the same article were excluded. The review found that epigenetic changes have been linked with exposure to air pollutants during early life with evidence and reports of how they may deregulate the epigenome balance, thus inducing disease progression in the future. Epigenetic studies evolve as a promising new approach in deciphering the underlying impacts of air pollution on deoxyribonucleic acid (DNA) due to links established between some of these epigenetic mechanisms and illnesses.
Collapse
Affiliation(s)
- Nur Faseeha Suhaimi
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Airlangga, 60115Surabaya, East Java, Indonesia
| | - Suhaili Abu Bakar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
38
|
Zhang JS, Gui ZH, Zou ZY, Yang BY, Ma J, Jing J, Wang HJ, Luo JY, Zhang X, Luo CY, Wang H, Zhao HP, Pan DH, Bao WW, Guo YM, Ma YH, Dong GH, Chen YJ. Long-term exposure to ambient air pollution and metabolic syndrome in children and adolescents: A national cross-sectional study in China. ENVIRONMENT INTERNATIONAL 2021; 148:106383. [PMID: 33465664 DOI: 10.1016/j.envint.2021.106383] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The prevalence of metabolic syndrome (MetS) rapidly increased over the past decades. However, little evidence exists about the effects of long-term exposure to ambient air pollution on MetS in children and adolescents. OBJECTIVE This study aims to assess the association between long-term ambient air pollution and the prevalence of MetS in a large population of Chinese children and adolescents. METHODS In 2013, a total of 9,897 children and adolescents aged 10 to 18 years were recruited from seven provinces/municipalities in China. MetS was defined based on the recommendation by the International Diabetes Federation (IDF). Satellite based spatio-temporal models were used to estimate exposure to ambient air pollution (including particles with diameters ≤1.0 µm (PM1), ≤2.5 µm (PM2.5), and ≤10 µm (PM10), and nitrogen dioxide (NO2)). Individual exposure was calculated according to 94 schools addresses. After adjustment for a range of covariates, generalized linear mixed-effects models were utilized to evaluate the associations between air pollutants and the prevalence of MetS and its components. In addition, several stratified analyses were examined according to sex, weight status, outdoor physical activity time, and sugar-sweetened beverages (SSBs) intake. RESULTS The prevalence of MetS was 2.8%. The odds ratio of MetS associated with a 10 μg/m3 increase in PM1, PM2.5, PM10 and NO2 was 1.20 (95%CI: 0.99, 1.46), 1.31 (95%CI: 1.05, 1.64), 1.32 (95%CI: 1.08, 1.62), and 1.33 (95%CI: 1.03, 1.72), respectively. Regarding the MetS components, we observed associations between all pollutants and abdominal obesity. In addition, long-term PM1 and NO2 exposures were associated with the prevalence of elevated fasting blood glucose. Stratified analyses detected that the associations between air pollutants and the prevalence of MetS were stronger in boys (Pinteraction < 0.05). CONCLUSIONS We found that long-term exposure to PM2.5, PM10, and NO2 were positively associated with the prevalence of MetS in children and adolescents. Our findings may have certain public health implications for some comprehensive strategy of environment improvement and lifestyles changes in order to reduce the burden of non-communicable disease.
Collapse
Affiliation(s)
- Jing-Shu Zhang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhao-Huan Gui
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Yong Zou
- Institute of Child and Adolescent Health, Peking University, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Ma
- Institute of Child and Adolescent Health, Peking University, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Jia-You Luo
- Department of Maternal and Child Health, School of Public Health, Central South University, Changsha 410078, China
| | - Xin Zhang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chun-Yan Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai Institutes of Preventive Medicine, Shanghai 200336, China
| | - Hong Wang
- Department of Maternal and Child Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Hai-Ping Zhao
- School of Public Health and Management, Ningxia Medical University, Ningxia, 750004, China
| | - De-Hong Pan
- Liaoning Health Supervision Bureau, Shenyang 110005, China
| | - Wen-Wen Bao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu-Ming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ying-Hua Ma
- Institute of Child and Adolescent Health, Peking University, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya-Jun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
39
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
40
|
Isaevska E, Moccia C, Asta F, Cibella F, Gagliardi L, Ronfani L, Rusconi F, Stazi MA, Richiardi L. Exposure to ambient air pollution in the first 1000 days of life and alterations in the DNA methylome and telomere length in children: A systematic review. ENVIRONMENTAL RESEARCH 2021; 193:110504. [PMID: 33221306 DOI: 10.1016/j.envres.2020.110504] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to air pollution during the first 1000 days of life (from conception to the 2nd year of life) might be of particular relevance for long-term child health. Changes in molecular markers such as DNA methylation and telomere length could underlie the association between air pollution exposure and pollution-related diseases as well as serve as biomarkers for past exposure. The objective of this systematic review was to assess the association between air pollution exposure during pregnancy and the first two years of life and changes in DNA methylation or telomere length in children. METHODS PubMed was searched in October 2020 by using terms relative to ambient air pollution exposure, DNA methylation, telomere length and the population of interest: mother/child dyads and children. Screening and selection of the articles was completed independently by two reviewers. Thirty-two articles matched our criteria. The majority of the articles focused on gestational air pollution exposure and measured DNA methylation/telomere length in newborn cord blood or placental tissue, to study global, candidate-gene or epigenome-wide methylation patterns and/or telomere length. The number of studies in children was limited. RESULTS Ambient air pollution exposure during pregnancy was associated with global loss of methylation in newborn cord blood and placenta, indicating the beginning of the pregnancy as a potential period of susceptibility. Candidate gene and epigenome-wide association studies provided evidence that gestational exposure to air pollutants can lead to locus-specific changes in methylation, in newborn cord blood and placenta, particularly in genes involved in cellular responses to oxidative stress, mitochondrial function, inflammation, growth and early life development. Telomere length shortening in newborns and children was seen in relation to gestational pollutant exposure. CONCLUSIONS Ambient air pollution during pregnancy is associated with changes in both global and locus-specific DNA methylation and with telomere length shortening. Future studies need to test the robustness of the association across different populations, to explore potential windows of vulnerability and assess the role of the methylation and telomere length as mediators in the association between early exposure to ambient air pollutants and specific childhood health outcomes.
Collapse
Affiliation(s)
- Elena Isaevska
- Department of Medical Sciences, University of Turin, CPO Piemonte, Turin, Italy.
| | - Chiara Moccia
- Department of Medical Sciences, University of Turin, CPO Piemonte, Turin, Italy.
| | - Federica Asta
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
| | - Luigi Gagliardi
- Division of Neonatology and Pediatrics, Ospedale Versilia, Viareggio, AUSL Toscana Nord Ovest, Pisa, Italy.
| | - Luca Ronfani
- Clinical Epidemiology and Public Health Research Unit, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Franca Rusconi
- Unit of Epidemiology, Meyer Children's University Hospital, Florence, Italy.
| | - Maria Antonietta Stazi
- Center "Behavioral Sciences and Mental Health", Istituto Superiore di Sanità, Rome, Italy.
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, CPO Piemonte, Turin, Italy.
| |
Collapse
|
41
|
Huang SK, Tripathi P, Koneva LA, Cavalcante RG, Craig N, Scruggs AM, Sartor MA, Deng F, Chen Y. Effect of concentration and duration of particulate matter exposure on the transcriptome and DNA methylome of bronchial epithelial cells. ENVIRONMENTAL EPIGENETICS 2021; 7:dvaa022. [PMID: 33692908 PMCID: PMC7928203 DOI: 10.1093/eep/dvaa022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Exposure to particulate matter (PM) from ambient air pollution is a well-known risk factor for many lung diseases, but the mechanism(s) for this is not completely understood. Bronchial epithelial cells, which line the airway of the respiratory tract, undergo genome-wide level changes in gene expression and DNA methylation particularly when exposed to fine (<2.5 µm) PM (PM2.5). Although some of these changes have been reported in other studies, a comparison of how different concentrations and duration of exposure affect both the gene transcriptome and DNA methylome has not been done. Here, we exposed BEAS-2B, a bronchial epithelial cell line, to different concentrations of PM2.5, and compared how single or repeated doses of PM2.5 affect both the transcriptome and methylome of cells. Widespread changes in gene expression occurred after cells were exposed to a single treatment of high-concentration (30 µg/cm2) PM2.5 for 24 h. These genes were enriched in pathways regulating cytokine-cytokine interactions, Mitogen-Activated Protein Kinase (MAPK) signaling, PI3K-Akt signaling, IL6, and P53. DNA methylomic analysis showed that nearly half of the differentially expressed genes were found to also have DNA methylation changes, with just a slightly greater trend toward overall hypomethylation across the genome. Cells exposed to a lower concentration (1 µg/cm2) of PM2.5 demonstrated a comparable, but more attenuated change in gene expression compared to cells exposed to higher concentrations. There were also many genes affected by lower concentrations of PM2.5, but not higher concentrations. Additionally, repeated exposure to PM2.5 (1 µg/cm2) for seven days resulted in transcriptomic and DNA methylomic changes that were distinct from cells treated with PM2.5 for only one day. Compared to single exposure, repeated exposure to PM2.5 caused a more notable degree of hypomethylation across the genome, though certain genes and regions demonstrated increased DNA methylation. The overall increase in hypomethylation, especially with repeated exposure to PM2.5, was associated with an increase in expression of ten-eleven translocation enzymes. These data demonstrate how variations in concentration and duration of PM2.5 exposure induce distinct differences in the transcriptomic and DNA methylomic profile of bronchial epithelial cells, which may have important implications in the development of both acute and chronic lung disease.
Collapse
Affiliation(s)
- Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Correspondence address: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA. Tel: +1-734-647-6477; Fax: +1-734-764-4556; E-mail:
| | - Priya Tripathi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Lada A Koneva
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Room 2017, Palmer Commons 100 Washtenaw Avenue Ann Arbor, MI 48109-2218, USA
| | - Raymond G Cavalcante
- Epigenomics Core, University of Michigan, Ann Arbor, Medical Science Research Building II Rm C568 1150 W. Medical Center Dr Ann Arbor, MI 48109, USA
| | - Nathan Craig
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Room 2017, Palmer Commons 100 Washtenaw Avenue Ann Arbor, MI 48109-2218, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Xueyuan Road 38, Haidian District, Beijing, China
| | - Yahong Chen
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, China
| |
Collapse
|
42
|
Zanobetti A, Coull BA, Luttmann-Gibson H, van Rossem L, Rifas-Shiman SL, Kloog I, Schwartz JD, Oken E, Bobb JF, Koutrakis P, Gold DR. Ambient Particle Components and Newborn Blood Pressure in Project Viva. J Am Heart Assoc 2020; 10:e016935. [PMID: 33372530 PMCID: PMC7955476 DOI: 10.1161/jaha.120.016935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Both elemental metals and particulate air pollution have been reported to influence adult blood pressure (BP). The aim of this study is to examine which elemental components of particle mass with diameter ≤2.5 μm (PM2.5) are responsible for previously reported associations between PM2.5 and neonatal BP. Methods and Results We studied 1131 mother‐infant pairs in Project Viva, a Boston‐area prebirth cohort. We measured systolic BP (SBP) and diastolic BP (DBP) at a mean age of 30 hours. We calculated average exposures during the 2 to 7 days before birth for the PM2.5 components—aluminum, arsenic, bromine, sulfur, copper, iron, zinc, nickel, vanadium, titanium, magnesium, potassium, silicon, sodium, chlorine, calcium, and lead—measured at the Harvard supersite. Adjusting for covariates and PM2.5, we applied regression models to examine associations between PM2.5 components and median SBP and DBP, and used variable selection methods to select which components were more strongly associated with each BP outcome. We found consistent results with higher nickel associated with significantly higher SBP and DBP, and higher zinc associated with lower SBP and DBP. For an interquartile range increase in the log Z score (1.4) of nickel, we found a 1.78 mm Hg (95% CI, 0.72–2.84) increase in SBP and a 1.30 (95% CI, 0.54–2.06) increase in DBP. Increased zinc (interquartile range log Z score 1.2) was associated with decreased SBP (−1.29 mm Hg; 95% CI, −2.09 to −0.50) and DBP (−0.85 mm Hg; 95% CI: −1.42 to −0.29). Conclusions Our findings suggest that prenatal exposures to particulate matter components, and particularly nickel, may increase newborn BP.
Collapse
Affiliation(s)
- Antonella Zanobetti
- Department of Environmental Health Harvard School of Public Health Boston MA
| | - Brent A Coull
- Department of Biostatistics Harvard School of Public Health Boston MA
| | | | - Lenie van Rossem
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht the Netherlands
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute Boston MA
| | - Itai Kloog
- Department of Geography and Environmental Development Ben-Gurion University of the Negev Beer Sheva Israel
| | - Joel D Schwartz
- Department of Environmental Health Harvard School of Public Health Boston MA.,Channing Division of Network Medicine Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute Boston MA
| | - Jennifer F Bobb
- Biostatistics Unit Kaiser Permanente Washington Health Research Institute Seattle WA.,Department of Biostatistics University of Washington Seattle WA
| | - Petros Koutrakis
- Department of Environmental Health Harvard School of Public Health Boston MA
| | - Diane R Gold
- Department of Environmental Health Harvard School of Public Health Boston MA.,Channing Division of Network Medicine Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| |
Collapse
|
43
|
Risk factors during first 1,000 days of life for carotid intima-media thickness in infants, children, and adolescents: A systematic review with meta-analyses. PLoS Med 2020; 17:e1003414. [PMID: 33226997 PMCID: PMC7682901 DOI: 10.1371/journal.pmed.1003414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The first 1,000 days of life, i.e., from conception to age 2 years, could be a critical period for cardiovascular health. Increased carotid intima-media thickness (CIMT) is a surrogate marker of atherosclerosis. We performed a systematic review with meta-analyses to assess (1) the relationship between exposures or interventions in the first 1,000 days of life and CIMT in infants, children, and adolescents; and (2) the CIMT measurement methods. METHODS AND FINDINGS Systematic searches of Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica database (EMBASE), and Cochrane Central Register of Controlled Trials (CENTRAL) were performed from inception to March 2019. Observational and interventional studies evaluating factors at the individual, familial, or environmental levels, for instance, size at birth, gestational age, breastfeeding, mode of conception, gestational diabetes, or smoking, were included. Quality was evaluated based on study methodological validity (adjusted Newcastle-Ottawa Scale if observational; Cochrane collaboration risk of bias tool if interventional) and CIMT measurement reliability. Estimates from bivariate or partial associations that were least adjusted for sex were used for pooling data across studies, when appropriate, using random-effects meta-analyses. The research protocol was published and registered on the International Prospective Register of Systematic Reviews (PROSPERO; CRD42017075169). Of 6,221 reports screened, 50 full-text articles from 36 studies (34 observational, 2 interventional) totaling 7,977 participants (0 to 18 years at CIMT assessment) were retained. Children born small for gestational age had increased CIMT (16 studies, 2,570 participants, pooled standardized mean difference (SMD): 0.40 (95% confidence interval (CI): 0.15 to 0.64, p: 0.001), I2: 83%). When restricted to studies of higher quality of CIMT measurement, this relationship was stronger (3 studies, 461 participants, pooled SMD: 0.64 (95% CI: 0.09 to 1.19, p: 0.024), I2: 86%). Only 1 study evaluating small size for gestational age was rated as high quality for all methodological domains. Children conceived through assisted reproductive technologies (ART) (3 studies, 323 participants, pooled SMD: 0.78 (95% CI: -0.20 to 1.75, p: 0.120), I2: 94%) or exposed to maternal smoking during pregnancy (3 studies, 909 participants, pooled SMD: 0.12 (95% CI: -0.06 to 0.30, p: 0.205), I2: 0%) had increased CIMT, but the imprecision around the estimates was high. None of the studies evaluating these 2 factors was rated as high quality for all methodological domains. Two studies evaluating the effect of nutritional interventions starting at birth did not show an effect on CIMT. Only 12 (33%) studies were at higher quality across all domains of CIMT reliability. The degree of confidence in results is limited by the low number of high-quality studies, the relatively small sample sizes, and the high between-study heterogeneity. CONCLUSIONS In our meta-analyses, we found several risk factors in the first 1,000 days of life that may be associated with increased CIMT during childhood. Small size for gestational age had the most consistent relationship with increased CIMT. The associations with conception through ART or with smoking during pregnancy were not statistically significant, with a high imprecision around the estimates. Due to the large uncertainty in effect sizes and the limited quality of CIMT measurements, further high-quality studies are needed to justify intervention for primordial prevention of cardiovascular disease (CVD).
Collapse
|
44
|
Falkner B. Maternal and gestational influences on childhood blood pressure. Pediatr Nephrol 2020; 35:1409-1418. [PMID: 30790042 DOI: 10.1007/s00467-019-4201-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/25/2023]
Abstract
Exposures that contribute to a sub-optimal intrauterine environment can have an effect on the developing fetus. Impaired fetal growth that results in low birth weight is an established risk factor for cardio-metabolic disorders later in life. Recent epidemiologic and prospective cohort studies that include the maternal and gestational period have identified maternal and gestational conditions that confer increased risk for subsequent cardio-metabolic disorders in the absence of low birth weight. Maternal pre-conception health status, including chronic obesity and type 2 diabetes, increase risk for childhood obesity and obesity-related higher blood pressure (BP) in child offspring. Maternal gestational exposures, including gestational diabetes, gestational hypertension, and preeclampsia, are associated with higher BP in offspring. Other maternal exposures such as cigarette smoke and air pollution also increase risk for higher BP in child offspring. Recent, but limited, data indicate that assisted reproductive technologies can be associated with hypertension in childhood, despite otherwise normal gestation and healthy newborn. Gestational exposures associated with higher BP in childhood can be related to familial lifestyle factors, genetics, or epigenetic modification of fetal deoxyribonucleic acid (DNA). These factors, or combination of factors, as well as other adverse intrauterine conditions, could induce fetal programing leading to health consequences in later life. Current and developing research will provide additional insights on gestational exposures and fetal adjustments that increase risk for higher BP levels in childhood.
Collapse
Affiliation(s)
- Bonita Falkner
- Department of Medicine and Pediatrics, Thomas Jefferson University, 833 Chestnut St. Ste. 7000, Philadelphia, PA, 19107, USA.
| |
Collapse
|
45
|
Eze IC, Jeong A, Schaffner E, Rezwan FI, Ghantous A, Foraster M, Vienneau D, Kronenberg F, Herceg Z, Vineis P, Brink M, Wunderli JM, Schindler C, Cajochen C, Röösli M, Holloway JW, Imboden M, Probst-Hensch N. Genome-Wide DNA Methylation in Peripheral Blood and Long-Term Exposure to Source-Specific Transportation Noise and Air Pollution: The SAPALDIA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67003. [PMID: 32484729 PMCID: PMC7263738 DOI: 10.1289/ehp6174] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Few epigenome-wide association studies (EWAS) on air pollutants exist, and none have been done on transportation noise exposures, which also contribute to environmental burden of disease. OBJECTIVE We performed mutually independent EWAS on transportation noise and air pollution exposures. METHODS We used data from two time points of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) from 1,389 participants contributing 2,542 observations. We applied multiexposure linear mixed-effects regressions with participant-level random intercept to identify significant Cytosine-phosphate-Guanine (CpG) sites and differentially methylated regions (DMRs) in relation to 1-y average aircraft, railway, and road traffic day-evening-night noise (Lden); nitrogen dioxide (NO 2 ); and particulate matter (PM) with aerodynamic diameter < 2.5 μ m (PM 2.5 ). We performed candidate (CpG-based; cross-systemic phenotypes, combined into "allostatic load") and agnostic (DMR-based) pathway enrichment tests, and replicated previously reported air pollution EWAS signals. RESULTS We found no statistically significant CpGs at false discovery rate < 0.05 . However, 14, 48, 183, 8, and 71 DMRs independently associated with aircraft, railway, and road traffic Lden; NO 2 ; and PM 2.5 , respectively, with minimally overlapping signals. Transportation Lden and air pollutants tendentially associated with decreased and increased methylation, respectively. We observed significant enrichment of candidate DNA methylation related to C-reactive protein and body mass index (aircraft, road traffic Lden, and PM 2.5 ), renal function and "allostatic load" (all exposures). Agnostic functional networks related to cellular immunity, gene expression, cell growth/proliferation, cardiovascular, auditory, embryonic, and neurological systems development were enriched. We replicated increased methylation in cg08500171 (NO 2 ) and decreased methylation in cg17629796 (PM 2.5 ). CONCLUSIONS Mutually independent DNA methylation was associated with source-specific transportation noise and air pollution exposures, with distinct and shared enrichments for pathways related to inflammation, cellular development, and immune responses. These findings contribute in clarifying the pathways linking these exposures and age-related diseases but need further confirmation in the context of mediation analyses. https://doi.org/10.1289/EHP6174.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emmanuel Schaffner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Maria Foraster
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
- Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona, Spain
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Mark Brink
- Federal Office for the Environment, Bern, Switzerland
| | - Jean-Marc Wunderli
- Empa Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Falkner B, Lurbe E. Primordial Prevention of High Blood Pressure in Childhood: An Opportunity Not to be Missed. Hypertension 2020; 75:1142-1150. [PMID: 32223379 DOI: 10.1161/hypertensionaha.119.14059] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertension is a condition with increased risk for subsequent adverse events, and treatment of hypertension is prescribed for primary prevention of adverse events. Primordial prevention is a concept that precedes primary prevention and focuses on risk factor prevention. Primordial prevention of hypertension consists of strategies to maintain blood pressure in a normal range and prevent development of elevated blood pressure or hypertension. Childhood is a period in which primordial prevention could be effective and if sustained throughout childhood could contribute to a healthier young adulthood. Targets for primordial prevention in childhood include preventing and reducing childhood obesity, achieving an optimal diet that includes avoiding excessive salt consumption, and removing barriers to physical activity and healthy sleep throughout childhood. Primordial prevention also includes the prenatal period wherein some maternal conditions and exposures are associated with higher blood pressure in child offspring.
Collapse
Affiliation(s)
- Bonita Falkner
- From the Departments of Medicine and Pediatrics, Thomas Jefferson University, Philadelphia, PA (B.F.)
| | - Empar Lurbe
- Pediatric Department, Hospital General, University of Valencia, Spain (E.L.)
| |
Collapse
|
47
|
Rosa MJ, Hair GM, Just AC, Kloog I, Svensson K, Pizano-Zárate ML, Pantic I, Schnaas L, Tamayo-Ortiz M, Baccarelli AA, Tellez-Rojo MM, Wright RO, Sanders AP. Identifying critical windows of prenatal particulate matter (PM 2.5) exposure and early childhood blood pressure. ENVIRONMENTAL RESEARCH 2020; 182:109073. [PMID: 31881529 PMCID: PMC7024649 DOI: 10.1016/j.envres.2019.109073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to air pollution is associated with increased blood pressure (BP) in adults and children. Some evidence suggests that air pollution exposure during the prenatal period may contribute to adverse cardiorenal health later in life. Here we apply a distributed lag model (DLM) approach to identify critical windows that may underlie the association between prenatal particulate matter ≤ 2.5 μm in diameter (PM2.5) exposure and children's BP at ages 4-6 years. METHODS Participants included 537 mother-child dyads enrolled in the Programming Research in Obesity, GRowth Environment, and Social Stress (PROGRESS) longitudinal birth cohort study based in Mexico City. Prenatal daily PM2.5 exposure was estimated using a validated satellite-based spatio-temporal model and BP was measured using the automated Spacelabs system with a sized cuff. We used distributed lag models (DLMs) to examine associations between daily PM2.5 exposure and systolic and diastolic BP (SBP and DBP), adjusting for child's age, sex and BMI, as well as maternal education, preeclampsia and indoor smoking report during the second and third trimester, seasonality and average postnatal year 1 PM2.5 exposure. RESULTS We found that PM2.5 exposure between weeks 11-32 of gestation (days 80-226) was significantly associated with children's increased SBP. Similarly, PM2.5 exposure between weeks 9-25 of gestation (days 63-176) was significantly associated with increased DBP. To place this into context, a constant 10 μg/m3 increase in PM2.5 sustained throughout this critical window would predict a cumulative increase of 2.6 mmHg (CI: 0.5, 4.6) in SBP and 0.88 mmHg (CI: 0.1, 1.6) in DBP at ages 4-6 years. In a stratified analysis by sex, this association persisted in boys but not in girls. CONCLUSIONS Second and third trimester PM2.5 exposure may increase children's BP in early life. Further work investigating PM2.5 exposure with BP trajectories later in childhood will be important to understanding cardiorenal trajectories that may predict adult disease. Our results underscore the importance of reducing air pollution exposure among susceptible populations, including pregnant women.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Gleicy Macedo Hair
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B., Beer Sheva, Israel
| | | | - María Luisa Pizano-Zárate
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Ivan Pantic
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Lourdes Schnaas
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- National Council of Science and Technology (CONACYT), National Institute of Public Health (INSP), Cuernavaca, Morelos, Mexico; Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
48
|
Perera BP, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:176-192. [PMID: 31177562 PMCID: PMC7252203 DOI: 10.1002/em.22311] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/02/2023]
Abstract
The genetic material of every organism exists within the context of regulatory networks that govern gene expression, collectively called the epigenome. Epigenetics has taken center stage in the study of diseases such as cancer and diabetes, but its integration into the field of environmental health is still emerging. As the Environmental Mutagenesis and Genomics Society (EMGS) celebrates its 50th Anniversary this year, we have come together to review and summarize the seminal advances in the field of environmental epigenomics. Specifically, we focus on the role epigenetics may play in multigenerational and transgenerational transmission of environmentally induced health effects. We also summarize state of the art techniques for evaluating the epigenome, environmental epigenetic analysis, and the emerging field of epigenome editing. Finally, we evaluate transposon epigenetics as they relate to environmental exposures and explore the role of noncoding RNA as biomarkers of environmental exposures. Although the field has advanced over the past several decades, including being recognized by EMGS with its own Special Interest Group, recently renamed Epigenomics, we are excited about the opportunities for environmental epigenetic science in the next 50 years. Environ. Mol. Mutagen. 61:176-192, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bambarendage P.U. Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, St. Paul, Minnesota
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Correspondence to: Dana C. Dolinoy, Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan.
| |
Collapse
|
49
|
Legoff L, D’Cruz SC, Tevosian S, Primig M, Smagulova F. Transgenerational Inheritance of Environmentally Induced Epigenetic Alterations during Mammalian Development. Cells 2019; 8:cells8121559. [PMID: 31816913 PMCID: PMC6953051 DOI: 10.3390/cells8121559] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic studies traditionally focus on DNA as the molecule that passes information on from parents to their offspring. Changes in the DNA code alter heritable information and can more or less severely affect the progeny's phenotype. While the idea that information can be inherited between generations independently of the DNA's nucleotide sequence is not new, the outcome of recent studies provides a mechanistic foundation for the concept. In this review, we attempt to summarize our current knowledge about the transgenerational inheritance of environmentally induced epigenetic changes. We focus primarily on studies using mice but refer to other species to illustrate salient points. Some studies support the notion that there is a somatic component within the phenomenon of epigenetic inheritance. However, here, we will mostly focus on gamete-based processes and the primary molecular mechanisms that are thought to contribute to epigenetic inheritance: DNA methylation, histone modifications, and non-coding RNAs. Most of the rodent studies published in the literature suggest that transgenerational epigenetic inheritance through gametes can be modulated by environmental factors. Modification and redistribution of chromatin proteins in gametes is one of the major routes for transmitting epigenetic information from parents to the offspring. Our recent studies provide additional specific cues for this concept and help better understand environmental exposure influences fitness and fidelity in the germline. In summary, environmental cues can induce parental alterations and affect the phenotypes of offspring through gametic epigenetic inheritance. Consequently, epigenetic factors and their heritability should be considered during disease risk assessment.
Collapse
Affiliation(s)
- Louis Legoff
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Shereen Cynthia D’Cruz
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences Box 100144, 1333 Center Drive, Gainesville, FL 32610, USA;
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Fatima Smagulova
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
- Correspondence:
| |
Collapse
|
50
|
Rider CF, Carlsten C. Air pollution and DNA methylation: effects of exposure in humans. Clin Epigenetics 2019; 11:131. [PMID: 31481107 PMCID: PMC6724236 DOI: 10.1186/s13148-019-0713-2] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Air pollution exposure is estimated to contribute to approximately seven million early deaths every year worldwide and more than 3% of disability-adjusted life years lost. Air pollution has numerous harmful effects on health and contributes to the development and morbidity of cardiovascular disease, metabolic disorders, and a number of lung pathologies, including asthma and chronic obstructive pulmonary disease (COPD). Emerging data indicate that air pollution exposure modulates the epigenetic mark, DNA methylation (DNAm), and that these changes might in turn influence inflammation, disease development, and exacerbation risk. Several traffic-related air pollution (TRAP) components, including particulate matter (PM), black carbon (BC), ozone (O3), nitrogen oxides (NOx), and polyaromatic hydrocarbons (PAHs), have been associated with changes in DNAm; typically lowering DNAm after exposure. Effects of air pollution on DNAm have been observed across the human lifespan, but it is not yet clear whether early life developmental sensitivity or the accumulation of exposures have the most significant effects on health. Air pollution exposure-associated DNAm patterns are often correlated with long-term negative respiratory health outcomes, including the development of lung diseases, a focus in this review. Recently, interventions such as exercise and B vitamins have been proposed to reduce the impact of air pollution on DNAm and health. Ultimately, improved knowledge of how exposure-induced change in DNAm impacts health, both acutely and chronically, may enable preventative and remedial strategies to reduce morbidity in polluted environments.
Collapse
Affiliation(s)
- Christopher F Rider
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, British Columbia, Canada. .,Diamond Health Care Centre 7252, 2775 Laurel Street, Vancouver, BC, V5Z 1 M9, Canada.
| | - Chris Carlsten
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, British Columbia, Canada.,Diamond Health Care Centre 7252, 2775 Laurel Street, Vancouver, BC, V5Z 1 M9, Canada.,Institute for Heart and Lung Health, University of British Columbia, Vancouver, British Columbia, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|