1
|
Escher BI, Blanco J, Caixach J, Cserbik D, Farré MJ, Flores C, König M, Lee J, Nyffeler J, Planas C, Redondo-Hasselerharm PE, Rovira J, Sanchís J, Schuhmacher M, Villanueva CM. In vitro bioassays for monitoring drinking water quality of tap water, domestic filtration and bottled water. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:126-135. [PMID: 37328620 PMCID: PMC10907286 DOI: 10.1038/s41370-023-00566-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Location-specific patterns of regulated and non-regulated disinfection byproducts (DBPs) were detected in tap water samples of the Barcelona Metropolitan Area. However, it remains unclear if the detected DBPs together with undetected DPBs and organic micropollutants can lead to mixture effects in drinking water. OBJECTIVE To evaluate the neurotoxicity, oxidative stress response and cytotoxicity of 42 tap water samples, 6 treated with activated carbon filters, 5 with reverse osmosis and 9 bottled waters. To compare the measured effects of the extracts with the mixture effects predicted from the detected concentrations and the relative effect potencies of the detected DBPs using the mixture model of concentration addition. METHODS Mixtures of organic chemicals in water samples were enriched by solid phase extraction and tested for cytotoxicity and neurite outgrowth inhibition in the neuronal cell line SH-SY5Y and for cytotoxicity and oxidative stress response in the AREc32 assay. RESULTS Unenriched water did not trigger neurotoxicity or cytotoxicity. After up to 500-fold enrichment, few extracts showed cytotoxicity. Disinfected water showed low neurotoxicity at 20- to 300-fold enrichment and oxidative stress response at 8- to 140-fold enrichment. Non-regulated non-volatile DBPs, particularly (brominated) haloacetonitriles dominated the predicted mixture effects of the detected chemicals and predicted effects agreed with the measured effects. By hierarchical clustering we identified strong geographical patterns in the types of DPBs and their association with effects. Activated carbon filters did not show a consistent reduction of effects but domestic reverse osmosis filters decreased the effect to that of bottled water. IMPACT STATEMENT Bioassays are an important complement to chemical analysis of disinfection by-products (DBPs) in drinking water. Comparison of the measured oxidative stress response and mixture effects predicted from the detected chemicals and their relative effect potencies allowed the identification of the forcing agents for the mixture effects, which differed by location but were mainly non-regulated DBPs. This study demonstrates the relevance of non-regulated DBPs from a toxicological perspective. In vitro bioassays, in particular reporter gene assays for oxidative stress response that integrate different reactive toxicity pathways including genotoxicity, may therefore serve as sum parameters for drinking water quality assessment.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany.
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, Tübingen, Germany.
| | - Jordi Blanco
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Dora Cserbik
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Maria J Farré
- Catalan Institute for Water Research, ICRA, Girona, Spain
- University of Girona, Girona, Spain
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Maria König
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Jungeun Lee
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Jo Nyffeler
- Helmholtz Centre for Environmental Research - UFZ, Department of Cell Toxicology, Leipzig, Germany
| | - Carles Planas
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Paula E Redondo-Hasselerharm
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- IMDEA Water, Madrid, Spain
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
- Environmental Engineering Laboratory, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Sanchís
- Catalan Institute for Water Research, ICRA, Girona, Spain
- University of Girona, Girona, Spain
- Catalan Water Agency, Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Universitat Rovira i Virgili, Tarragona, Spain
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, UPF, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- Hospital del Mar Medical Research Institute, IMIM, Barcelona, Spain
| |
Collapse
|
2
|
Bloch D, Diel P, Epe B, Hellwig M, Lampen A, Mally A, Marko D, Villar Fernández MA, Guth S, Roth A, Marchan R, Ghallab A, Cadenas C, Nell P, Vartak N, van Thriel C, Luch A, Schmeisser S, Herzler M, Landsiedel R, Leist M, Marx-Stoelting P, Tralau T, Hengstler JG. Basic concepts of mixture toxicity and relevance for risk evaluation and regulation. Arch Toxicol 2023; 97:3005-3017. [PMID: 37615677 PMCID: PMC10504116 DOI: 10.1007/s00204-023-03565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.
Collapse
Affiliation(s)
- Denise Bloch
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Mainz, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technical University Dresden, Dresden, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - María A Villar Fernández
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Sabine Guth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Angelika Roth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Cristina Cadenas
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Patrick Nell
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Nachiket Vartak
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Christoph van Thriel
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Matthias Herzler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, Berlin, Germany
| | - Marcel Leist
- Department of In Vitro Toxicology and Biomedicine, Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| |
Collapse
|
3
|
Limbu S, Dakshanamurthy S. Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach. TOXICS 2023; 11:605. [PMID: 37505571 PMCID: PMC10383376 DOI: 10.3390/toxics11070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
This study addresses the challenge of assessing the carcinogenic potential of hazardous chemical mixtures, such as per- and polyfluorinated substances (PFASs), which are known to contribute significantly to cancer development. Here, we propose a novel framework called HNNMixCancer that utilizes a hybrid neural network (HNN) integrated into a machine-learning framework. This framework incorporates a mathematical model to simulate chemical mixtures, enabling the creation of classification models for binary (carcinogenic or noncarcinogenic) and multiclass classification (categorical carcinogenicity) and regression (carcinogenic potency). Through extensive experimentation, we demonstrate that our HNN model outperforms other methodologies, including random forest, bootstrap aggregating, adaptive boosting, support vector regressor, gradient boosting, kernel ridge, decision tree with AdaBoost, and KNeighbors, achieving a superior accuracy of 92.7% in binary classification. To address the limited availability of experimental data and enrich the training data, we generate an assumption-based virtual library of chemical mixtures using a known carcinogenic and noncarcinogenic single chemical for all the classification models. Remarkably, in this case, all methods achieve accuracies exceeding 98% for binary classification. In external validation tests, our HNN method achieves the highest accuracy of 80.5%. Furthermore, in multiclass classification, the HNN demonstrates an overall accuracy of 96.3%, outperforming RF, Bagging, and AdaBoost, which achieved 91.4%, 91.7%, and 80.2%, respectively. In regression models, HNN, RF, SVR, GB, KR, DT with AdaBoost, and KN achieved average R2 values of 0.96, 0.90, 0.77, 0.94, 0.96, 0.96, and 0.97, respectively, showcasing their effectiveness in predicting the concentration at which a chemical mixture becomes carcinogenic. Our method exhibits exceptional predictive power in prioritizing carcinogenic chemical mixtures, even when relying on assumption-based mixtures. This capability is particularly valuable for toxicology studies that lack experimental data on the carcinogenicity and toxicity of chemical mixtures. To our knowledge, this study introduces the first method for predicting the carcinogenic potential of chemical mixtures. The HNNMixCancer framework offers a novel alternative for dose-dependent carcinogen prediction. Ongoing efforts involve implementing the HNN method to predict mixture toxicity and expanding the application of HNNMixCancer to include multiple mixtures such as PFAS mixtures and co-occurring chemicals.
Collapse
Affiliation(s)
- Sarita Limbu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Dutta S, Sengupta P, Bagchi S, Chhikara BS, Pavlík A, Sláma P, Roychoudhury S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front Cell Dev Biol 2023; 11:1162015. [PMID: 37250900 PMCID: PMC10214012 DOI: 10.3389/fcell.2023.1162015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Confluence of environmental, genetic, and lifestyle variables is responsible for deterioration of human fecundity. Endocrine disruptors or endocrine disrupting chemicals (EDCs) may be found in a variety of foods, water, air, beverages, and tobacco smoke. It has been demonstrated in experimental investigations that a wide range of endocrine disrupting chemicals have negative effects on human reproductive function. However, evidence on the reproductive consequences of human exposure to endocrine disrupting chemicals is sparse and/or conflicting in the scientific literature. The combined toxicological assessment is a practical method for assessing the hazards of cocktails of chemicals, co-existing in the environment. The current review provides a comprehensive overview of studies emphasizing the combined toxicity of endocrine disrupting chemicals on human reproduction. Endocrine disrupting chemicals interact with each other to disrupt the different endocrine axes, resulting in severe gonadal dysfunctions. Transgenerational epigenetic effects have also been induced in germ cells, mostly through DNA methylation and epimutations. Similarly, after acute or chronic exposure to endocrine disrupting chemicals combinations, increased oxidative stress (OS), elevated antioxidant enzymatic activity, disrupted reproductive cycle, and reduced steroidogenesis are often reported consequences. The article also discusses the concentration addition (CA) and independent action (IA) prediction models, which reveal the importance of various synergistic actions of endocrine disrupting chemicals mixtures. More crucially, this evidence-based study addresses the research limitations and information gaps, as well as particularly presents the future research views on combined endocrine disrupting chemicals toxicity on human reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sovan Bagchi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bhupender S. Chhikara
- Molecular Medicinal and Material NanoChemistry Laboratory, Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Delhi, India
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
5
|
Guéguen Y, Frerejacques M. Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment. Int J Mol Sci 2022; 23:ijms23084397. [PMID: 35457214 PMCID: PMC9030063 DOI: 10.3390/ijms23084397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order to prioritize research assessing the health risks associated with exposure to physical or chemical stressors. In this paper, a review of knowledge was proposed, examining experimental and epidemiological data, in order to identify relevant key events and potential key event relationships in an AOP for renal impairment, relevant to stressors such as uranium (U). Other stressors may promote similar pathways, and this review is a necessary step to compare and combine knowledge reported for nephrotoxicants. U metal ions are filtered through the glomerular membrane of the kidneys, then concentrate in the cortical and juxtaglomerular areas, and bind to the brush border membrane of the proximal convoluted tubules. U uptake by epithelial cells occurs through endocytosis and the sodium-dependent phosphate co-transporter (NaPi-IIa). The identified key events start with the inhibition of the mitochondria electron transfer chain and the collapse of mitochondrial membrane potential, due to cytochrome b5/cytochrome c disruption. In the nucleus, U directly interacts with negatively charged DNA phosphate, thereby inducing an adduct formation, and possibly DNA strand breaks or cross-links. U also compromises DNA repair by inhibiting zing finger proteins. Thereafter, U triggers the Nrf2, NF-κB, or endoplasmic reticulum stress pathways. The resulting cellular key events include oxidative stress, DNA strand breaks and chromosomal aberrations, apoptosis, and pro-inflammatory effects. Finally, the main adverse outcome is tubular damage of the S2 and S3 segments of the kidneys, leading to tubular cell death, and then kidney failure. The attribution of renal carcinogenesis due to U is controversial, and specific experimental or epidemiological studies must be conducted. A tentative construction of an AOP for uranium-induced kidney toxicity and failure was proposed.
Collapse
|
6
|
Tang MS, Lee HW, Weng MW, Wang HT, Hu Y, Chen LC, Park SH, Chan HW, Xu J, Wu XR, Wang H, Yang R, Galdane K, Jackson K, Chu A, Halzack E. DNA damage, DNA repair and carcinogenicity: Tobacco smoke versus electronic cigarette aerosol. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108409. [PMID: 35690412 PMCID: PMC9208310 DOI: 10.1016/j.mrrev.2021.108409] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023]
Abstract
The allure of tobacco smoking is linked to the instant gratification provided by inhaled nicotine. Unfortunately, tobacco curing and burning generates many mutagens including more than 70 carcinogens. There are two types of mutagens and carcinogens in tobacco smoke (TS): direct DNA damaging carcinogens and procarcinogens, which require metabolic activation to become DNA damaging. Recent studies provide three new insights on TS-induced DNA damage. First, two major types of TS DNA damage are induced by direct carcinogen aldehydes, cyclic-1,N2-hydroxy-deoxyguanosine (γ-OH-PdG) and α-methyl-1, N2-γ-OH-PdG, rather than by the procarcinogens, polycyclic aromatic hydrocarbons and aromatic amines. Second, TS reduces DNA repair proteins and activity levels. TS aldehydes also prevent procarcinogen activation. Based on these findings, we propose that aldehydes are major sources of TS induce DNA damage and a driving force for carcinogenesis. E-cigarettes (E-cigs) are designed to deliver nicotine in an aerosol state, without burning tobacco. E-cigarette aerosols (ECAs) contain nicotine, propylene glycol and vegetable glycerin. ECAs induce O6-methyl-deoxyguanosines (O6-medG) and cyclic γ-hydroxy-1,N2--propano-dG (γ-OH-PdG) in mouse lung, heart and bladder tissues and causes a reduction of DNA repair proteins and activity in lungs. Nicotine and nicotine-derived nitrosamine ketone (NNK) induce the same types of DNA adducts and cause DNA repair inhibition in human cells. After long-term exposure, ECAs induce lung adenocarcinoma and bladder urothelial hyperplasia in mice. We propose that E-cig nicotine can be nitrosated in mouse and human cells becoming nitrosamines, thereby causing two carcinogenic effects, induction of DNA damage and inhibition of DNA repair, and that ECA is carcinogenic in mice. Thus, this article reviews the newest literature on DNA adducts and DNA repair inhibition induced by nicotine and ECAs in mice and cultured human cells, and provides insights into ECA carcinogenicity in mice.
Collapse
Affiliation(s)
- Moon-Shong Tang
- Department of Environmental Medicine, Pathology and Medicine, United States.
| | - Hyun-Wook Lee
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Mao-Wen Weng
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Hsiang-Tsui Wang
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Yu Hu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Lung-Chi Chen
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Sung-Hyun Park
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Huei-Wei Chan
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Jiheng Xu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Xue-Ru Wu
- Departmemt of Urology, New York University School of Medicine, New York, NY10016, United States
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson MedicalSchool, Rutgers University, Piscataway, NJ 08854, United States
| | - Rui Yang
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Karen Galdane
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Kathryn Jackson
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Annie Chu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Elizabeth Halzack
- Department of Environmental Medicine, Pathology and Medicine, United States
| |
Collapse
|
7
|
Hamid N, Junaid M, Pei DS. Combined toxicity of endocrine-disrupting chemicals: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112136. [PMID: 33735605 DOI: 10.1016/j.ecoenv.2021.112136] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The combined toxicological assessment provides a realistic approach for hazard evaluation of chemical cocktails that co-existed in the environment. This review provides a holistic insight into the studies highlighting the mixture toxicity of the endocrine-disrupting chemicals (EDCs), especially focusing on the screening of biochemical pathways and other toxicogenetic endpoints. Reviewed literature showed that numerous multiplexed toxicogenomic techniques were applied to determine reproductive effects in vertebrates, but limited studies were found in non-mammalian species after mixture chemical exposure. Further, we found that the experimental design and concentration selection are the two important parameters in mixture toxicity studies that should be time- and cost-effective, highly precise, and environmentally relevant. A summary of EDC mixtures affecting the thyroid axis, estrogen axis, androgen axis, growth stress, and immune system via in vivo bioassays was also presented. It is interesting to mention that majority of estrogenic effects of the mixtures were sex-dependent, particularly observed in male fish as compared to female fish. Further, the androgen axis was perturbed with serious malformations in male rat testis (epididymal or gubernacular lesions, and deciduous spermatids). Also, transgenerational epigenetic effects were promoted in the F3 and F4 generations in the form of DNA methylation epimutations in sperm, increasing polycystic ovaries and reducing the offspring. Similarly, increased oxidative stress, high antioxidant enzymatic activities, disturbed estrous cycle, and decreased steroidogenesis were the commonly found effects after acute or chronic exposure to EDC mixtures. Importantly, the concentration addition (CA) and independent action (IA) models became more prevalent and suitable predictive models to unveil the prominence of synergistic estrogenic and anti-androgenic effects of chemical mixtures. More importantly, this review encompasses the research challenges and gaps in the existing knowledge and specific future research perspectives on combined toxicity.
Collapse
Affiliation(s)
- Naima Hamid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
8
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|
9
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
10
|
Harris KL, Myers MB, McKim KL, Elespuru RK, Parsons BL. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:152-175. [PMID: 31469467 PMCID: PMC6973253 DOI: 10.1002/em.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Kelly L. Harris
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Rosalie K. Elespuru
- Division of Biology, Chemistry and Materials ScienceCDRH/OSEL, US Food and Drug AdministrationSilver SpringMaryland
| | - Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| |
Collapse
|
11
|
Luo S, Terciolo C, Bracarense APFL, Payros D, Pinton P, Oswald IP. In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier. ENVIRONMENT INTERNATIONAL 2019; 132:105082. [PMID: 31400600 DOI: 10.1016/j.envint.2019.105082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 05/11/2023]
Abstract
Deoxynivalenol (DON), one of the most widespread mycotoxins in Europe, and cadmium (Cd), a widespread environmental pollutant, are common food contaminants. They exert adverse effects on different organs including kidney, liver, and intestine. The intestine is a common target of DON and Cd when they are ingested. Most studies have focused on their individual effects whereas their combined toxicity has rarely been studied. The aim of this study was thus to evaluate their individual and combined effects on the intestinal barrier function in vitro and in vivo. In vitro, Caco-2 cells were treated with increasing concentrations of DON and Cd (1-30 μM). In vivo, Wistar rats were used as controls or exposed to DON contaminated feed (8.2 mg/kg feed), Cd-contaminated water (5 mg/l) or both for four weeks. In Caco-2 cells, DON, Cd and the DON+Cd mixture reduced transepithelial electrical resistance (TEER) and increased paracellular permeability in a dose-dependent manner. Impairment of the barrier function was associated with a decrease in the amount of E-cadherin and occludin after exposure to the two contaminants alone or combined. A decrease in E-cadherin expression was observed in rats exposed to the two contaminants alone or combined, whereas occludin expression only decreased in animals exposed to DON and DON+Cd. Jejunal crypt depth was reduced in rats exposed to DON or Cd, whereas villi height was not affected. In vitro and in vivo results showed that the effects of exposure to combined DON and Cd on the intestinal barrier function in the jejunum of Wistar rats and in the colorectal cancer cell line (Caco-2) was similar to the effects of each individual contaminant. This suggests that regulations for each individual contaminant are sufficiently protective for consumers.
Collapse
Affiliation(s)
- Su Luo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Chloe Terciolo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Delphine Payros
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
12
|
Evans S, Campbell C, Naidenko OV. Cumulative risk analysis of carcinogenic contaminants in United States drinking water. Heliyon 2019; 5:e02314. [PMID: 31687532 PMCID: PMC6819845 DOI: 10.1016/j.heliyon.2019.e02314] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 01/26/2023] Open
Abstract
Cumulative risk analysis of contaminant occurrence in United States drinking water for the period of 2010-2017 indicates that over 100,000 lifetime cancer cases could be due to carcinogenic chemicals in tap water. The majority of this risk is due to the presence of arsenic, disinfection byproducts and radioactive contaminants. For different states within the U.S., cumulative cancer risk for drinking water contaminants ranges between 1 × 10-4 and 1 × 10-3, similar to the range of cumulative cancer risks reported for air pollutants. Overall, national attributable risk due to tap water contaminants is approximately 4 × 10-4, which is two orders of magnitude higher than the de minimus cancer risk of one-in-a-million. Thus, decreasing the levels of chemical contaminants in drinking water represents an important opportunity for protecting public health.
Collapse
|
13
|
Dairkee SH, Luciani-Torres G, Moore DH, Jaffee IM, Goodson WH. A Ternary Mixture of Common Chemicals Perturbs Benign Human Breast Epithelial Cells More Than the Same Chemicals Do Individually. Toxicol Sci 2019; 165:131-144. [PMID: 29846718 PMCID: PMC6135635 DOI: 10.1093/toxsci/kfy126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a continuous source of hormonal stimulation, environmentally ubiquitous estrogenic chemicals, ie, xenoestrogens (XEs), are a potential risk factor for breast carcinogenesis. Given their wide distribution in the environment and the fact that bisphenol-A (BPA), methylparaben (MP), and perfluorooctanoic acid (PFOA) are uniformly detected in unselected body fluid samples, it must be assumed that humans are simultaneously exposed to these chemicals almost daily. We studied the effects of a ternary mixture of BPA, MP, and PFOA on benign breast epithelial cells at the range of concentrations observed for single chemicals in human samples. Measurements of exposure impact relevant to the breast were based on endpoints associated with “hallmarks” of cancer and “key characteristics” of carcinogens. These included modulation of total estrogen receptor (ER)α, phosphorylated ERα (pERα), total ERβ, S-phase induction, and apoptotic evasion. Data from live cell measurements were fit to a log-linear dose-response model. Concentration-dependent reduction of ERβ and apoptosis evasion was observed concurrently with the induction of ERα, pERα, and S-phase fraction, and an increased rate of cell proliferation. Beyond additive effects predicted by the sum of individual test XEs, mixture treatment demonstrated synergism for the ERβ and apoptosis suppression phenotypes (p > .001). Nonmalignant breast cells were more sensitive than commonly used breast cancer lines to XE treatment in 3 of 5 endpoints. All observations were validated with cells isolated from the normal breast tissue of 14 individuals. At relatively low concentrations, a chemical mixture has striking effects on normal cell function that are missed by evaluation of single components.
Collapse
Affiliation(s)
| | | | - Dan H Moore
- California Pacific Medical Center Research Institute
| | - Ian M Jaffee
- Department of Pathology, California Pacific Medical Center, San Francisco, California 94107
| | | |
Collapse
|
14
|
Aguayo-Orozco A, Audouze K, Siggaard T, Barouki R, Brunak S, Taboureau O. sAOP: linking chemical stressors to adverse outcomes pathway networks. Bioinformatics 2019; 35:5391-5392. [PMID: 31329252 PMCID: PMC9887475 DOI: 10.1093/bioinformatics/btz570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Adverse outcome pathway (AOP) is a toxicological concept proposed to provide a mechanistic representation of biological perturbation over different layers of biological organization. Although AOPs are by definition chemical-agnostic, many chemical stressors can putatively interfere with one or several AOPs and such information would be relevant for regulatory decision-making. RESULTS With the recent development of AOPs networks aiming to facilitate the identification of interactions among AOPs, we developed a stressor-AOP network (sAOP). Using the 'cytotoxitiy burst' (CTB) approach, we mapped bioactive compounds from the ToxCast data to a list of AOPs reported in AOP-Wiki database. With this analysis, a variety of relevant connections between chemicals and AOP components can be identified suggesting multiple effects not observed in the simplified 'one-biological perturbation to one-adverse outcome' model. The results may assist in the prioritization of chemicals to assess risk-based evaluations in the context of human health. AVAILABILITY AND IMPLEMENTATION sAOP is available at http://saop.cpr.ku.dk. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Troels Siggaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Robert Barouki
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers (T3S) Unit, Université de Paris, INSERM UMR-S 1124, Paris, France
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | | |
Collapse
|
15
|
Guéguen Y, Bontemps A, Ebrahimian TG. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 2019; 76:1255-1273. [PMID: 30535789 PMCID: PMC11105647 DOI: 10.1007/s00018-018-2987-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
This article reviews the current knowledge on the mechanisms of adaptive response to low doses of ionizing radiation or chemical exposure. A better knowledge of these mechanisms is needed to improve our understanding of health risks at low levels of environmental or occupational exposure and their involvement in cancer or non-cancer diseases. This response is orchestrated through a multifaceted cellular program involving the concerted action of diverse stress response pathways. These evolutionary highly conserved defense mechanisms determine the cellular response to chemical and physical aggression. They include DNA damage repair (p53, ATM, PARP pathways), antioxidant response (Nrf2 pathway), immune/inflammatory response (NF-κB pathway), cell survival/death pathway (apoptosis), endoplasmic response to stress (UPR response), and other cytoprotective processes including autophagy, cell cycle regulation, and the unfolded protein response. The coordinated action of these processes induced by low-dose radiation or chemicals produces biological effects that are currently estimated with the linear non-threshold model. These effects are controversial. They are difficult to detect because of their low magnitude, the scarcity of events in humans, and the difficulty of corroborating associations over the long term. Improving our understanding of these biological consequences should help humans and their environment by enabling better risk estimates, the revision of radiation protection standards, and possible therapeutic advances.
Collapse
Affiliation(s)
- Yann Guéguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France.
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRSI, Fontenay-aux-Roses, France.
| | - Alice Bontemps
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Teni G Ebrahimian
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
16
|
White AJ, O’Brien KM, Niehoff NM, Carroll R, Sandler DP. Metallic Air Pollutants and Breast Cancer Risk in a Nationwide Cohort Study. Epidemiology 2019; 30:20-28. [PMID: 30198937 PMCID: PMC6269205 DOI: 10.1097/ede.0000000000000917] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Toxic metals show evidence of carcinogenic and estrogenic properties. However, little is known about the relationship between airborne metals and breast cancer. We evaluated the risk of breast cancer in relation to exposure to toxic metallic substances in air, individually and combined, in a US-wide cohort. METHODS Sister Study participants (n = 50,884), breast cancer-free women who had a sister with breast cancer were recruited, from 2003 to 2009. The 2005 Environmental Protection Agency National Air Toxic Assessment's census-tract estimates of metal concentrations in air (antimony, arsenic, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium) were matched to participants' enrollment residence. We used Cox regression to estimate the association between quintiles of individual metals and breast cancer incidence and weighted quantile sum regression to model the association between the metal mixture and breast cancer. RESULTS A total of 2,587 breast cancer cases were diagnosed during follow-up (mean = 7.4 years). In individual chemical analyses comparing the highest to lowest quintiles, postmenopausal breast cancer risk was elevated for mercury (hazard ratio [HR] = 1.3, 95% confidence interval [CI], 1.1, 1.5), cadmium (HR = 1.1, 95% CI, 0.96, 1.3), and lead (HR = 1.1, 95% CI, 0.98, 1.3). The weighted quantile sum index was associated with postmenopausal breast cancer (odds ratio [OR] = 1.1, 95% CI, 1.0, 1.1). Consistent with the individual chemical analysis, the most highly weighted chemicals for predicting postmenopausal breast cancer risk were lead, cadmium, and mercury. Results were attenuated for overall breast cancer. CONCLUSIONS Higher levels of some airborne metals, specifically mercury, cadmium, and lead, were associated with a higher risk of postmenopausal breast cancer.
Collapse
Affiliation(s)
- Alexandra J. White
- Epidemiology Branch and National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Katie M. O’Brien
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Nicole M. Niehoff
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, USA
| | - Rachel Carroll
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Dale P. Sandler
- Epidemiology Branch and National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Pollack AZ, Mumford SL, Krall JR, Carmichael AE, Sjaarda LA, Perkins NJ, Kannan K, Schisterman EF. Exposure to bisphenol A, chlorophenols, benzophenones, and parabens in relation to reproductive hormones in healthy women: A chemical mixture approach. ENVIRONMENT INTERNATIONAL 2018; 120:137-144. [PMID: 30092451 PMCID: PMC6174096 DOI: 10.1016/j.envint.2018.07.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Little is known about the associations of bisphenol A, chlorophenols, benzophenones, and parabens with reproductive hormone levels in women. Our goal was to evaluate the associations between repeated measures of these chemicals and their mixtures with reproductive hormones in women. METHODS Longitudinal urine samples from healthy, premenopausal women (n = 143 with 3-5 urine samples each) were measured for bisphenol A, five chlorophenols (2,4-dichlorophenol (2,4-DCP), 2,5-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, triclosan), two ultraviolet (UV) filters (benzophenone-1, benzophenone-3), and eight parabens and their metabolites (benzyl, butyl, ethyl, heptyl, methyl, propyl, 4-hydroxybenzoic acid (4-HB), 3,4-dihydroxybenzoic acid (3,4-DHB)) over two menstrual cycles. Estradiol, progesterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) were measured in blood up to 8 times each menstrual cycle. Linear mixed models were used for both single and multi-chemical exposures estimated using principal component analysis. Four factors were identified including: paraben; paraben metabolites and BPA, phenols, and UV filters. Models were adjusted for creatinine, age, race, and body mass index and weighted with inverse probability of exposure weights to account for time varying confounding. RESULTS In single-chemical models, 3,4-DHB was associated with estradiol (0.06 (95% confidence interval (CI): 0.001, 0.12)), 2-4-DCP with increased progesterone 0.14 (0.06, 0.21) and decreased FSH -0.08 (-0.11, -0.04), and 4-HB was associated with increased FSH 0.07 (0.01, 0.13). In multi-chemical models, all factors were associated with increased progesterone (beta coefficient range: 0.15 for UV filter factor to 0.32 for paraben factor). The paraben factor and the paraben metabolite and BPA factor were associated with increased estradiol [0.21 (0.15, 0.28); 0.12 (0.07, 0.18)]. The phenol and UV filter factors were associated with decreased estradiol, FSH, and LH. The UV filter factor showed the strongest inverse association with estradiol -0.16 (-0.22, -0.10), FSH -0.12 (-0.17, -0.07), and LH -0.17 (-0.23, -0.10). CONCLUSION Mixtures of phenols were associated with changes in reproductive hormones. Such changes could contribute to adverse health in women but additional research is necessary.
Collapse
Affiliation(s)
- Anna Z Pollack
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive, MS5B7, Fairfax, VA 22030, United States.
| | - Sunni L Mumford
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD 20852, United States.
| | - Jenna R Krall
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive, MS5B7, Fairfax, VA 22030, United States.
| | - Andrea E Carmichael
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive, MS5B7, Fairfax, VA 22030, United States.
| | - Lindsey A Sjaarda
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD 20852, United States.
| | - Neil J Perkins
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD 20852, United States.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY, United States.
| | - Enrique F Schisterman
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD 20852, United States.
| |
Collapse
|
18
|
Helm JS, Nishioka M, Brody JG, Rudel RA, Dodson RE. Measurement of endocrine disrupting and asthma-associated chemicals in hair products used by Black women. ENVIRONMENTAL RESEARCH 2018; 165:448-458. [PMID: 29705122 DOI: 10.1016/j.envres.2018.03.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/09/2018] [Accepted: 03/18/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Personal care products are a source of exposure to endocrine disrupting and asthma-associated chemicals. Because use of hair products differs by race/ethnicity, these products may contribute to exposure and disease disparities. OBJECTIVE This preliminary study investigates the endocrine disrupting and asthma-associated chemical content of hair products used by U.S. Black women. METHODS We used gas chromatography/mass spectrometry (GC/MS) to test 18 hair products in 6 categories used by Black women: hot oil treatment, anti-frizz/polish, leave-in conditioner, root stimulator, hair lotion, and relaxer. We tested for 66 chemicals belonging to 10 chemical classes: ultraviolet (UV) filters, cyclosiloxanes, glycol ethers, fragrances, alkylphenols, ethanolamines, antimicrobials, bisphenol A, phthalates, and parabens. RESULTS The hair products tested contained 45 endocrine disrupting or asthma-associated chemicals, including every targeted chemical class. We found cyclosiloxanes, parabens, and the fragrance marker diethyl phthalate (DEP) at the highest levels, and DEP most frequently. Root stimulators, hair lotions, and relaxers frequently contained nonylphenols, parabens, and fragrances; anti-frizz products contained cyclosiloxanes. Hair relaxers for children contained five chemicals regulated by California's Proposition 65 or prohibited by EU cosmetics regulation. Targeted chemicals were generally not listed on the product label. CONCLUSIONS Hair products used by Black women and children contained multiple chemicals associated with endocrine disruption and asthma. The prevalence of parabens and DEP is consistent with higher levels of these compounds in biomonitoring samples from Black women compared with White women. These results indicate the need for more information about the contribution of consumer products to exposure disparities. A precautionary approach would reduce the use of endocrine disrupting chemicals in personal care products and improve labeling so women can select products consistent with their values.
Collapse
|
19
|
Kim SA, Lee YM, Choi JY, Jacobs DR, Lee DH. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:725-734. [PMID: 29126094 DOI: 10.1016/j.envpol.2017.10.124] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 05/06/2023]
Abstract
Although the toxicity of synthetic chemicals at high doses is well known, chronic exposure to low-dose chemical mixtures has only recently been linked to many age-related diseases. However, it is nearly impossible to avoid the exposure to these low-dose chemical mixtures as humans are exposed to a myriad of synthetic chemicals as a part of their daily lives. Therefore, coping with possible harms due to low dose chemical mixtures is challenging. Interestingly, within the range of environmental exposure, disease risk does not increase linearly with increasing dose of chemicals, but often tends to plateau or even decrease with increasing dose. Hormesis, the over-compensation of various adaptive responses through cellular stresses, is one possible mechanism for this non-linearity. Although the hormetic effects of synthetic chemicals or radiation have long been debated in the field of toxicology, the hormesis concept has recently been generalized in the field of molecular biology; similar to responses to synthetic chemicals, mild to moderate intermittent stressors from any source can induce hormetic responses. Examples of stressors are exercise, calorie restriction, intermittent fasting, cognitive stimulation, and phytochemicals. Mitohormesis is hormesis induced by such stressors through mitochondrial retrograde signalling including the increased production of mild reactive oxygen species. Xenohormesis is phytochemical-induced hormesis, reflective of a mutualistic relationship between plant and animals. As humans had repeated exposure to all of these stressors during their evolution, the hormetic effects of these health behaviours may be considered to be evolutionarily adapted. Although hormesis induced by synthetic chemicals occurs in humans, such hormesis may not be recommended to the public due to unresolved issues on safety including the impossibility of control exposure. However, the use of personal health behaviors which enhance mitohormetic- or xenohormetic-stress can be readily incorporated into everyone's daily lives as a practical way to counteract harmful effects of unavoidable low-dose chemical mixtures.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea
| | - Yu-Mi Lee
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yong Choi
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea; Department of Biochemistry & Cell Biology, Skeletal Diseases Genome Researcher Analysis Center, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University and Hospital, Daegu, Republic of Korea
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Duk-Hee Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea; Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
20
|
Lee DH, Jacobs DR, Park HY, Carpenter DO. A role of low dose chemical mixtures in adipose tissue in carcinogenesis. ENVIRONMENT INTERNATIONAL 2017; 108:170-175. [PMID: 28863389 DOI: 10.1016/j.envint.2017.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 05/15/2023]
Abstract
The Halifax project recently hypothesized a composite carcinogenic potential of the mixture of low dose chemicals which are commonly encountered environmentally, yet which are not classified as human carcinogens. A long neglected but important fact is that adipose tissue is an important exposure source for chemical mixtures. In fact, findings from human studies based on several persistent organic pollutants in general populations with only background exposure should be interpreted from the viewpoint of chemical mixtures because serum concentrations of these chemicals can be seen as surrogates for chemical mixtures in adipose tissue. Furthermore, in conditions such as obesity with dysfunctional adipocytes or weight loss in which lipolysis is increased, the amount of the chemical mixture released from adipose tissue to circulation is increased. Thus, both obesity and weight loss can enhance the chance of chemical mixtures reaching critical organs, however paradoxical this idea may be when fat mass is the only factor considered. The complicated, interrelated dynamics of adipocytes and chemical mixtures can explain puzzling findings related to body weight among cancer patients, including the obesity paradox. The contamination of fat in human diet with chemical mixtures, occurring for reasons similar to contamination of human adipose tissue, may be a missing factor which affects the association between dietary fat intake and cancer. The presence of chemical mixtures in adipose tissue should be considered in future cancer research, including clinical trials on weight management among cancer survivors.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventative Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea.
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Ho Yong Park
- Department of Breast and Thyroid Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - David O Carpenter
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, United States; Institute for Health and the Environment, University at Albany, Rensselaer, NY, United States
| |
Collapse
|
21
|
Núñez O, Fernández-Navarro P, Martín-Méndez I, Bel-Lan A, Locutura Rupérez JF, López-Abente G. Association between heavy metal and metalloid levels in topsoil and cancer mortality in Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7413-7421. [PMID: 28108922 PMCID: PMC5383678 DOI: 10.1007/s11356-017-8418-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/05/2017] [Indexed: 05/03/2023]
Abstract
Spatio-temporal cancer mortality studies in Spain have revealed patterns for some tumours which display a distribution that is similar across the sexes and persists over time. Such characteristics would be common to tumours that shared risk factors, including the geochemical composition of the soil. The aim of this study was to assess the possible association between heavy metal and metalloid levels in topsoil (upper soil horizon) and cancer mortality in mainland Spain. Ecological cancer mortality study at a municipal level, covering 861,440 cancer deaths (27 different tumour locations) in 7917 Spanish mainland towns, from 1999 to 2008. The elements included in this analysis were Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Topsoil levels (partial extraction) were determined by ICP-MS at 13,317 sampling points. For the analysis, the data on the topsoil composition have been transformed by the centred logratio (clr-transformation). Principal factor analysis was performed to obtain independent latent factors for the transformed variables. To estimate the effect of heavy metal levels in topsoil composition on mortality, we fitted Besag, York and Mollié models, which included each town's factor scores as the explanatory variable. Integrated Nested Laplace Approximation (INLA) was used as a tool for Bayesian inference. All results were adjusted for sociodemographic variables. The results showed an association between trace contents of heavy metals and metalloids in topsoil and mortality due to tumours of the digestive system in mainland Spain. This association was observed in both sexes, something that would support the hypothesis that the incorporation of heavy metals into the trophic chain might be playing a role in the aetiology of some types of cancer. Topsoil composition and the presence of potentially toxic elements in trace concentrations might be an additional component in the aetiology of some types of cancer, and go some way to determine the ensuing geographic differences in mortality in Spain. The results support the interest of inclusion of heavy metal levels in topsoil as a hypothesis in analytical epidemiological studies using biological markers of exposure to heavy metals and metalloids.
Collapse
Affiliation(s)
- Olivier Núñez
- Environmental and Cancer Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Avda. Monforte de Lemos 5, 28029, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Pablo Fernández-Navarro
- Environmental and Cancer Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Avda. Monforte de Lemos 5, 28029, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Iván Martín-Méndez
- Department of Geochemistry and Mineral Resources, Spanish Geological and Mining Institute (Instituto Geológico y Minero de España/IGME), Ríos Rosas, 23, 28003, Madrid, Spain
| | - Alejandro Bel-Lan
- Department of Geochemistry and Mineral Resources, Spanish Geological and Mining Institute (Instituto Geológico y Minero de España/IGME), Ríos Rosas, 23, 28003, Madrid, Spain
| | - Juan F Locutura Rupérez
- Department of Geochemistry and Mineral Resources, Spanish Geological and Mining Institute (Instituto Geológico y Minero de España/IGME), Ríos Rosas, 23, 28003, Madrid, Spain
| | - Gonzalo López-Abente
- Environmental and Cancer Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Avda. Monforte de Lemos 5, 28029, Madrid, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.
| |
Collapse
|
22
|
Goodman J, Lynch H. Improving the International Agency for Research on Cancer's consideration of mechanistic evidence. Toxicol Appl Pharmacol 2017; 319:39-46. [PMID: 28162991 DOI: 10.1016/j.taap.2017.01.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) recently developed a framework for evaluating mechanistic evidence that includes a list of 10 key characteristics of carcinogens. This framework is useful for identifying and organizing large bodies of literature on carcinogenic mechanisms, but it lacks sufficient guidance for conducting evaluations that fully integrate mechanistic evidence into hazard assessments. OBJECTIVES We summarize the framework, and suggest approaches to strengthen the evaluation of mechanistic evidence using this framework. DISCUSSION While the framework is useful for organizing mechanistic evidence, its lack of guidance for implementation limits its utility for understanding human carcinogenic potential. Specifically, it does not include explicit guidance for evaluating the biological significance of mechanistic endpoints, inter- and intra-individual variability, or study quality and relevance. It also does not explicitly address how mechanistic evidence should be integrated with other realms of evidence. Because mechanistic evidence is critical to understanding human cancer hazards, we recommend that IARC develop transparent and systematic guidelines for the use of this framework so that mechanistic evidence will be evaluated and integrated in a robust manner, and concurrently with other realms of evidence, to reach a final human cancer hazard conclusion. CONCLUSIONS IARC does not currently provide a standardized approach to evaluating mechanistic evidence. Incorporating the recommendations discussed here will make IARC analyses of mechanistic evidence more transparent, and lead to assessments of cancer hazards that reflect the weight of the scientific evidence and allow for scientifically defensible decision-making.
Collapse
Affiliation(s)
- Julie Goodman
- Gradient, 20 University Road, Cambridge, MA 02138, United States.
| | - Heather Lynch
- Gradient, 20 University Road, Cambridge, MA 02138, United States
| |
Collapse
|
23
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
24
|
Barbosa F. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:137-144. [PMID: 28277036 DOI: 10.1080/15287394.2016.1259475] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The function and behavior of chemical elements in ecosystems and in human health probably comprise one of the most studied issues and a theme of great interest and fascination in science. Hot topics are emerging on an annual basis in this field. Bearing this in mind, some promising themes to explore in the field of metals and metalloids in the environment and in toxicology are highlighted and briefly discussed herein.
Collapse
Affiliation(s)
- Fernando Barbosa
- a Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP , Brazil
| |
Collapse
|
25
|
Weight-of-evidence evaluation of associations between particulate matter exposure and biomarkers of lung cancer. Regul Toxicol Pharmacol 2016; 82:53-93. [DOI: 10.1016/j.yrtph.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 12/16/2022]
|