1
|
Wu L, Zhang S, Zhang J, Xin Y, Niu P, Li J. Associations of heavy metal mixtures with blood pressure among U.S. adults in NHANES 2017-2018 by four statistical models. Chin Med J (Engl) 2024; 137:628-630. [PMID: 38282382 PMCID: PMC10932526 DOI: 10.1097/cm9.0000000000002956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 01/30/2024] Open
Affiliation(s)
- Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Nutrition, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ye Xin
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Paz-Sabillón M, Torres-Sánchez L, Piña-Pozas M, Del Razo LM, Quintanilla-Vega B. Prenatal Exposure to Potentially Toxic Metals and Their Effects on Genetic Material in Offspring: a Systematic Review. Biol Trace Elem Res 2023; 201:2125-2150. [PMID: 35713810 DOI: 10.1007/s12011-022-03323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
In recent years, the background level of environmental pollutants, including metals, has increased. Pollutant exposure during the earliest stages of life may determine chronic disease susceptibility in adulthood because of genetic or epigenetic changes. The objective of this review was to identify the association between prenatal and early postnatal exposure to potentially toxic metals (PTMs) and their adverse effects on the genetic material of offspring. A systematic review was carried out following the Cochrane methodology in four databases: PubMed, Scopus, Web of Science, and the Cochrane Library. Eligible papers were those conducted in humans and published in English between 2010/01/01 and 2021/04/30. A total of 57 articles were included, most of which evaluated prenatal exposure. Most commonly evaluated PTMs were As, Cd, and Pb. Main adverse effects on the genetic material of newborns associated with PTM prenatal exposure were alterations in telomere length, gene or protein expression, mitochondrial DNA content, metabolomics, DNA damage, and epigenetic modifications. Many of these effects were sex-specific, being predominant in boys. One article reported a synergistic interaction between As and Hg, and two articles observed antagonistic interactions between PTMs and essential metals, such as Cu, Se, and Zn. The findings in this review highlight that the problem of PTM exposure persists, affecting the most susceptible populations, such as newborns. Some of these associations were observed at low concentrations of PTMs. Most of the studies have focused on single exposures; however, three interactions between essential and nonessential metals were observed, highlighting that metal mixtures need more attention.
Collapse
Affiliation(s)
- Marvin Paz-Sabillón
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Luisa Torres-Sánchez
- National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Morelos, Mexico
| | - Maricela Piña-Pozas
- National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Morelos, Mexico
| | - Luz M Del Razo
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
3
|
Bulka CM, Eaves LA, Gardner AJ, Parsons PJ, Galusha AL, Roell KR, Smeester L, O’Shea TM, Fry RC. Prenatal exposure to multiple metallic and metalloid trace elements and the risk of bacterial sepsis in extremely low gestational age newborns: A prospective cohort study. FRONTIERS IN EPIDEMIOLOGY 2022; 2:958389. [PMID: 36405975 PMCID: PMC9674331 DOI: 10.3389/fepid.2022.958389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prenatal exposures to metallic and metalloid trace elements have been linked to altered immune function in animal studies, but few epidemiologic studies have investigated immunological effects in humans. We evaluated the risk of bacterial sepsis (an extreme immune response to bacterial infection) in relation to prenatal metal/metalloid exposures, individually and jointly, within a US-based cohort of infants born extremely preterm. METHODS We analyzed data from 269 participants in the US-based ELGAN cohort, which enrolled infants delivered at <28 weeks' gestation (2002-2004). Concentrations of 8 trace elements-including 4 non-essential and 4 essential-were measured using inductively coupled plasma tandem mass spectrometry in umbilical cord tissue, reflecting in utero fetal exposures. The infants were followed from birth to postnatal day 28 with bacterial blood culture results reported weekly to detect sepsis. Discrete-time hazard and quantile g-computation models were fit to estimate associations for individual trace elements and their mixtures with sepsis incidence. RESULTS Approximately 30% of the extremely preterm infants developed sepsis during the follow-up period (median follow-up: 2 weeks). After adjustment for potential confounders, no trace element was individually associated with sepsis risk. However, there was some evidence of a non-monotonic relationship for cadmium, with hazard ratios (HRs) for the second, third, and fourth (highest) quartiles being 1.13 (95% CI: 0.51-2.54), 1.94 (95% CI: 0.87-4.32), and 1.88 (95% CI: 0.90-3.93), respectively. The HRs for a quartile increase in concentrations of all 8 elements, all 4 non-essential elements, and all 4 essential elements were 0.92 (95% CI: 0.68-1.25), 1.19 (95% CI: 0.92-1.55), and 0.77 (95% CI: 0.57-1.06). Cadmium had the greatest positive contribution whereas arsenic, copper, and selenium had the greatest negative contributions to the mixture associations. CONCLUSIONS We found some evidence that greater prenatal exposure to cadmium was associated with an increased the risk of bacterial sepsis in extremely preterm infants. However, this risk was counteracted by a combination of arsenic, copper, and selenium. Future studies are needed to confirm these findings and to evaluate the potential for nutritional interventions to prevent sepsis in high-risk infants.
Collapse
Affiliation(s)
- Catherine M. Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amaree J. Gardner
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, United States
| | - Aubrey L. Galusha
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, United States
| | - Kyle R. Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Huang W, Igusa T, Wang G, Buckley JP, Hong X, Bind E, Steffens A, Mukherjee J, Haltmeier D, Ji Y, Xu R, Hou W, Tina Fan Z, Wang X. In-utero co-exposure to toxic metals and micronutrients on childhood risk of overweight or obesity: new insight on micronutrients counteracting toxic metals. Int J Obes (Lond) 2022; 46:1435-1445. [PMID: 35589962 PMCID: PMC9329205 DOI: 10.1038/s41366-022-01127-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/OBJECTIVES Low-level, in-utero exposure to toxic metals such as lead (Pb) and mercury (Hg) is widespread in the US and worldwide; and, individually, was found to be obesogenic in children. To address the literature gaps on the health effects of co-exposure to low-level toxic metals and the lack of intervention strategy, we aimed to investigate the association between in-utero co-exposure to Hg, Pb, cadmium (Cd) and childhood overweight or obesity (OWO) and whether adequate maternal micronutrients (selenium (Se) and folate) can be protective. SUBJECTS/METHODS This study included 1442 mother-child pairs from the Boston Birth Cohort, a predominantly urban, low-income, Black, and Hispanic population, who were enrolled at birth and followed prospectively up to age 15 years. Bayesian kernel machine regression (BKMR) was applied to estimate individual and joint effects of exposures to metals and micronutrients on childhood OWO while adjusting for pertinent covariables. Stratified analyses by maternal OWO and micronutrient status were performed to identify sensitive subgroups. RESULTS In this sample of understudied US children, low-level in-utero co-exposure to Hg, Pb, and Cd was widespread. Besides individual positive associations of maternal Hg and Pb exposure with offspring OWO, BKMR clearly indicated a positive dose-response association between in-utero co-exposure to the three toxic metals and childhood OWO. Notably, the metal mixture-OWO association was more pronounced in children born to mothers with OWO; and in such a setting, the association was greatly attenuated if mothers had higher Se and folate levels. CONCLUSIONS In this prospective cohort of US children at high-risk of toxic metal exposure and OWO, we demonstrated that among children born to mothers with OWO, low-level in-utero co-exposure to Hg, Pb, and Cd increased the risk of childhood OWO; and that adequate maternal Se and folate levels mitigated the risk of childhood OWO. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE WHERE IT WAS OBTAINED NCT03228875.
Collapse
Affiliation(s)
- Wanyu Huang
- Department of Civil and Systems Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Tak Igusa
- Department of Civil and Systems Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| | - Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Bind
- New Jersey Department of Health, Environmental and Chemical Laboratory Services, Metals Laboratory, P. O. Box 360, Trenton, NJ, USA
| | - Andrew Steffens
- New Jersey Department of Health, Environmental and Chemical Laboratory Services, Metals Laboratory, P. O. Box 360, Trenton, NJ, USA
| | - Jhindan Mukherjee
- New Jersey Department of Health, Environmental and Chemical Laboratory Services, Metals Laboratory, P. O. Box 360, Trenton, NJ, USA
| | - Douglas Haltmeier
- New Jersey Department of Health, Environmental and Chemical Laboratory Services, Metals Laboratory, P. O. Box 360, Trenton, NJ, USA
| | - Yuelong Ji
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard Xu
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhihua Tina Fan
- New Jersey Department of Health, Environmental and Chemical Laboratory Services, Metals Laboratory, P. O. Box 360, Trenton, NJ, USA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Zhang M, Yu CH, Wang G, Buckley JP, Hong X, Pearson C, Adams WG, Fan Z(T, Wang X. Longitudinal trajectories and determinants of plasma per- and polyfluoroalkyl substance (PFAS) levels from birth to early childhood and metabolomic associations: A pilot study in the Boston Birth Cohort. PRECISION NUTRITION 2022; 1:e00004. [PMID: 36936201 PMCID: PMC10022515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Background Per- and polyfluoroalkyl substances (PFAS) are a major public health concern worldwide due to their ubiquitous exposures, environmental persistence, maternal-to-fetal transfer, and multi-organ toxicity. This pilot study aimed to generate preliminary data to inform future studies to address data gaps in the field, including early life PFAS exposure levels, longitudinal changes, determinants, and associated metabolomic alterations in understudied Black and Hispanic children in the United States (U.S.). Methods This study leveraged existing biosamples and data in the Boston Birth Cohort and measured 12 legacy and emerging PFAS, including Me-PFOSA-AcOH, PFDA, PFDoA, PFHxS, PFNA, PFOA, PFOS, PFUnA, GenX, ADONA, 9Cl-PF3ONS, and PFHpS, in paired cord and early childhood plasma samples. Summary statistics and graphic plots were used to depict PFAS levels at the two time points and their longitudinal changes. Linear regression models were used to identify the early-life factors associated with cord and early childhood PFAS levels. Associations of cord PFAS with cord metabolites were explored using a metabolome-wide association approach and a targeted approach. Results This study included 39 children, of whom 25 (64%) were Black, 14 (36%) were Hispanic, and 15 (38%) were female. PFOA, PFOS, PFNA, and PFHpS were detectable in all cord and early childhood plasma samples, while GenX and ADONA were not detectable in any sample. Cord PFAS levels were weakly-to-moderately correlated with early childhood PFAS levels (r = -0.03 to 0.40). Several maternal and child factors, including gestational age, year at blood collection, and race/ethnicity, were associated with cord and early childhood PFAS levels. The metabolome-wide association study and the targeted study identified several cord metabolites that may have been affected by in utero PFAS exposure. Conclusions This pilot study found ubiquitous exposure to multiple PFAS in cord plasma (reflects in utero exposure) and in early childhood plasma (reflects both prenatal and postnatal exposure) among U.S. Black and Hispanic children. Metabolomic analysis suggests that in utero PFAS exposures may alter fetal metabolism. Future large-scale studies are needed to replicate the findings and further examine the associations of fetal PFAS exposure with long-term health outcomes and underlying metabolic pathways.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Chang Ho Yu
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessie P Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - William G Adams
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Zhihua (Tina) Fan
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|