1
|
Deng W, Huang S, Yu L, Gao B, Pan Y, Wang X, Li L. HIF-1α knockdown attenuates phenotypic transformation and oxidative stress induced by high salt in human aortic vascular smooth muscle cells. Sci Rep 2024; 14:28100. [PMID: 39543255 PMCID: PMC11564746 DOI: 10.1038/s41598-024-79892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Increased dietary salt intake is a well-established risk factor for hypertension and related cardiovascular diseases, involving complex vascular remodeling processes. However, the specific role of hypoxia-inducible factor-1α (HIF-1α) in vascular pathophysiology under high-salt conditions remains poorly understood. This study investigates the role of HIF-1α in high-salt-induced vascular remodeling using human aortic vascular smooth muscle cells (HA-VSMCs) cultured in vitro. HA-VSMCs were divided into three groups: high-salt with HIF-1α knockdown (shHIF-1α + HS), negative control (shcontrol), and high-salt (HS). Cell viability, migration, gene expression, and protein levels were evaluated. High-salt conditions significantly increased mRNA expression of α-smooth muscle actin (α-SMA), smooth muscle protein 22 (SM22), angiotensin II type 1 receptor (AT1R), collagen I, and collagen III (p < 0.0001). HIF-1α knockdown partially attenuated these increases, particularly for α-SMA, SM22, and AT1R (p < 0.01). At the protein level, high-salt exposure markedly elevated expression of collagen III, HIF-1α, osteopontin (OPN), and angiotensin II (Ang II) (p < 0.0001). HIF-1α knockdown significantly reduced the high-salt-induced increases in collagen III and HIF-1α protein levels (p < 0.001) but had a limited effect on OPN and Ang II upregulation. Interestingly, SM22 protein expression was significantly decreased under high-salt conditions (p < 0.0001), an effect partially reversed by HIF-1α knockdown (p < 0.0001). These findings demonstrate that high-salt conditions induce complex changes in gene and protein expression in HA-VSMCs, with HIF-1α playing a crucial role in mediating many of these alterations. The study highlights the differential effects of HIF-1α on various markers of vascular remodeling and suggests that HIF-1α may be a potential therapeutic target for mitigating salt-induced vascular pathology. Further research is warranted to elucidate the mechanisms underlying the HIF-1α-dependent and -independent effects observed in this study.
Collapse
MESH Headings
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Oxidative Stress/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Aorta/metabolism
- Aorta/cytology
- Gene Knockdown Techniques
- Sodium Chloride, Dietary/adverse effects
- Actins/metabolism
- Phenotype
- Cell Movement/drug effects
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Microfilament Proteins/metabolism
- Microfilament Proteins/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Vascular Remodeling/drug effects
- Cell Survival/drug effects
- Osteopontin/metabolism
- Osteopontin/genetics
- Cells, Cultured
Collapse
Affiliation(s)
- Wenbin Deng
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Shiqiong Huang
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Lisha Yu
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Bo Gao
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Yun Pan
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Xue Wang
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Lihua Li
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China.
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, China.
| |
Collapse
|
2
|
FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis. Int J Mol Sci 2019; 20:ijms20184634. [PMID: 31540546 PMCID: PMC6770314 DOI: 10.3390/ijms20184634] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are prone to developing cardiac hypertrophy and fibrosis, which is associated with increased fibroblast growth factor 23 (FGF23) serum levels. Elevated circulating FGF23 was shown to induce left ventricular hypertrophy (LVH) via the calcineurin/NFAT pathway and contributed to cardiac fibrosis by stimulation of profibrotic factors. We hypothesized that FGF23 may also stimulate the local renin–angiotensin–aldosterone system (RAAS) in the heart, thereby further promoting the progression of FGF23-mediated cardiac pathologies. We evaluated LVH and fibrosis in association with cardiac FGF23 and activation of RAAS in heart tissue of 5/6 nephrectomized (5/6Nx) rats compared to sham-operated animals followed by in vitro studies with isolated neonatal rat ventricular myocytes and fibroblast (NRVM, NRCF), respectively. Uremic rats showed enhanced cardiomyocyte size and cardiac fibrosis compared with sham. The cardiac expression of Fgf23 and RAAS genes were increased in 5/6Nx rats and correlated with the degree of cardiac fibrosis. In NRVM and NRCF, FGF23 stimulated the expression of RAAS genes and induced Ngal indicating mineralocorticoid receptor activation. The FGF23-mediated hypertrophic growth of NRVM and induction of NFAT target genes were attenuated by cyclosporine A, losartan and spironolactone. In NRCF, FGF23 induced Tgfb and Ctgf, which were suppressed by losartan and spironolactone, only. Our data suggest that FGF23-mediated activation of local RAAS in the heart promotes cardiac hypertrophy and fibrosis.
Collapse
|
3
|
Abstract
PURPOSE High levels of NaCl in the diet are associated with both cardiac and renal fibrosis, but whether salt intake affects pulmonary fibrosis has not been examined. AIM OF THE STUDY To test the hypothesis that salt intake might affect pulmonary fibrosis. MATERIALS AND METHODS Mice were fed low, normal, or high salt diets for 2 weeks, and then treated with oropharyngeal bleomycin to induce pulmonary fibrosis, or oropharyngeal saline as a control. RESULTS As determined by collagen staining of lung sections, and protein levels and cell numbers in the bronchoalveolar lavage (BAL) fluid at 21 days after bleomycin, the high salt diet did not exacerbate bleomycin-induced fibrosis, while the low salt diet attenuated fibrosis. For the bleomycin-treated mice, staining of the post-BAL lung sections indicated that compared to the regular salt diet, high salt increased the number of Ly6c-positive macrophages and decreased the number of CD11c and CD206-positive macrophages and dendritic cells. The low salt diet caused bleomycin-induced leukocyte numbers to be similar to control saline-treated mice, but reduced numbers of CD45/collagen-VI positive fibrocytes. In the saline controls, low dietary salt decreased CD11b and CD11c positive cells in lung sections, and high dietary salt increased fibrocytes. CONCLUSIONS Together, these data suggest the possibility that a low salt diet might attenuate pulmonary fibrosis.
Collapse
Affiliation(s)
- Wensheng Chen
- a Department of Biology , Texas A&M University , College Station , TX , USA.,b Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , China
| | - Darrell Pilling
- a Department of Biology , Texas A&M University , College Station , TX , USA
| | - Richard H Gomer
- a Department of Biology , Texas A&M University , College Station , TX , USA
| |
Collapse
|
4
|
Nakagawa H, Somekawa S, Onoue K, Kumazawa T, Ueda T, Seno A, Nakada Y, Nakano T, Matsui M, Soeda T, Okayama S, Kawakami R, Kawata H, Okura H, Saito Y. Salt accelerates aldosterone-induced cardiac remodeling in the absence of guanylyl cyclase-A signaling. Life Sci 2016; 165:9-15. [PMID: 27647418 DOI: 10.1016/j.lfs.2016.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 11/27/2022]
Abstract
AIMS Excess sodium causes the development of cardiovascular diseases in conjunction with enhancing renin-angiotensin-aldosterone system (RAAS). Natriuretic peptides are sodium regulators and prevent pathological cardiac alterations by counteracting RAAS. However, it is unknown whether natriuretic peptides inhibit the sodium effect in adverse cardiac alterations. Here, we investigated whether excess salt intake could exacerbate cardiac remodeling in mice with impaired natriuretic peptide signaling. MATERIALS AND METHODS Mice lacking the gene encoding the natriuretic peptide receptor, guanylyl cyclase-A (GC-A), and wild-type mice were administered with either a vehicle substance or a subpressor dose of aldosterone (100ng/kg/min), alongside low salt (0.001% NaCl), normal salt (0.6% NaCl), or high salt diets (6.0% NaCl) for four weeks. Mice were then sacrificed and the hearts were evaluated by histology and RT-PCR. KEY FINDINGS Salt load did not induce cardiac changes in vehicle and aldosterone groups in wild-type mice. On the other hand, cardiac hypertrophy and interstitial fibrosis were significantly exacerbated in a salt dependent manner in GC-A knockout (KO) mice administered aldosterone, and were associated with enhanced gene expression relevant to hypertrophy, fibrosis, and oxidative stress conditions. Of note, excess salt intake increased the expression of Sgk1, serum and glucocorticoid responsive kinase-1, in aldosterone-administered GC-A KO mice. These molecular changes were not observed in wild-type mice. SIGNIFICANCE The results of the present study demonstrate that excess salt intake induced cardiac remodeling in conjunction with aldosterone administration in GC-A KO mice, indicating that GC-A signaling attenuated the deleterious salt effect in aldosterone-induced cardiac remodeling.
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Satoshi Somekawa
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kenji Onoue
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Takuya Kumazawa
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Tomoya Ueda
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Ayako Seno
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuki Nakada
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Tomoya Nakano
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Masaru Matsui
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Tunenari Soeda
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Satoshi Okayama
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Rika Kawakami
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Kawata
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Okura
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshihiko Saito
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
5
|
Briet M, Barhoumi T, Mian MOR, Coelho SC, Ouerd S, Rautureau Y, Coffman TM, Paradis P, Schiffrin EL. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors. Hypertension 2016; 67:897-905. [PMID: 27045029 DOI: 10.1161/hypertensionaha.115.07074] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022]
Abstract
We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction.
Collapse
Affiliation(s)
- Marie Briet
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada.,Division of Nephrology (T.M.C.), Department of Medicine, Duke University, Durham, NC
| | - Tlili Barhoumi
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada
| | - Muhammad Oneeb Rehman Mian
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada
| | - Suellen C Coelho
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada
| | - Sofiane Ouerd
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada
| | - Yohann Rautureau
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada
| | - Thomas M Coffman
- Division of Nephrology (T.M.C.), Department of Medicine, Duke University, Durham, NC
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada
| |
Collapse
|
6
|
Consequences of postnatal vascular smooth muscle EGFR deletion on acute angiotensin II action. Clin Sci (Lond) 2015; 130:19-33. [DOI: 10.1042/cs20150503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/05/2015] [Indexed: 01/20/2023]
Abstract
In the present study we demonstrate that the epidermal growth factor (EGF) receptor (EGFR) in vascular smooth muscle cells (VSMC) is involved in basal blood pressure homoeostasis, acute pressure response to angiotensin II (Ang II) but not endothelin-1 and contributes to maturation-related remodelling.
Collapse
|
7
|
Schreier B, Rabe S, Winter S, Ruhs S, Mildenberger S, Schneider B, Sibilia M, Gotthardt M, Kempe S, Mäder K, Grossmann C, Gekle M. Moderate inappropriately high aldosterone/NaCl constellation in mice: cardiovascular effects and the role of cardiovascular epidermal growth factor receptor. Sci Rep 2014; 4:7430. [PMID: 25503263 PMCID: PMC4262830 DOI: 10.1038/srep07430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022] Open
Abstract
Non-physiological activation of the mineralocorticoid receptor (MR), e.g. by aldosterone under conditions of high salt intake, contributes to the pathogenesis of cardiovascular diseases, although beneficial effects of aldosterone also have been described. The epidermal growth factor receptor (EGFR) contributes to cardiovascular alterations and mediates part of the MR effects. Recently, we showed that EGFR is required for physiological homeostasis and function of heart and arteries in adult animals. We hypothesize that moderate high aldosterone/NaCl, at normal blood pressure, affects the cardiovascular system depending on cardiovascular EGFR. Therefore we performed an experimental series in male and female animals each, using a recently established mouse model with EGFR knockout in vascular smooth muscle cells and cardiomyocytes and determined the effects of a mild-high aldosterone-to-NaCl constellation on a.o. marker gene expression, heart size, systolic blood pressure, impulse conduction and heart rate. Our data show that (i) cardiac tissue of male but not of female mice is sensitive to mild aldosterone/NaCl treatment, (ii) EGFR knockout induces stronger cardiac disturbances in male as compared to female animals and (iii) mild aldosterone/NaCl treatment requires the EGFR in order to disturb cardiac tissue homeostasis whereas beneficial effects of aldosterone seem to be independent of EGFR.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sabrina Winter
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Stefanie Ruhs
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Bettina Schneider
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Maria Sibilia
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Sabine Kempe
- Institute of Pharmacy, Faculty of Natural Sciences 1, University of Halle-Wittenberg, Halle, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences 1, University of Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
8
|
Mihailidou AS, Ashton AW. Cardiac effects of aldosterone: does gender matter? Steroids 2014; 91:32-7. [PMID: 25173820 DOI: 10.1016/j.steroids.2014.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease (IHD) continues to be the most common cause of death globally, although mortality rates are decreasing with significant advances in treatment. Higher prevalence of co-morbidities in women only partly explains the lack of decrease in mortality rates in younger women due to. Until recently there has been gender bias in pre-clinical studies and many clinical trials, resulting in a significant gap in knowledge whether there are differential responses to therapy for women, particularly younger women. There is increasing evidence that there are significant gender-specific differences in the outcome of post-infarction remodelling, prevalence of hypertension and sudden cardiac death. These differences indicate that cardiac tissue in females displays significant physiological and biochemical differences compared to males. However, the mechanisms mediating these differences, and how they change with age, are poorly understood. Circulating levels and physiological effects of aldosterone vary across the menstrual cycle suggesting female steroid sex hormones may not only regulate production of, but also responses to, aldosterone in pre-menopausal women. This modified tissue response may foster a homeostatic environment where higher levels of aldosterone are tolerated without adverse cardiac effect. Moreover, there is limited data on the direct regulation of this signalling axis by androgens in female animals/subjects. This review explores the relationship between gender and the effects of aldosterone in cardiovascular disease (CVD), an issue of significant need that may lead to changes in best practice to optimise clinical care and improve outcomes for females with CVD.
Collapse
Affiliation(s)
- Anastasia S Mihailidou
- Kolling Institute of Medical Research, Royal North Shore Hospital, and The University of Sydney, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.
| | - Anthony W Ashton
- Kolling Institute of Medical Research, Royal North Shore Hospital, and The University of Sydney, Sydney, Australia; Division of Perinatal Research, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
9
|
Konya H, Miuchi M, Satani K, Matsutani S, Tsunoda T, Yano Y, Katsuno T, Hamaguchi T, Miyagawa JI, Namba M. Hepatocyte growth factor, a biomarker of macroangiopathy in diabetes mellitus. World J Diabetes 2014; 5:678-688. [PMID: 25317245 PMCID: PMC4138591 DOI: 10.4239/wjd.v5.i5.678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/01/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
Atherosclerotic involvements are an essential causal element of prospect in diabetes mellitus (DM), with carotid atherosclerosis (CA) being a common risk-factor for prospective crisis of coronary artery diseases (CAD) and/or cerebral infarction (CI) in DM subjects. From another point of view, several reports have supplied augmenting proof that hepatocyte growth factor (HGF) has a physiopathological part in DM involvements. HGF has been a mesenchymal-derived polyphenic factor which modulates development, motion, and morphosis of diverse cells, and has been regarded as a humor intermediator of epithelial-mesenchymal interplays. The serum concentrations of HGF have been elevated in subjects with CAD and CI, especially during the acute phase of both disturbances. In our study with 89 type 2 DM patients, the association between serum concentrations of HGF and risk-factors for macrovascular complications inclusive of CA were examined. The average of serum HGF levels in the subjects was more elevated than the reference interval. The serum HGF concentrations associated positively with both intimal-media thickness (IMT) (r = 0.24, P = 0.0248) and plaque score (r = 0.27, P = 0.0126), indicating a relationship between the elevated HGF concentrations and advancement of CA involvements. Multivariate statistical analysis accentuated that serum concentrations of HGF would be associated independently with IMT (standardized = 0.28, P = 0.0499). The review indicates what is presently known regarding serum HGF might be a new and meaningful biomarker of macroangiopathy in DM subjects.
Collapse
|
10
|
Kusunoki H, Taniyama Y, Rakugi H, Morishita R. Cardiac and renal protective effects of irbesartan via peroxisome proliferator-activated receptorγ-hepatocyte growth factor pathway independent of angiotensin II Type 1a receptor blockade in mouse model of salt-sensitive hypertension. J Am Heart Assoc 2013; 2:e000103. [PMID: 23608606 PMCID: PMC3647265 DOI: 10.1161/jaha.113.000103] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND "Aldosterone breakthrough" observed in patients receiving long-term treatment with angiotensin blockade is strongly associated with increased risk of left ventricular hypertrophy, poor exercise capacity, refractory proteinuria, and declining glomerular filtration rate through the profibrotic actions of aldosterone. To overcome aldosterone breakthrough, we examined the additional organ-protective actions of irbesartan, because irbesartan is an angiotensin II type 1 receptor (AT1R) blocker (ARB) with peroxisome proliferator-activated receptor (PPAR)γ agonistic effects, which mediate organ-protective effects independent of AT1R blockade. In this study, we examined the organ-protective effects of irbesartan in a salt-sensitive hypertension model using AT1aR knockout mice. METHODS AND RESULTS Aldosterone and 1% NaCl treatment resulted in a significant increase in severe cardiac and renal fibrosis. Irbesartan, but not losartan, significantly reduced renal fibrosis, glomerular injury through inhibition of macrophage infiltration, epithelial-mesenchymal transition, and oxidative stress. Similarly, cardiac fibrosis and myocyte hypertrophy were decreased by irbesartan, but not losartan, treatment, associated with a significant reduction in oxidative stress. Importantly, anti-hepatocyte growth factor (HGF) neutralizing antibody and a PPARγ antagonist (GW9662) attenuated these organ-protective effects of irbesartan. HGF protein level was increased by irbesartan, especially in the kidney and heart, while GW9662 treatment inhibited the increase in HGF level. CONCLUSIONS In this study, we showed that irbesartan, which has not only AT1aR-blocking effects, but also PPARγ agonistic effects accompanied by HGF expression, inhibited organ damage by aldosterone and salt treatment. Second-generation ARBs such as irbesartan, which has the dual actions of AT1R blockade and PPARγ activation, may have clinical value for the treatment of hypertensive patients with aldosterone breakthrough.
Collapse
Affiliation(s)
- Hiroshi Kusunoki
- Department of Clinical Gene Therapy, Osaka University, Graduate School of Medicine, Suita, Japan
| | | | | | | |
Collapse
|
11
|
Cox N, Pilling D, Gomer RH. NaCl potentiates human fibrocyte differentiation. PLoS One 2012; 7:e45674. [PMID: 23029177 PMCID: PMC3445484 DOI: 10.1371/journal.pone.0045674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/24/2012] [Indexed: 12/25/2022] Open
Abstract
Excessive NaCl intake is associated with a variety of fibrosing diseases such as renal and cardiac fibrosis. This association has been attributed to increased blood pressure as the result of high NaCl intake. However, studies in patients with high NaCl intake and fibrosis reveal a connection between NaCl intake and fibrosis that is independent of blood pressure. We find that increasing the extracellular concentration of NaCl to levels that may occur in human blood after high-salt intake can potentiate, in serum-free culture conditions, the differentiation of freshly-isolated human monocytes into fibroblast-like cells called fibrocytes. NaCl affects the monocytes directly during their adhesion. Potassium chloride and sodium nitrate also potentiate fibrocyte differentiation. The plasma protein Serum Amyloid P (SAP) inhibits fibrocyte differentiation. High levels of extracellular NaCl change the SAP Hill coefficient from 1.7 to 0.8, and cause a four-fold increase in the concentration of SAP needed to inhibit fibrocyte differentiation by 95%. Together, our data suggest that NaCl potentiates fibrocyte differentiation. NaCl-increased fibrocyte differentiation may thus contribute to NaCl-increased renal and cardiac fibrosis.
Collapse
Affiliation(s)
- Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Essick EE, Sam F. Cardiac hypertrophy and fibrosis in the metabolic syndrome: a role for aldosterone and the mineralocorticoid receptor. Int J Hypertens 2011; 2011:346985. [PMID: 21747976 PMCID: PMC3124304 DOI: 10.4061/2011/346985] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022] Open
Abstract
Obesity and hypertension, major risk factors for the metabolic syndrome, render individuals susceptible to an increased risk of cardiovascular complications, such as adverse cardiac remodeling and heart failure. There has been much investigation into the role that an increase in the renin-angiotensin-aldosterone system (RAAS) plays in the pathogenesis of metabolic syndrome and in particular, how aldosterone mediates left ventricular hypertrophy and increased cardiac fibrosis via its interaction with the mineralocorticoid receptor (MR). Here, we review the pertinent findings that link obesity with elevated aldosterone and the development of cardiac hypertrophy and fibrosis associated with the metabolic syndrome. These studies illustrate a complex cross-talk between adipose tissue, the heart, and the adrenal
cortex. Furthermore, we discuss findings from our laboratory that suggest that cardiac hypertrophy and fibrosis in the metabolic syndrome may involve cross-talk between aldosterone and adipokines (such as adiponectin).
Collapse
Affiliation(s)
- Eric E Essick
- Whitaker Cardiovascular Institute, Boston University School of Medicine 715 Albany Street, W507 Boston, MA 02118, USA
| | | |
Collapse
|
13
|
Wakui H, Tamura K, Matsuda M, Bai Y, Dejima T, Shigenaga AI, Masuda SI, Azuma K, Maeda A, Hirose T, Ishigami T, Toya Y, Yabana M, Minamisawa S, Umemura S. Intrarenal suppression of angiotensin II type 1 receptor binding molecule in angiotensin II-infused mice. Am J Physiol Renal Physiol 2010; 299:F991-F1003. [PMID: 20739392 DOI: 10.1152/ajprenal.00738.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
ATRAP [ANG II type 1 receptor (AT1R)-associated protein] is a molecule which directly interacts with AT1R and inhibits AT1R signaling. The aim of this study was to examine the effects of continuous ANG II infusion on the intrarenal expression and distribution of ATRAP and to determine the role of AT1R signaling in mediating these effects. C57BL/6 male mice were subjected to vehicle or ANG II infusions at doses of 200, 1,000, or 2,500 ng·kg(-1)·min(-1) for 14 days. ANG II infusion caused significant suppression of ATRAP expression in the kidney but did not affect ATRAP expression in the testis or liver. Although only the highest ANG II dose (2,500 ng·kg(-1)·min(-1)) provoked renal pathological responses, such as an increase in the mRNA expression of angiotensinogen and the α-subunit of the epithelial sodium channel, ANG II-induced decreases in ATRAP were observed even at the lowest dose (200 ng·kg(-1)·min(-1)), particularly in the outer medulla of the kidney, based on immunohistochemical staining and Western blot analysis. The decrease in renal ATRAP expression by ANG II infusion was prevented by treatment with the AT1R-specific blocker olmesartan. In addition, the ANG II-mediated decrease in renal ATRAP expression through AT1R signaling occurred without an ANG II-induced decrease in plasma membrane AT1R expression in the kidney. On the other hand, a transgenic model increase in renal ATRAP expression beyond baseline was accompanied by a constitutive reduction of renal plasma membrane AT1R expression and by the promotion of renal AT1R internalization as well as the decreased induction of angiotensinogen gene expression in response to ANG II. These results suggest that the plasma membrane AT1R level in the kidney is modulated by intrarenal ATRAP expression under physiological and pathophysiological conditions in vivo.
Collapse
Affiliation(s)
- Hiromichi Wakui
- Dept. of Medical Science and Cardiorenal Medicine, Yokohama City Univ. Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vinson GP, Coghlan JP. Expanding view of aldosterone action, with an emphasis on rapid action. Clin Exp Pharmacol Physiol 2010; 37:410-6. [PMID: 20409082 DOI: 10.1111/j.1440-1681.2010.05352.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
15
|
Kagiyama S, Matsumura K, Goto K, Otsubo T, Iida M. Role of Rho kinase and oxidative stress in cardiac fibrosis induced by aldosterone and salt in angiotensin type 1a receptor knockout mice. ACTA ACUST UNITED AC 2009; 160:133-9. [PMID: 19969025 DOI: 10.1016/j.regpep.2009.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 12/15/2022]
Abstract
Large clinical trials have shown that mineralocorticoid receptor (MR) antagonists improve cardiovascular or total mortality in patients with heart failure or myocardial infarction even though the patients were taking angiotensin-converting enzyme inhibitors or angiotensin II receptor (AT1R) antagonists. We previously reported that cardiac fibrosis induced by aldosterone and salt (Ald-NaCl) was exaggerated in AT1aR knockout mice (AT1aR-KOs). As the association of Rho kinase and oxidative stress was reported in Ald-NaCl-induced hypertension of rats, we investigated the effects of an MR antagonist (eplerenone) and a Rho kinase inhibitor (fasudil) on Ald-NaCl-induced cardiac fibrosis in AT1aR-KOs. AT1aR-KOs were administered aldosterone (0.15 microg/h) subcutaneously using an osmotic minipump and were provided with 1% NaCl drinking water for 4weeks. AT1aR-KOs receiving Ald-NaCl were treated with a low (30 mg/kg/day) or high (100mg/kg/day) dose of eplerenone or a fasudil (100mg/kg/day). Systolic blood pressure (SBP), left ventricular weight/body weight (LVW/BW), histological examination and cardiac gene expression were evaluated on day 28. Ald-NaCl treatment caused increases in SBP and LVW/BW in AT1aR-KOs, and eplerenone dose-dependently decreased SBP, LVW/BW and cardiac fibrosis. Fasudil decreased LVW/BW and cardiac fibrosis without affecting SBP. The expressions of connecting tissue growth factor (CTGF) and nicotinamide adenine dinucleotide phosphate (NADPH) components (p22phox, p47phox and p67phox) were increased in Ald-NaCl-treated AT1aR-KOs, and eplerenone or fasudil decreased the expression of CTGF and NADPH components. Phosphorylated ERM (a marker of the phosphorylation of Rho kinase) was increased in Ald-NaCl-treated AT1aR-KOs and was decreased by eplerenone. Nitrotyrosine and 4-hydroxy-2-nonenal, which indicate tissue damage via oxidative stress, were increased in AT1aR-KO and were apparently attenuated by eplerenone or fasudil. These results suggested that the Rho kinase pathway was activated to induce cardiac fibrosis by Ald-NaCl via MR in AT1aR-KOs. A Rho kinase inhibitor as well as eplerenone might be useful for cardiac damage by Ald-NaCl.
Collapse
Affiliation(s)
- Shuntaro Kagiyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
16
|
Effects of eplerenone, a selective mineralocorticoid receptor antagonist, on clinical and experimental salt-sensitive hypertension. Hypertens Res 2009; 32:321-4. [PMID: 19300447 DOI: 10.1038/hr.2009.29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mineralocorticoid receptors (MRs) are expressed in non-epithelial tissues, such as blood vessels, the heart and adipose tissue. The combined effects of aldosterone and insulin link the metabolic syndrome with hypertension and salt sensitivity. Eplerenone is the newly developed inhibitor of MRs that has significantly fewer adverse effects than similar doses of spironolactone. Eplerenone has been reported to have anti-hypertensive and protective effects on cardiovascular and renal injury in salt-sensitive hypertensive animal models, such as the Dahl salt-sensitive (DS) hypertensive rat and leptin receptor-deficient spontaneously hypertensive rat (SHR/cp). Eplerenone also increases nitric oxide bioavailability and improves impaired endothelial function by decreasing oxidative stress. Clinical studies support the concept that eplerenone is effective for the treatment of salt-sensitive hypertension as well as idiopathic hyperaldosteronism and does not have adverse anti-androgenic adverse effects. In Japan, eplerenone has been used clinically since 2007 for the treatment of hypertension, with its price being marginally lower than all types of angiotensin II receptor antagonists. This will inevitably result in an increasing number of hypertensive patients and those with primary aldosteronism being treated with this agent in the near future.
Collapse
|
17
|
Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA. Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf) 2009; 195:321-38. [PMID: 19040711 DOI: 10.1111/j.1748-1716.2008.01936.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cardiac fibrosis is a major pathogenic factor in a variety of cardiovascular diseases and refers to an excessive deposition of extracellular matrix components in the heart, which leads to cardiac dysfunction and eventually overt heart failure. Evidence is accumulating for a crucial role of connective tissue growth factor (CTGF) in fibrotic processes in several tissues including the heart. CTGF orchestrates the actions of important local factors evoking cardiac fibrosis. The central role of CTGF as a matricellular protein modulating the fibrotic process in cardiac remodelling makes it a possible biomarker for cardiac fibrosis and a potential candidate for therapeutic intervention to mitigate fibrosis in the heart.
Collapse
Affiliation(s)
- A Daniels
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|