1
|
Tain YL, Hsu CN. Kidney Programming and Hypertension: Linking Prenatal Development to Adulthood. Int J Mol Sci 2024; 25:13610. [PMID: 39769369 PMCID: PMC11677590 DOI: 10.3390/ijms252413610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The complex relationship between kidney disease and hypertension represents a critical area of research, yet less attention has been devoted to exploring how this connection develops early in life. Various environmental factors during pregnancy and lactation can significantly impact kidney development, potentially leading to kidney programming that results in alterations in both structure and function. This early programming can contribute to adverse long-term kidney outcomes, such as hypertension. In the context of kidney programming, the molecular pathways involved in hypertension are intricate and include epigenetic modifications, oxidative stress, impaired nitric oxide pathway, inappropriate renin-angiotensin system (RAS) activation, disrupted nutrient sensing, gut microbiota dysbiosis, and altered sodium transport. This review examines each of these mechanisms and highlights reprogramming interventions proposed in preclinical studies to prevent hypertension related to kidney programming. Given that reprogramming strategies differ considerably from conventional treatments for hypertension in kidney disease, it is essential to shift focus toward understanding the processes of kidney programming and its role in the development of programmed hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
The Impact of Nutrient Intake and Metabolic Wastes during Pregnancy on Offspring Hypertension: Challenges and Future Opportunities. Metabolites 2023; 13:metabo13030418. [PMID: 36984857 PMCID: PMC10052993 DOI: 10.3390/metabo13030418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Hypertension can have its origin in early life. During pregnancy, many metabolic alterations occur in the mother that have a crucial role in fetal development. In response to maternal insults, fetal programming may occur after metabolic disturbance, resulting in programmed hypertension later in life. Maternal dietary nutrients act as metabolic substrates for various metabolic processes via nutrient-sensing signals. Different nutrient-sensing pathways that detect levels of sugars, amino acids, lipids and energy are integrated during pregnancy, while disturbed nutrient-sensing signals have a role in the developmental programming of hypertension. Metabolism-modulated metabolites and nutrient-sensing signals are promising targets for new drug discovery due to their pathogenic link to hypertension programming. Hence, in this review, we pay particular attention to the maternal nutritional insults and metabolic wastes affecting fetal programming. We then discuss the role of nutrient-sensing signals linking the disturbed metabolism to hypertension programming. This review also summarizes current evidence to give directions for future studies regarding how to prevent hypertension via reprogramming strategies, such as nutritional intervention, targeting nutrient-sensing signals, and reduction of metabolic wastes. Better prevention for hypertension may be possible with the help of novel early-life interventions that target altered metabolism.
Collapse
|
3
|
The Potential Role of PPARs in the Fetal Origins of Adult Disease. Cells 2022; 11:cells11213474. [PMID: 36359869 PMCID: PMC9653757 DOI: 10.3390/cells11213474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis holds that events during early development have a profound impact on one’s risk for the development of future adult disease. Studies from humans and animals have demonstrated that many diseases can begin in childhood and are caused by a variety of early life traumas, including maternal malnutrition, maternal disease conditions, lifestyle changes, exposure to toxins/chemicals, improper medication during pregnancy, and so on. Recently, the roles of Peroxisome proliferator-activated receptors (PPARs) in FOAD have been increasingly appreciated due to their wide variety of biological actions. PPARs are members of the nuclear hormone receptor subfamily, consisting of three distinct subtypes: PPARα, β/δ, and γ, highly expressed in the reproductive tissues. By controlling the maturation of the oocyte, ovulation, implantation of the embryo, development of the placenta, and male fertility, the PPARs play a crucial role in the transition from embryo to fetus in developing mammals. Exposure to adverse events in early life exerts a profound influence on the methylation pattern of PPARs in offspring organs, which can affect development and health throughout the life course, and even across generations. In this review, we summarize the latest research on PPARs in the area of FOAD, highlight the important role of PPARs in FOAD, and provide a potential strategy for early prevention of FOAD.
Collapse
|
4
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
5
|
Animal Models for DOHaD Research: Focus on Hypertension of Developmental Origins. Biomedicines 2021; 9:biomedicines9060623. [PMID: 34072634 PMCID: PMC8227380 DOI: 10.3390/biomedicines9060623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that fetal programming through environmental exposure during a critical window of early life leads to long-term detrimental outcomes, by so-called developmental origins of health and disease (DOHaD). Hypertension can originate in early life. Animal models are essential for providing convincing evidence of a causal relationship between diverse early-life insults and the developmental programming of hypertension in later life. These insults include nutritional imbalances, maternal illnesses, exposure to environmental chemicals, and medication use. In addition to reviewing the various insults that contribute to hypertension of developmental origins, this review focuses on the benefits of animal models in addressing the underlying mechanisms by which early-life interventions can reprogram disease processes and prevent the development of hypertension. Our understanding of hypertension of developmental origins has been enhanced by each of these animal models, narrowing the knowledge gap between animal models and future clinical translation.
Collapse
|
6
|
Tain YL, Chan SHH, Chan JYH. Biochemical basis for pharmacological intervention as a reprogramming strategy against hypertension and kidney disease of developmental origin. Biochem Pharmacol 2018; 153:82-90. [PMID: 29309755 DOI: 10.1016/j.bcp.2018.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023]
Abstract
The concept of "developmental origins of health and disease" (DOHaD) stipulates that both hypertension and kidney disease may take origin from early-life insults. The DOHaD concept also offers reprogramming strategies aiming at shifting therapeutic interventions from adulthood to early life, even before clinical symptoms are evident. Based on those two concepts, this review will present the evidence for the existence of, and the programming mechanisms in, kidney developmental programming that may lead to hypertension and kidney disease. This will be followed by potential pharmacological interventions that may serve as a reprogramming strategy to counter the rising epidemic of hypertension and kidney disease. We point out that before patients could benefit from this strategy, the most pressing issue is for the growing body of evidence from animal studies in support of pharmacological intervention as a reprogramming strategy to long-term protect against hypertension and kidney disease of developmental origins to be validated clinically and the critical window, drug dose, dosing regimen, and therapeutic duration identified.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
7
|
Koeners MP, Wesseling S, Sánchez M, Braam B, Joles JA. Perinatal Inhibition of NF-KappaB Has Long-Term Antihypertensive and Renoprotective Effects in Fawn-Hooded Hypertensive Rats. Am J Hypertens 2016; 29:123-31. [PMID: 25958302 DOI: 10.1093/ajh/hpv065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/02/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Inhibition of transcription factor nuclear factor-kappa B (NFκB) is beneficial in various models of hypertension and renal disease. We hypothesized first that NFκB inhibition during renal development ameliorates hereditary hypertensive renal disease and next whether this was mediated via suppression of peroxisome proliferator-activated receptor (PPAR)γ coactivator 1α (PGC-1α). METHODS AND RESULTS Prior to the development of renal injury in fawn-hooded hypertensive (FHH) rats, a model of hypertension, glomerular hyperfiltration, and progressive renal injury, NFkB activity, measured by nuclear protein expression of NFkB subunit p65, was enhanced twofold in 2-day-old male and female FHH kidneys as compared to normotensive Wistar-Kyoto (WKY) rats (P < 0.05). Treating FHH dams with pyrrolidine di thio carbamate (PDTC), an NFκB inhibitor, from 2 weeks before birth to 4 weeks after birth diminished NFkB activity in 2-day-FHH offspring to 2-day-WKY levels (P < 0.01). Perinatal PDTC reduced systolic blood pressure from 20 weeks onwards by on average 25 mm Hg (P < 0.001) and ameliorated proteinuria (P < 0.05) and glomerulosclerosis (P < 0.05). In kidneys of 2-day-, 2-week-, and adult offspring of PDTC-treated FHH dams, PGC-1α was induced on average by 67% (quantitative polymerase chain reaction (qPCR)) suggesting that suppression of this factor by NFkB could be involved in renal damage. Follow-up experiments with perinatal pioglitazone (Pio), a PPARγ agonist, failed to confer persistent antihypertensive or renoprotective effects. CONCLUSIONS Perinatal inhibition of enhanced active renal NFκB in 2-day FHH had persistent antihypertensive and renoprotective effects. However, this was not the case for PPARγ stimulation. NFkB stimulation is therefore involved in renal damage in the FHH model of proteinuric renal disease by pathways other than via PPARγ.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antihypertensive Agents/therapeutic use
- Blood Pressure/drug effects
- Disease Models, Animal
- Female
- Gene Expression Regulation, Developmental
- Hypertension, Renal/complications
- Hypertension, Renal/drug therapy
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Hypertension, Renal/prevention & control
- Male
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/biosynthesis
- NF-kappa B/genetics
- Nephritis/genetics
- Nephritis/physiopathology
- Nephritis/prevention & control
- RNA/genetics
- Rats
- Rats, Inbred WKY
- Renal Circulation
Collapse
Affiliation(s)
- Maarten P Koeners
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, Netherlands; School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Sebastiaan Wesseling
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, Netherlands; Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | - Manuel Sánchez
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, Netherlands; Department of Pharmacology, School of Pharmacy, University of Granada, Spain
| | - Branko Braam
- Division of Nephrology & Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, Netherlands;
| |
Collapse
|
8
|
Tain YL, Hsu CN, Chan JYH. PPARs Link Early Life Nutritional Insults to Later Programmed Hypertension and Metabolic Syndrome. Int J Mol Sci 2015; 17:ijms17010020. [PMID: 26712739 PMCID: PMC4730267 DOI: 10.3390/ijms17010020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/15/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Hypertension is an important component of metabolic syndrome. Adulthood hypertension and metabolic syndrome can be programmed in response to nutritional insults in early life. Peroxisome proliferator-activated receptors (PPARs) serve as a nutrient-sensing signaling linking nutritional programming to hypertension and metabolic syndrome. All three members of PPARs, PPARα, PPARβ/δ, and PPARγ, are expressed in the kidney and involved in blood pressure control. This review provides an overview of potential clinical applications of targeting on the PPARs in the kidney to prevent programmed hypertension and metabolic syndrome, with an emphasis on the following areas: mechanistic insights to interpret programmed hypertension; the link between the PPARs, nutritional insults, and programmed hypertension and metabolic syndrome; the impact of PPAR signaling pathway in a maternal high-fructose model; and current experimental studies on early intervention by PPAR modulators to prevent programmed hypertension and metabolic syndrome. Animal studies employing a reprogramming strategy via targeting PPARs to prevent hypertension have demonstrated interesting results. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies, to halt the globally-growing epidemic of metabolic syndrome-related diseases.
Collapse
Affiliation(s)
- You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
9
|
Maternal caffeine administration leads to adverse effects on adult mice offspring. Eur J Nutr 2013; 52:1891-900. [PMID: 23291721 DOI: 10.1007/s00394-012-0490-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/19/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE This study aimed to evaluate the role of caffeine chronic administration during gestation of C57BL/6 mice on cardiac remodeling and the expression of components of the renin-angiotensin system (RAS) in male offspring as adults. METHODS Pregnant C57BL/6 female mice were divided into two groups (n = 10): Control group (C), dams were injected with the vehicle only (saline 0.9% NaCl); Caffeine group (CF), dams received daily a subcutaneous injection of 20 mg/kg of caffeine/day (1 mg/mL saline). Pups had free access to standard chow since weaning to 3 months of age, when they were killed. RESULTS CF group showed increased energy expenditure (+7%) with consequent reduction in body mass (BM) gain (-18%), increased blood pressure (+48%), and higher heart rate (+10%) than C group. The ratio between LV mass/BM was greater (+10%), with bigger cardiomyocytes (+40%), and reduced vascularization (-25%) in CF group than in C group. In the LV, the expression of angiotensin-converting enzyme (+30%), Angiotensin II (AngII) (+60%), AngII receptor (ATR)-1 (+77%) were higher, and the expression of ATR-2 was lower (-46%; P < 0.05) in CF group than in C group. In the kidney, the expressions of renin (+128%) and ATR-1 (+88%) were higher in CF group than in C group. CONCLUSIONS Chronic administration of caffeine to pregnant dams led to persistent activation of local RAS in the kidney and heart of the offspring, which, in turn, leads to high BP and adverse cardiac remodeling. These findings highlight the urge to encourage pregnant women to avoid food or medicines containing caffeine.
Collapse
|
10
|
Torres TDS, Aguila MB, Mandarim-de-Lacerda CA. Rosiglitazone reverses cardiac adverse remodeling (fibrosis and vascularization) in perinatal low protein rat offspring. Pathol Res Pract 2010; 206:642-6. [DOI: 10.1016/j.prp.2010.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 12/13/2022]
|
11
|
Mandarim-de-Lacerda CA, Fernandes-Santos C, Aguila MB. Image analysis and quantitative morphology. Methods Mol Biol 2010; 611:211-225. [PMID: 19960334 DOI: 10.1007/978-1-60327-345-9_17] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quantitative studies are increasingly found in the literature, particularly in the fields of development/evolution, pathology, and neurosciences. Image digitalization converts tissue images into a numeric form by dividing them into very small regions termed picture elements or pixels. Image analysis allows automatic morphometry of digitalized images, and stereology aims to understand the structural inner three-dimensional arrangement based on the analysis of slices showing two-dimensional information. To quantify morphological structures in an unbiased and reproducible manner, appropriate isotropic and uniform random sampling of sections, and updated stereological tools are needed. Through the correct use of stereology, a quantitative study can be performed with little effort; efficiency in stereology means as little counting as possible (little work), low cost (section preparation), but still good accuracy. This short text provides a background guide for non-expert morphologists.
Collapse
Affiliation(s)
- Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry and Cardiovascular Morphology, Institute of Biology, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
12
|
Rosiglitazone (peroxisome proliferator-activated receptor-gamma) counters hypertension and adverse cardiac and vascular remodeling in 2K1C hypertensive rats. ACTA ACUST UNITED AC 2009; 63:1-7. [PMID: 19775877 DOI: 10.1016/j.etp.2009.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/27/2009] [Accepted: 09/01/2009] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists have been shown controlling blood pressure (BP) in spontaneously hypertensive rats and salt-sensitive hypertensive rats. The present study aims to test the hypothesis that PPAR-gamma agonist rosiglitazone has beneficial effects on cardiac and vascular adverse remodeling in a model of renovascular hypertension (two-kidneys-one-clip, 2K1C model). Wistar rats were divided into four groups (n=6): SHAM group, 2K1C, 2K1C+HYD (treated with hydralazine for 5 weeks) and 2K1C+ROSI (treated with rosiglitazone for 5 weeks). The left ventricle (LV), thoracic aorta (Ao) and common carotid artery (CCA) were analyzed. The BP did not show significant difference at the end of the experiment in groups 2K1C+ROSI, 2K1C+HYD and SHAM. The LV mass was smaller in 2K1C+ROSI compared with the other groups. The intima-media thickness was smaller in 2K1C+ROSI compared with untreated 2K1C ones, but not in 2K1C+HYD; 2K1C and 2K1C+HYD showed smaller Ao and CCA density of smooth muscle cell nuclei, and smaller surface density of the elastic lamellae than SHAM. The Ao and CCA circumferential wall tension and tensile stress were greater in 2K1C than in SHAM. Hypertrophied cardiomyocytes were seen in 2K1C, but not in 2K1C+ROSI and SHAM; 2K1C+ROSI had enhanced volume and length densities of intramyocardial arteries than 2K1C. The volume density of cardiac interstitium was greater in 2K1C and 2K1C+HYD than in SHAM. In conclusion, PPAR-gamma agonist rosiglitazone has beneficial effects controlling BP, reducing vascular adverse remodeling, and preserving intramyocardial vascularization in renovascular hypertensive rats (2K1C model).
Collapse
|