1
|
IMAIZUMI N, GONDAIRA S, KAMIOKA M, SUGIURA T, EGUCHI A, NISHI K, FUJIKI J, IWANO H, HIGUCHI H. Innate immune response of bovine mammary epithelial cells in Mycoplasma bovis mastitis using an in vitro model of bovine mammary gland infection. J Vet Med Sci 2024; 86:712-720. [PMID: 38710622 PMCID: PMC11251819 DOI: 10.1292/jvms.24-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Mycoplasma bovis mastitisis highly contagious and disrupts lactation, posing a significant threat to the dairy industry. While the mammary gland's defence mechanism involves epithelial cells and mononuclear cells (MNC), their interaction with M. bovis remains incompletely understood. In this study, we assessed the immunological reactivity of bovine mammary epithelial cells (bMEC) to M. bovis through co-culture with MNC. Upon co-culture with MNC, the mRNA expression levels of interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor (TNF)-α in bMEC stimulated by M. bovis showed a significant increase compared to monoculture. Additionally, when stimulated with M. bovis, the culture supernatant exhibited significantly higher concentrations of IL-6 and interferon (IFN)-γ, while IL-1β concentration tended to be higher in co-culture with MNC than in monoculture. Furthermore, the mRNA expression levels of toll-like receptor (TLR) 2 in bMEC stimulated with M. bovis tended to increase, and TLR4 significantly increased when co-cultured with MNC compared to monocultures. However, the surface expression levels in bMEC did not exhibit significant changes between co-culture and monoculture. Overall, our research indicates that the inflammatory response of bMEC is increased during co-culture with MNC, suggesting that the interaction between bMEC and MNC in the mammary gland amplifies the immune response to M. bovis in cows affected by M. bovis mastitis.
Collapse
Affiliation(s)
- Noriko IMAIZUMI
- Animal Health Unit, Graduate School of Veterinary Medicine, Veterinary Medicine Doctoral Course, Rakuno Gakuen University, Hokkaido, Japan
| | - Satoshi GONDAIRA
- Animal Health Unit, Graduate School of Veterinary Medicine, Veterinary Medicine Doctoral Course, Rakuno Gakuen University, Hokkaido, Japan
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Marin KAMIOKA
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Tomochika SUGIURA
- Theriogenology Unit, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Ayako EGUCHI
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Koji NISHI
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
- Monbetsu Veterinary Clinic, Hokkaido Agricultural Mutual Aid Association, Hokkaido, Japan
| | - Jumpei FUJIKI
- Veterinary Biochemistry Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Hidetomo IWANO
- Veterinary Biochemistry Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Hidetoshi HIGUCHI
- Animal Health Unit, Graduate School of Veterinary Medicine, Veterinary Medicine Doctoral Course, Rakuno Gakuen University, Hokkaido, Japan
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| |
Collapse
|
2
|
Niu J, Yan M, Xu J, Xu Y, Chang Z, Sizhu S. The Resistance Mechanism of Mycoplasma bovis From Yaks in Tibet to Fluoroquinolones and Aminoglycosides. Front Vet Sci 2022; 9:840981. [PMID: 35982926 PMCID: PMC9378962 DOI: 10.3389/fvets.2022.840981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma bovis (M. bovis) is one of the important pathogens for yaks. Aminoglycosides and fluoroquinolones are frequently used medications for the treatment of M. bovis. Drug-resistant strains were inevitable with the abuse of antibiotics. The resistance of M. bovis to aminoglycosides was related to the base mutations in drug target genes. Amino acid mutations at the quinolone resistance-determining region (QRDR) in gyrA, gyrB, parC, and parE conferred resistance to fluoroquinolones. In order to investigate the resistance mechanism of M. bovis from yaks in Tibet to aminoglycosides and fluoroquinolones, six frequently used antibiotics and ten clinical M. bovis strains were administered for a drug sensitivity test for in vitro-induced highly resistant strains, a drug stable-resistance test, cross-resistance test, and analysis of target gene mutations. The results showed that the clinical strains of M. bovis from yaks in Tibet had varying degrees of resistance to fluoroquinolones and aminoglycosides. The mechanism of resistance to fluoroquinolones and aminoglycosides was identified preliminarily for M. bovis from yaks: the single-site base mutation mediated the resistance of M. bovis from yaks and both base mutations led to highly resistant strains (aminoglycosides: rrs3 and rrs4; fluoroquinolones: gyrA and parC). The active efflux system results of M. bovis showed that there was no active efflux system based on fluoroquinolones and aminoglycosides expressed in M. bovis from yaks. The research could provide a reference for clinical treatment of M. bovis.
Collapse
Affiliation(s)
- Jiaqiang Niu
- Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | | | | | | | | | - Suolang Sizhu
- Tibet Agriculture and Animal Husbandry College, Linzhi, China
| |
Collapse
|
3
|
Ammar AM, Abd El-Hamid MI, Mohamed YH, Mohamed HM, Al-khalifah DHM, Hozzein WN, Selim S, El-Neshwy WM, El-Malt RMS. Prevalence and Antimicrobial Susceptibility of Bovine Mycoplasma Species in Egypt. BIOLOGY 2022; 11:biology11071083. [PMID: 36101462 PMCID: PMC9312167 DOI: 10.3390/biology11071083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Bovine Mycoplasma species, particularly antimicrobial resistant Mycoplasma bovis are important causes of bovine respiratory disease (BRD) in cattle, which causes major economic losses worldwide. Thus, the current study aimed to determine the prevalence and antimicrobial resistance profiles of bovine Mycoplasma spp. isolated from cattle’s respiratory tracts, in addition to evaluating the fluoroquinolone resistance in the recovered isolates using broth microdilution and conventional PCR techniques in Egypt. Our result showed that M. bovis was the most common spp. (61%), followed by M. bovirhinis (15%). In total, mycoplasma isolates were more prevalent among all examined lung tissues (38%), followed by nasal swabs (35%), tracheal tissues (28%), and tracheal swabs (27%). All the examined mycoplasma isolates (n = 76) were 100% susceptible to spectinomycin, tulathromycin, spiramycin, and tylosin, but high doxycycline and enrofloxacin minimum inhibitory concentrations (MICs) values were observed among 43.4% and 60.5% of the tested isolates, respectively. Three and two mycoplasma isolates with high enrofloxacin MICs were confirmed to be M. bovis and M. bovirhinis, respectively, by PCR assays. All molecularly confirmed mycoplasma isolates (n = 5) were positive for the gyrA gene (100%), meanwhile, three isolates (60%) were positive for the parC gene. In conclusion, understanding antimicrobial resistance mechanisms is a significant tool for the future development of genetic-based diagnostic techniques for the rapid detection of resistant mycoplasma strains. Abstract Among many bovine Mycoplasma species (spp.), Mycoplasma bovis is recognized as a significant causative agent of respiratory diseases in cattle. In recent years, resistant M. bovis isolates, especially to fluoroquinolones, have been reported globally as a result of the extensive usage of antimicrobials in the treatment of bovine pneumonia. Therefore, the aim of this study is to investigate the prevalence and antimicrobial susceptibility patterns of bovine Mycoplasma spp. isolated from the respiratory tracts of cattle in Egypt and to assess the fluoroquinolones resistance in the recovered mycoplasma isolates via broth microdilution and conventional PCR techniques. Conventional phenotypic methods identified 128 mycoplasma isolates (32%) from 400 different samples, with M. bovis being the predominant spp. (61%), followed by M. bovirhinis (15%). Of note, mycoplasma isolates were rarely isolated from total healthy lung tissues (7/55, 12.7%), but they were frequently isolated from pneumonic lungs (31/45, 68.9%). All the examined mycoplasma isolates (n = 76) were sensitive to tilmicosin, tylosin, tulathromycin, spiramycin, and spectinomycin (100% each), while 60.5% and 43.4% of the examined isolates had high minimum inhibitory concentration (MIC) values to enrofloxacin and doxycycline, respectively. Three and two mycoplasma isolates with high enrofloxacin MICs were confirmed to be M. bovis and M. bovirhinis, respectively, by PCR assays. All molecularly confirmed mycoplasma isolates (n = 5) were positive for the gyrA gene (100%); meanwhile, three isolates (60%) were positive for the parC gene. In conclusion, our findings revealed alarming resistance to enrofloxacin and doxycycline antibiotics; thus, antimicrobial usage must be restricted and molecular techniques can help in the rapid detection of the resistant strains.
Collapse
Affiliation(s)
- Ahmed M. Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (M.I.A.E.-H.); (H.M.M.)
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (M.I.A.E.-H.); (H.M.M.)
| | - Yousreya H. Mohamed
- Department of Mycoplasma Research, Animal Health Research Institute, Agriculture Research Center, Giza 12622, Egypt;
| | - Heba M. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (M.I.A.E.-H.); (H.M.M.)
| | - Dalal H. M. Al-khalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Wafaa M. El-Neshwy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Rania M. S. El-Malt
- Department of Bacteriology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
- Correspondence:
| |
Collapse
|
4
|
Genome-Wide Association Study of Nucleotide Variants Associated with Resistance to Nine Antimicrobials in Mycoplasma bovis. Microorganisms 2022; 10:microorganisms10071366. [PMID: 35889084 PMCID: PMC9320666 DOI: 10.3390/microorganisms10071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance (AMR) studies of Mycoplasma bovis have generally focused on specific loci versus using a genome-wide association study (GWAS) approach. A GWAS approach, using two different models, was applied to 194 Mycoplasma bovis genomes. Both a fixed effects linear model (FEM) and a linear mixed model (LMM) identified associations between nucleotide variants (NVs) and antimicrobial susceptibility testing (AST) phenotypes. The AMR phenotypes represented fluoroquinolones, tetracyclines, phenicols, and macrolides. Both models identified known and novel NVs associated (Bonferroni adjusted p < 0.05) with AMR. Fluoroquinolone resistance was associated with multiple NVs, including previously identified mutations in gyrA and parC. NVs in the 30S ribosomal protein 16S were associated with tetracycline resistance, whereas NVs in 5S rRNA, 23S rRNA, and 50S ribosomal proteins were associated with phenicol and macrolide resistance. For all antimicrobial classes, resistance was associated with NVs in genes coding for ABC transporters and other membrane proteins, tRNA-ligases, peptidases, and transposases, suggesting a NV-based multifactorial model of AMR in M. bovis. This study was the largest collection of North American M. bovis isolates used with a GWAS for the sole purpose of identifying novel and non-antimicrobial-target NVs associated with AMR.
Collapse
|
5
|
Characterization of Mutations in DNA Gyrase and Topoisomerase IV in Field Strains and In Vitro Selected Quinolone-Resistant Mycoplasma hyorhinis Mutants. Antibiotics (Basel) 2022; 11:antibiotics11040494. [PMID: 35453245 PMCID: PMC9024574 DOI: 10.3390/antibiotics11040494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mycoplasma hyorhinis is ubiquitous in swine, and it is a common pathogen of swine that causes polyserositis, arthritis, and maybe pneumonia. Fluoroquinolones are effective antimicrobials used for the treatment of mycoplasmal infection. However, a decrease in fluoroquinolones susceptibility in mycoplasma was observed. The molecular mechanisms have been studied in many mycoplasma species, while the mechanism in M. hyorhinis is still unknown. This study aimed to illustrate the in vitro development of fluoroquinolone resistance in M. hyorhinis and unveil the resistance mechanisms in both in vitro selected mutants and field strains. Seven ciprofloxacin-sensitive M. hyorhinis isolates were chosen to induce the fluoroquinolone resistance in vitro, and the point mutations in the quinolone resistance-determining regions (QRDRs) were characterized. The substitutions first occurred in ParC, resulting in a 2- to 8-fold increase in resistance, followed by additional mutations in GyrA and/or ParE to achieve a 32-fold increase. The mutations occurred in hot spots of QRDRs, and they were diverse and variable, including five in ParC (Ser80Phe, Ser80Tyr, Phe80Tyr, Glu84Gly, and Glu84Lys), four in GyrA (Ala83Val, Ser84Pro, Asp87Tyr, and Asp87Asn) and one in ParE (Glu470Lys). Target mutations in field strains were observed in the ParC (Ser80Phe, Ser81Pro, and Glu84Gln) of isolates with MICCIP = 2 μg/mL. This study characterized the point mutations in the QRDRs of M. hyorhinis and could be useful for the rapid detection of fluoroquinolone resistance in M. hyorhinis field isolates.
Collapse
|
6
|
KURAMAE T, ISHIKAWA S, KONO A, HOBO S. Pharmacokinetics in plasma and alveolar regions of a healthy calf intramuscularly administered a single dose of orbifloxacin. J Vet Med Sci 2022; 84:400-405. [PMID: 35095059 PMCID: PMC8983296 DOI: 10.1292/jvms.21-0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study analyzed the pharmacokinetics of orbifloxacin (OBFX) in plasma, and its migration and retention in epithelial lining fluid (ELF) and alveolar cells within the bronchoalveolar
lavage fluid (BALF). Four healthy calves received a single dose of OBFX (5.0 mg/kg) intramuscularly. Post-administration OBFX dynamics were in accordance with a non-compartment model,
including the absorption phase. The maximum concentration (Cmax) of plasma OBFX was 2.2 ± 0.1 μg/ml at 2.3 ± 0.5 hr post administration and gradually decreased to 0.3 ± 0.2 μg/ml
at 24 hr following administration. The Cmax of ELF OBFX was 9.3 ± 0.4 μg/ml at 3.0 ± 2.0 hr post administration and gradually decreased to 1.2 ± 0.1 μg/ml at 24 hr following
administration. The Cmax of alveolar cells OBFX was 9.3 ± 2.9 μg/ml at 4.0 hr post administration and gradually decreased to 1.1 ± 0.2 μg/ml at 24 hr following administration. The
half-life of OBFX in plasma, ELF, and alveolar cells were 6.9 ± 2.2, 7.0 ± 0.6, and 7.8 ± 1.6 hr, respectively. The Cmax and the area under the concentration-time curve for 0–24
hr with OBFX were significantly higher in ELF and alveolar cells than in plasma (P<0.05). These results suggest that OBFX is distributed and retained at high
concentrations in ELF and alveolar cells at 24 hr following administration. Hence, a single intramuscular dose of OBFX (5.0 mg/kg) may be an effective therapeutic agent against
pneumonia.
Collapse
Affiliation(s)
| | - Shingo ISHIKAWA
- United Graduate School of Veterinary Science, Yamaguchi University
| | - Aki KONO
- Joint Faculty of Veterinary Medicine, Kagoshima University
| | - Seiji HOBO
- United Graduate School of Veterinary Science, Yamaguchi University
| |
Collapse
|
7
|
Genome-Wide Association Study Reveals Genetic Markers for Antimicrobial Resistance in Mycoplasma bovis. Microbiol Spectr 2021; 9:e0026221. [PMID: 34612702 PMCID: PMC8510175 DOI: 10.1128/spectrum.00262-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma bovis causes many health and welfare problems in cattle. Due to the absence of clear insights regarding transmission dynamics and the lack of a registered vaccine in Europe, control of an outbreak depends mainly on antimicrobial therapy. Unfortunately, antimicrobial susceptibility testing (AST) is usually not performed, because it is time-consuming and no standard protocol or clinical breakpoints are available. Fast identification of genetic markers associated with acquired resistance may at least partly resolve former issues. Therefore, the aims of this study were to implement a first genome-wide association study (GWAS) approach to identify genetic markers linked to antimicrobial resistance (AMR) in M. bovis using rapid long-read sequencing and to evaluate different epidemiological cutoff (ECOFF) thresholds. High-quality genomes of 100 M. bovis isolates were generated by Nanopore sequencing, and isolates were categorized as wild-type or non-wild-type isolates based on MIC testing results. Subsequently, a k-mer-based GWAS analysis was performed to link genotypes with phenotypes based on different ECOFF thresholds. This resulted in potential genetic markers for macrolides (gamithromycin and tylosin) (23S rRNA gene and 50S ribosomal unit) and enrofloxacin (GyrA and ParC). Also, for tilmicosin and the tetracyclines, previously described mutations in both 23S rRNA alleles and in one or both 16S rRNA alleles were observed. In addition, two new 16S rRNA mutations were possibly associated with gentamicin resistance. In conclusion, this study shows the potential of quick high-quality Nanopore sequencing and GWAS analysis in the evaluation of phenotypic ECOFF thresholds and the rapid identification of M. bovis strains with acquired resistance. IMPORTANCEMycoplasma bovis is a leading cause of pneumonia but also causes other clinical signs in cattle. Since no effective vaccine is available, current M. bovis outbreak treatment relies primarily on the use of antimicrobials. However, M. bovis is naturally resistant to different antimicrobials, and acquired resistance against macrolides and fluoroquinolones is frequently described. Therefore, AST is important to provide appropriate and rapid antimicrobial treatment in the framework of AMR and to prevent the disease from spreading and/or becoming chronic. Unfortunately, phenotypic AST is time-consuming and, due to the lack of clinical breakpoints, the interpretation of AST in M. bovis is limited to the use of ECOFF values. Therefore, the objective of this study was to identify known and potentially new genetic markers linked to AMR phenotypes of M. bovis isolates, exploiting the power of a GWAS approach. For this, we used high-quality and complete Nanopore-sequenced M. bovis genomes of 100 isolates.
Collapse
|
8
|
Pereyre S, Tardy F. Integrating the Human and Animal Sides of Mycoplasmas Resistance to Antimicrobials. Antibiotics (Basel) 2021; 10:1216. [PMID: 34680797 PMCID: PMC8532757 DOI: 10.3390/antibiotics10101216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023] Open
Abstract
Mycoplasma infections are frequent in humans, as well as in a broad range of animals. However, antimicrobial treatment options are limited, partly due to the lack of a cell wall in these peculiar bacteria. Both veterinary and human medicines are facing increasing resistance prevalence for the most commonly used drugs, despite different usage practices. To date, very few reviews have integrated knowledge on resistance to antimicrobials in humans and animals, the latest dating back to 2014. To fill this gap, we examined, in parallel, antimicrobial usage, resistance mechanisms and either phenotype or genotype-based methods for antimicrobial susceptibility testing, as well as epidemiology of resistance of the most clinically relevant human and animal mycoplasma species. This review unveiled common features and differences that need to be taken into consideration in a "One Health" perspective. Lastly, two examples of critical cases of multiple drug resistance are highlighted, namely, the human M. genitalium and the animal M. bovis species, both of which can lead to the threat of untreatable infections.
Collapse
Affiliation(s)
- Sabine Pereyre
- USC EA 3671, Mycoplasmal and Chlamydial Infections in Humans, Univ. Bordeaux, INRAE, F-33000 Bordeaux, France
- Bacteriology Department, National Reference Center for Bacterial Sexually Transmitted Infections, CHU Bordeaux, F-33000 Bordeaux, France
| | - Florence Tardy
- UMR Mycoplasmoses Animales, Anses, VetAgro Sup, Université de Lyon, F-69007 Lyon, France
| |
Collapse
|
9
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
10
|
Monitoring Mycoplasma bovis Diversity and Antimicrobial Susceptibility in Calf Feedlots Undergoing a Respiratory Disease Outbreak. Pathogens 2020; 9:pathogens9070593. [PMID: 32708285 PMCID: PMC7400015 DOI: 10.3390/pathogens9070593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/23/2023] Open
Abstract
Bovine respiratory diseases (BRD) are widespread in veal calf feedlots. Several pathogens are implicated, both viruses and bacteria, one of which, Mycoplasma bovis, is under-researched. This worldwide-distributed bacterium has been shown to be highly resistant in vitro to the main antimicrobials used to treat BRD. Our objective was to monitor the relative prevalence of M. bovis during BRD episodes, its diversity, and its resistance phenotype in relation to antimicrobial use. For this purpose, a two-year longitudinal follow-up of 25 feedlots was organized and 537 nasal swabs were collected on 358 veal calves at their arrival in the lot, at the BRD peak and 4 weeks after collective antimicrobial treatments. The presence of M. bovis was assessed by real-time PCR and culture. The clones isolated were then subtyped (polC subtyping and PFGE analysis), and their susceptibility to five antimicrobials was determined. The course of the disease and the antimicrobials used had no influence on the genetic diversity of the M. bovis strains: The subtype distribution was the same throughout the BRD episode and similar to that already described in France, with a major narrowly-variable subtype circulating, st2. The same conclusion holds for antimicrobial resistance (AMR) phenotypes: All the clones were already multiresistant to the main antimicrobials used (except for fluoroquinolones) prior to any treatments. By contrast, changes of AMR phenotypes could be suspected for Pasteurellaceae in two cases in relation to the treatments registered.
Collapse
|
11
|
Mycoplasma bovis in Spanish Cattle Herds: Two Groups of Multiresistant Isolates Predominate, with One Remaining Susceptible to Fluoroquinolones. Pathogens 2020; 9:pathogens9070545. [PMID: 32645913 PMCID: PMC7399988 DOI: 10.3390/pathogens9070545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma bovis is an important bovine pathogen causing pneumonia, mastitis, and arthritis and is responsible for major economic losses worldwide. In the absence of an efficient vaccine, control of M. bovis infections mainly relies on antimicrobial treatments, but resistance is reported in an increasing number of countries. To address the situation in Spain, M. bovis was searched in 436 samples collected from beef and dairy cattle (2016–2019) and 28% were positive. Single-locus typing using polC sequences further revealed that two subtypes ST2 and ST3, circulate in Spain both in beef and dairy cattle, regardless of the regions or the clinical signs. Monitoring of ST2 and ST3 isolates minimum inhibitory concentration (MIC) to a panel of antimicrobials revealed one major difference when using fluoroquinolones (FQL): ST2 is more susceptible than ST3. Accordingly, whole-genome sequencing (WGS) further identified mutations in the gyrA and parC regions, encoding quinolone resistance-determining regions (QRDR) only in ST3 isolates. This situation shows the capacity of ST3 to accumulate mutations in QRDR and might reflect the selective pressure imposed by the extensive use of these antimicrobials. MIC values and detection of mutations by WGS also showed that most Spanish isolates are resistant to macrolides, lincosamides, and tetracyclines. Valnemulin was the only one effective, at least in vitro, against both STs.
Collapse
|
12
|
Gautier-Bouchardon AV. Antimicrobial Resistance in Mycoplasma spp. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0030-2018. [PMID: 30003864 PMCID: PMC11633602 DOI: 10.1128/microbiolspec.arba-0030-2018] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 11/20/2022] Open
Abstract
Mycoplasmas are intrinsically resistant to antimicrobials targeting the cell wall (fosfomycin, glycopeptides, or β-lactam antibiotics) and to sulfonamides, first-generation quinolones, trimethoprim, polymixins, and rifampicin. The antibiotics most frequently used to control mycoplasmal infections in animals are macrolides and tetracyclines. Lincosamides, fluoroquinolones, pleuromutilins, phenicols, and aminoglycosides can also be active. Standardization of methods used for determination of susceptibility levels is difficult since no quality control strains are available and because of species-specific growth requirements. Reduced susceptibility levels or resistances to several families of antimicrobials have been reported in field isolates of pathogenic Mycoplasma species of major veterinary interest: M. gallisepticum and M. synoviae in poultry; M. hyopneumoniae, M. hyorhinis, and M. hyosynoviae in swine; M. bovis in cattle; and M. agalactiae in small ruminants. The highest resistances are observed for macrolides, followed by tetracyclines. Most strains remain susceptible to fluoroquinolones. Pleuromutilins are the most effective antibiotics in vitro. Resistance frequencies vary according to the Mycoplasma species but also according to the countries or groups of animals from which the samples were taken. Point mutations in the target genes of different antimicrobials have been identified in resistant field isolates, in vitro-selected mutants, or strains reisolated after an experimental infection followed by one or several treatments: DNA-gyrase and topoisomerase IV for fluoroquinolones; 23S rRNA for macrolides, lincosamides, pleuromutilins, and amphenicols; 16S rRNAs for tetracyclines and aminoglycosides. Further work should be carried out to determine and harmonize specific breakpoints for animal mycoplasmas so that in vitro information can be used to provide advice on selection of in vivo treatments.
Collapse
Affiliation(s)
- Anne V Gautier-Bouchardon
- Mycoplasmology, Bacteriology, and Antimicrobial Resistance Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), Ploufragan, France
| |
Collapse
|
13
|
Sulyok KM, Bekő K, Kreizinger Z, Wehmann E, Jerzsele Á, Rónai Z, Turcsányi I, Makrai L, Szeredi L, Jánosi S, Nagy SÁ, Gyuranecz M. Development of molecular methods for the rapid detection of antibiotic susceptibility of Mycoplasma bovis. Vet Microbiol 2017; 213:47-57. [PMID: 29292003 DOI: 10.1016/j.vetmic.2017.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Determining the antibiotic susceptibility profile of Mycoplasma bovis isolates in vitro provides the basis for the appropriate choice of antibiotics in the therapy. Traditionally, the antibiotic susceptibility examination of mycoplasmas is technically demanding, time-consuming and rarely performed in diagnostic laboratories. The aim of the present study was to develop rapid molecular assays to determine mutations responsible for elevated minimal inhibitory concentrations (MICs) to fluoroquinolones, tetracyclines, aminocyclitols, macrolides, lincosamides, phenicols and pleuromutilins in M. bovis. The nine mismatch amplification mutation assays (MAMA) and seven high resolution melt (HRM) tests designed in the present study enable the simultaneous detection of these genetic markers. The sensitivity of the assays varied between 102-105 copy numbers/reaction. Cross-reactions with other mycoplasmas occurring in cattle were detected in assays targeting universal regions (e.g. 16S rRNA). Nevertheless, results of the novel method were in accordance with sequence and MICs data of the M. bovis pure cultures. Also, the tests of clinical samples containing high amount of M. bovis DNA were congruent even in the presence of other Mycoplasma spp. The presented method is highly cost-effective and can provide an antibiogram to 12 antibiotics in approximately 3-4 days when previous isolation of M. bovis is applied. In order to assure the proper identification of the genetic markers at issue, the regions examined by the MAMA and HRM tests are overlapping. In conclusion, the developed assays have potential to be used in routine diagnostics for the detection of antibiotic susceptibility in M. bovis.
Collapse
Affiliation(s)
- Kinga M Sulyok
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Katinka Bekő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Zsuzsa Kreizinger
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Enikő Wehmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Ákos Jerzsele
- University of Veterinary Medicine, Budapest, István utca 2, Hungary
| | - Zsuzsanna Rónai
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, 1143, Tábornok utca 2, Hungary
| | - Ibolya Turcsányi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, 1143, Tábornok utca 2, Hungary
| | - László Makrai
- University of Veterinary Medicine, Budapest, István utca 2, Hungary
| | - Levente Szeredi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, 1143, Tábornok utca 2, Hungary
| | - Szilárd Jánosi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, 1143, Tábornok utca 2, Hungary
| | - Sára Ágnes Nagy
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary.
| |
Collapse
|
14
|
Sato T, Higuchi H, Yokota SI, Tamura Y. Mycoplasma bovis isolates from dairy calves in Japan have less susceptibility than a reference strain to all approved macrolides associated with a point mutation (G748A) combined with multiple species-specific nucleotide alterations in 23S rRNA. Microbiol Immunol 2017; 61:215-224. [PMID: 28504455 DOI: 10.1111/1348-0421.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/04/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022]
Abstract
Erythromycin, tylosin and tilmicosin are approved for use in cattle in Japan, the latter two being used to treat Mycoplasma bovis infection. In this study, 58 M. bovis isolates obtained from Japanese dairy calves all exhibited reduced susceptibility to these macrolides, this widespread reduced susceptibility being attributable to a few dominant lineages. All 58 isolates contained the G748A variant in both the rrl3 and rrl4 alleles of 23S rRNA, whereas a reference strain (PG45) did not. G748 localizes in the central loop of domain II (from C744 to A753) of 23S rRNA, which participates in binding to mycinose, a sugar residue present in both tylosin and tilmicosin. A number of in vitro-selected mutants derived from M. bovis PG45 showed reduced susceptibility to tylosin and tilmicosin and contained a nucleotide insertion within the central loop of domain II of rrl3 (U747-G748Ins_CU/GU or A743-U744Ins_UA), suggesting that mutations around G748 confer this reduced susceptibility phenotype. However, other Mycoplasma species containing G748A were susceptible to tylosin and tilmicosin. Sequence comparison with Escherichia coli revealed that M. bovis PG45 and isolates harbored five nucleotide alterations (U744C, G745A, U746C, A752C and A753G) in the central loop of domain II of 23S rRNA, whereas other Mycoplasma species lacked at least two of these five nucleotide alterations. It was therefore concluded that G748 mutations in combination with species-specific nucleotide alterations in the central loop of domain II of 23S rRNA are likely sufficient to reduce susceptibility of M. bovis to tylosin and tilmicosin.
Collapse
Affiliation(s)
- Toyotaka Sato
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudai-Midorimachi, Ebetsu, 069-8501, Japan.,Department of Microbiology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hidetoshi Higuchi
- Laboratory of Animal Health, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudai-Midorimachi, Ebetsu, 069-8501, Japan
| |
Collapse
|
15
|
Tatay-Dualde J, Prats-van der Ham M, de la Fe C, Paterna A, Sánchez A, Corrales JC, Contreras A, Gómez-Martín Á. Mutations in the quinolone resistance determining region conferring resistance to fluoroquinolones in Mycoplasma agalactiae. Vet Microbiol 2017; 207:63-68. [PMID: 28757041 DOI: 10.1016/j.vetmic.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/29/2017] [Accepted: 06/03/2017] [Indexed: 11/15/2022]
Abstract
M. agalactiae is the main causative agent of contagious agalactia, against which antimicrobial treatment is the main applied control measure. Quinolones are an effective group of antimicrobials inhibiting the growth of M. agalactiae, but in the last years, various reports have demonstrated an increase of resistance in field isolates due to its massive use. Nevertheless, the molecular mechanisms involved in the acquisition of fluoroquinolones resistance in M. agalactiae have not been elucidated yet. Therefore, the aim of this work was to analyze the presence of DNA variations that could be related to changes in fluoroquinolone susceptibility. For this purpose, three M. agalactiae strains were selected to obtain in vitro resistant mutants against enrofloxacin, marbofloxacin and moxifloxacin and afterwards, partial sequences of their gyrA, gyrB, parC and parE genes were analyzed. In addition, a set of field isolates with different MIC values were also studied. Changes related to variations in fluoroquinolones susceptibility were found in gyrB, parC and parE. Specifically, gyrB genes were affected at the predicted amino acid position 424, four amino acid changes were detected in parC (positions 78, 79, 80 and 84) and two substitutions were reported in parE (amino acid positions 429 and 459). Mutations at predicted positions 424 of gyrB and 429 of parE are novel DNA changes which had not been previously described and, on the whole, parC was the first gene showing alterations when changes in susceptibility to fluoroquinolones occurred. Thus, this gene is the most suitable target for a rapid study of fluoroquinolone resistance in field isolates of M. agalactiae.
Collapse
Affiliation(s)
- Juan Tatay-Dualde
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo s/n., 30100 Murcia, Spain
| | - Miranda Prats-van der Ham
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo s/n., 30100 Murcia, Spain
| | - Christian de la Fe
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo s/n., 30100 Murcia, Spain.
| | - Ana Paterna
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo s/n., 30100 Murcia, Spain
| | - Antonio Sánchez
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo s/n., 30100 Murcia, Spain
| | - Juan Carlos Corrales
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo s/n., 30100 Murcia, Spain
| | - Antonio Contreras
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo s/n., 30100 Murcia, Spain
| | - Ángel Gómez-Martín
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo s/n., 30100 Murcia, Spain
| |
Collapse
|
16
|
Mutations Associated with Decreased Susceptibility to Seven Antimicrobial Families in Field and Laboratory-Derived Mycoplasma bovis Strains. Antimicrob Agents Chemother 2017; 61:AAC.01983-16. [PMID: 27895010 DOI: 10.1128/aac.01983-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms of resistance to fluoroquinolones, tetracyclines, an aminocyclitol, macrolides, a lincosamide, a phenicol, and pleuromutilins were investigated in Mycoplasma bovis For the identification of mutations responsible for the high MICs of certain antibiotics, whole-genome sequencing of 35 M. bovis field isolates and 36 laboratory-derived antibiotic-resistant mutants was performed. In vitro resistant mutants were selected by serial passages of M. bovis in broth medium containing subinhibitory concentrations of the antibiotics. Mutations associated with high fluoroquinolones MICs were found at positions 244 to 260 and at positions 232 to 250 (according to Escherichia coli numbering) of the quinolone resistance-determining regions of the gyrA and parC genes, respectively. Alterations related to elevated tetracycline MICs were described at positions 962 to 967, 1058, 1195, 1196, and 1199 of genes encoding the 16S rRNA and forming the primary tetracycline binding site. Single transversion at position 1192 of the rrs1 gene resulted in a spectinomycin MIC of 256 μg/ml. Mutations responsible for high macrolide, lincomycin, florfenicol, and pleuromutilin antibiotic MICs were identified in genes encoding 23S rRNA. Understanding antibiotic resistance mechanisms is an important tool for future developments of genetic-based diagnostic assays for the rapid detection of resistant M. bovis strains.
Collapse
|
17
|
Contribution of target alteration, protection and efflux pump in achieving high ciprofloxacin resistance in Enterobacteriaceae. AMB Express 2016; 6:126. [PMID: 28004362 PMCID: PMC5177599 DOI: 10.1186/s13568-016-0294-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022] Open
Abstract
The study aims at revealing the comprehensive contribution of target alteration, target protection and efflux pump to the development of high level of ciprofloxacin (CIP) resistance in Enterobacteriaceae bacteria of environmental, clinical and poultry origins. Antibiotic susceptibility test was used to detect CIP resistant (CIPR) isolates and MICCIP was determined by broth microdilution method. The presence of qnrS gene was identified by PCR and Southern blot hybridization (SBH) confirmed their location. Checkerboard titration demonstrated the effect of NMP on CIP action. PCR followed by sequencing and in silico analysis revealed the contribution of mutations in acrR, marR and gyrA to CIPR development. Out of 152 isolates, 101 were detected as CIPR. Randomly selected 53 isolates (MICCIP 4–512 µg/mL) were identified as Escherichia spp. (26), Enterobacter spp. (7), Klebsiella spp. (5) and Salmonella spp. (15) and of them 31 isolates carried qnrS. qnrS harboring 18 highly CIPR isolates (MICCIP: 256–512 µg/mL) were selected for further study. SBH confirmed 7 isolates harbored qnrS gene in plasmids. The acrA, acrB and tolC were present in all 18 isolates and NMP had an additive (12-isolates) or synergistic (6-isolates) effect on CIP action. Most isolates contained double amino acid (aa) substitutions (S83L and D87N) in QRDR of GyrA resulting in an altered conformation of putative CIP binding pocket. However, some isolates contained single (S83L or S83Y) or no aa substitution but showed high CIPR implicating that the concerted action of three mechanisms is responsible for high CIPR with the most significant role of efflux pump.
Collapse
|
18
|
Lysnyansky I, Ayling RD. Mycoplasma bovis: Mechanisms of Resistance and Trends in Antimicrobial Susceptibility. Front Microbiol 2016; 7:595. [PMID: 27199926 PMCID: PMC4846652 DOI: 10.3389/fmicb.2016.00595] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma bovis is a cell-wall-less bacterium and belongs to the class Mollicutes. It is the most important etiological agent of bovine mycoplasmoses in North America and Europe, causing respiratory disease, mastitis, otitis media, arthritis, and reproductive disease. Clinical disease associated with M. bovis is often chronic, debilitating, and poorly responsive to antimicrobial therapy, resulting in significant economic loss, the full extent of which is difficult to estimate. Until M. bovis vaccines are universally available, sanitary control measures and antimicrobial treatment are the only approaches that can be used in attempts to control M. bovis infections. However, in vitro studies show that many of the current M. bovis isolates circulating in Europe have high minimum inhibitory concentrations (MIC) for many of the commercially available antimicrobials. In this review we summarize the current MIC trends indicating the development of antimicrobial resistance in M. bovis as well as the known molecular mechanisms by which resistance is acquired.
Collapse
Affiliation(s)
- Inna Lysnyansky
- Mycoplasma Unit, Division of Avian and Aquatic Diseases, Kimron Veterinary Institute Beit Dagan, Israel
| | - Roger D Ayling
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| |
Collapse
|
19
|
Alterations in the Quinolone Resistance-Determining Regions and Fluoroquinolone Resistance in Clinical Isolates and Laboratory-Derived Mutants of Mycoplasma bovis: Not All Genotypes May Be Equal. Appl Environ Microbiol 2015; 82:1060-1068. [PMID: 26637606 DOI: 10.1128/aem.03280-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/22/2015] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma bovis is considered a major contributor to respiratory diseases in young cattle. Resistant M. bovis isolates have increasingly been reported worldwide due to extensive use of antimicrobials to treat bovine pneumonia. The frequency of isolates resistant to fluoroquinolones varies considerably from one country to another. The MICs of isolates collected in France have only increased from "very low" to "low." The present study was conducted to investigate whether alterations in the quinolone resistance-determining regions (QRDRs) could account for this slight modification in susceptibility. No correlation between QRDR alterations and increased MICs was evidenced in clinical isolates. In addition, all clinical isolates were subtyped, and the tendencies of the different sequence types to develop resistance through mutations in QRDRs under selective pressure in vitro were examined. In vitro, 3 hot spots for mutations in QRDRs (position 83 in GyrA and positions 80 and 84 in ParC) were associated with a high level of resistance when cumulated. We showed that the point mutations in the QRDRs observed in vitro were different (in location and selection rapidity) between the different subtypes. Our in vitro observations were corroborated by the recent detection of a clinical isolate highly resistant to fluoroquinolones (MIC ≥ 16 μg/ml) and belonging to the subtype which easily accumulates QRDR alterations in vitro. The current increased prevalence of this subtype in clinical isolates highlights the urgent need to control fluoroquinolone usage in veterinary medicine.
Collapse
|
20
|
Kong LC, Gao D, Jia BY, Wang Z, Gao YH, Pei ZH, Liu SM, Xin JQ, Ma HX. Antimicrobial susceptibility and molecular characterization of macrolide resistance of Mycoplasma bovis isolates from multiple provinces in China. J Vet Med Sci 2015; 78:293-6. [PMID: 26346744 PMCID: PMC4785120 DOI: 10.1292/jvms.15-0304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mycoplasma bovis has spread widely throughout the world via animal movement and has become
an important pathogen of bovine respiratory disease. However, the minimum inhibitory concentrations of
antimicrobials for Mycoplasma bovis have not been studied in China. The objective of this
study was to determine the prevalence and antibiotic resistance of Mycoplasma bovis isolated
from young cattle with respiratory infection in China. Mycoplasma bovis was detected in 32/45
bovine respiratory infection outbreaks at beef farms in 8 provinces in China. The isolates were susceptible or
had medium sensitivity to ciprofloxacin, enrofloxacin and doxycycline, but were frequently resistant to
macrolides (13/32, 41%). An A2058G (Escherichia coli Numbering) mutation located in the
rrnA operon in domain V of 23S rRNA was observed in strains that were resistant to
macrolides. This single mutations at the rrnA operon in domain V of 23S rRNA may play an important role in the
resistance of Mycoplasma bovis strains to macrolides.
Collapse
Affiliation(s)
- Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.#2888, Changchun 130118, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Horizontal gene transfer (HGT) is a main driving force of bacterial evolution and innovation. This phenomenon was long thought to be marginal in mycoplasmas, a large group of self-replicating bacteria characterized by minute genomes as a result of successive gene losses during evolution. Recent comparative genomic analyses challenged this paradigm, but the occurrence of chromosomal exchanges had never been formally addressed in mycoplasmas. Here, we demonstrated the conjugal transfer of large chromosomal regions within and among ruminant mycoplasma species, with the incorporation of the incoming DNA occurring by homologous recombination into the recipient chromosome. By combining classical mating experiments with high-throughput next-generation sequencing, we documented the transfer of almost every position of the mycoplasma chromosome. Mycoplasma conjugation relies on the occurrence of an integrative conjugative element (ICE) in at least one parent cell. While ICE propagates horizontally from ICE-positive to ICE-negative cells, chromosomal transfers (CTs) occurred in the opposite direction, from ICE-negative to ICE-positive cells, independently of ICE movement. These findings challenged the classical mechanisms proposed for other bacteria in which conjugative CTs are driven by conjugative elements, bringing into the spotlight a new means for rapid mycoplasma innovation. Overall, they radically change our current views concerning the evolution of mycoplasmas, with particularly far-reaching implications given that over 50 species are human or animal pathogens. Horizontal gene transfers (HGT) shape bacterial genomes and are key contributors to microbial diversity and innovation. One main mechanism involves conjugation, a process that allows the simultaneous transfer of significant amounts of DNA upon cell-to-cell contact. Recognizing and deciphering conjugal mechanisms are thus essential in understanding the impact of gene flux on bacterial evolution. We addressed this issue in mycoplasmas, the smallest and simplest self-replicating bacteria. In these organisms, HGT was long thought to be marginal. We showed here that nearly every position of the Mycoplasma agalactiae chromosome could be transferred via conjugation, using an unconventional mechanism. The transfer involved DNA blocks containing up to 80 genes that were incorporated into the host chromosome by homologous recombination. These findings radically change our views concerning mycoplasma evolution and adaptation with particularly far-reaching implications given that over 50 species are human or animal pathogens.
Collapse
|
22
|
Kong LC, Gao D, Gao YH, Liu SM, Ma HX. Fluoroquinolone resistance mechanism of clinical isolates and selected mutants of Pasteurella multocida from bovine respiratory disease in China. J Vet Med Sci 2014; 76:1655-7. [PMID: 25649952 PMCID: PMC4300385 DOI: 10.1292/jvms.14-0240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The minimum inhibitory
concentrations (MICs), mutation prevention concentrations (MPCs) and contribution of
quinolone resistance-determining region (QRDR) mutations to fluoroquinolone
(ciprofloxacin, enrofloxacin and orbifloxacin) susceptibility in 23 Pasteurella
multocida (Pm) isolates were investigated.
Fluoroquinolone-susceptible isolates (MICs ≤0.25 µg/ml,
9 isolates) had no QRDR mutations, and their respective MPCs were low.
Fluoroquinolone-intermediate isolates (MICs=0.5 µg/ml,
14 isolates) had QRDR mutations (Asp87 to Asn or Ala84 to Pro in gyrA),
and their respective MPCs were high (4–32 µg/ml).
First-step mutants (n=5) and laboratory-derived highly resistant fluoroquinolone mutants
(n=5) also had QRDR mutations. The MICs of fluoroquinolones for mutant-derived strains
were decreased in the presence of efflux inhibitors. The results indicated that the
fluoroquinolone resistance of Pm is mainly due to multiple target gene
mutations in gyrA and parC and the overexpression of
efflux pump genes.
Collapse
Affiliation(s)
- Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.#2888, Changchun 130118, P.R. China
| | | | | | | | | |
Collapse
|