1
|
Dai M, Li CY, Wang JX, Xu XY, Sun SX, Kang Y, Chen AD, Han Y, Zhu GQ. Anatomic and functional evidence for renal autonomic innervation in normotensive and hypertensive rats. Am J Physiol Renal Physiol 2024; 327:F885-F898. [PMID: 39298550 DOI: 10.1152/ajprenal.00133.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Renal denervation (RDN) has been used for treating resistant hypertension. A few recent studies have shown vagal innervation of kidneys causing confusion. This study aimed to provide anatomical and functional evidence for renal autonomic innervation. Experiments were performed in male Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Pseudorabies virus (PRV) in the paraventricular nucleus and rostral ventrolateral medulla was prevented by bilateral RDN, but not subdiaphragmatic vagotomy. PRV did not appear in the dorsal motor nucleus of the vagus and nucleus tractus solitarii 72 h after renal injection of PRV. Adrenergic fibers were approximately seven times more than cholinergic fibers in the main renal artery (MRA) and its first (1RA) and second grade (2RA) branches. Adrenergic fibers in 1RA were more than those in MRA and 2RA. Tyrosine hydroxylase immunoreactivity in these arteries was higher in SHR than in WKY. Norepinephrine (NE) increased and α-receptor antagonist reduced vascular ring tension of renal arteries. The effect of NE was greater in 1RA and 2RA than in MRA, which was prevented by α-receptor antagonist. Acetylcholine (ACh) or blockage of β-receptors, M receptors, or N receptors had no significant effects on vascular ring tension and the effect of NE. Renal blood flow was reduced by electrical stimulation of renal nerves but not affected by stimulation of the subdiaphragmatic vagus. These results provide anatomical and functional evidence that kidneys are innervated and renal blood flow is regulated by renal sympathetic nerves rather than the vagus. Renal vasoconstriction is regulated by NE and adrenergic fibers rather than ACh or cholinergic fibers in WKY and SHR.NEW & NOTEWORTHY Kidneys are innervated by renal nerves rather than the vagus. Adrenergic fibers in renal arteries are about seven times more than cholinergic fibers. Renal vasoconstriction is regulated by norepinephrine and adrenergic fibers rather than acetylcholine or cholinergic fibers. Renal blood flow is regulated by renal sympathetic nerves and is not affected by the vagus. These findings provide anatomical and functional evidence for renal autonomic innervation in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Min Dai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Cai-Yu Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Shi-Xiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ying Kang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Okkels N, Horsager J, Fedorova TD, Knudsen K, Skjærbæk C, Andersen KB, Labrador-Espinosa M, Vestergaard K, Mortensen JK, Klit H, Møller M, Danielsen EH, Johnsen EL, Bekan G, Hansen KV, Munk OL, Damholdt MF, Kjeldsen PL, Hansen AK, Gottrup H, Grothe MJ, Borghammer P. Impaired cholinergic integrity of the colon and pancreas in dementia with Lewy bodies. Brain 2024; 147:255-266. [PMID: 37975822 DOI: 10.1093/brain/awad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Janne K Mortensen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Henriette Klit
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mette Møller
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik L Johnsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Goran Bekan
- Department of Neurology, Regionshospitalet Gødstrup, 7400 Herning, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Dai S, Zhao L, Wang G, Chen C, Li C, Xiao B, Miao Y. Celiac ganglia neurolysis suppresses high blood pressure in rats. Hypertens Res 2023; 46:1771-1781. [PMID: 37173429 DOI: 10.1038/s41440-023-01305-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The efficacy of renal denervation in the treatment of resistant hypertension has been controversial, and new strategies for its therapy are urgently needed. We performed the celiac ganglia neurolysis (CGN) or sham surgery on both spontaneously hypertensive rat (SHR) and Dahl salt-sensitive rat models of hypertension. Following CGN surgery in both strains, systolic blood pressure, diastolic blood pressure and mean arterial pressure were all lower than the levels in the respective sham surgery rats, which were maintained until the end of the study, 18 weeks postoperatively in SHRs and 12 weeks postoperatively in Dahl rats. CGN therapy destroyed ganglion cell structure and significantly inhibited celiac ganglia nerve viability. Four and twelve weeks after CGN, the plasma renin, angiotensin II and aldosterone levels were markedly attenuated, and the nitric oxide content was significantly increased in the CGN group compared with the respective sham surgery rats. However, CGN did not result in statistical difference in malondialdehyde levels compared with sham surgery in both strains. The CGN has efficacy in reducing high blood pressure and may be an alternative for resistant hypertension. Minimally invasive endoscopic ultrasound-guided celiac ganglia neurolysis (EUS-CGN) and percutaneous CGN are safe and convenient treatment approaches. Moreover, for hypertensive patients who need surgery due to abdominal disease or pain relief from pancreatic cancer, intraoperative CGN or EUS-CGN will be a good choice for hypertension therapy. The graphical abstract of antihypertensive effect of CGN.
Collapse
Affiliation(s)
- Shangnan Dai
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Li Zhao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Guangfu Wang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chongfa Chen
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chenchen Li
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Bin Xiao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Alvarez MR, Alarcon JM, Roman CA, Lazaro D, Bobrowski-Khoury N, Baena-Caldas GP, Esber GR. Can a basic solution activate the inflammatory reflex? A review of potential mechanisms, opportunities, and challenges. Pharmacol Res 2023; 187:106525. [PMID: 36441036 DOI: 10.1016/j.phrs.2022.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy to treat systemic inflammatory disorders. However, this strategy is hindered by the cost and side effects of traditional IR activators. Recently, oral intake of sodium bicarbonate (NaHCO3) has been suggested to activate the IR, providing a safe and inexpensive alternative. Critically, the mechanisms whereby NaHCO3 might achieve this effect and more broadly the pathways underlying the IR remain poorly understood. Here, we argue that the recognition of NaHCO3 as a potential IR activator presents exciting clinical and research opportunities. To aid this quest, we provide an integrative review of our current knowledge of the neural and cellular pathways mediating the IR and discuss the status of physiological models of IR activation. From this vantage point, we derive testable hypotheses on potential mechanisms whereby NaHCO3 might stimulate the IR and compare NaHCO3 with classic IR activators. Elucidation of these mechanisms will help determine the therapeutic value of NaHCO3 as an IR activator and provide new insights into the IR circuitry.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Juan Marcos Alarcon
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Christopher A Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Deana Lazaro
- Division of Rheumatology, Department of Internal Medicine, Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
5
|
Cheng X, Zhang Y, Chen R, Qian S, Lv H, Liu X, Zeng S. Anatomical Evidence for Parasympathetic Innervation of the Renal Vasculature and Pelvis. J Am Soc Nephrol 2022; 33:2194-2210. [PMID: 36253054 PMCID: PMC9731635 DOI: 10.1681/asn.2021111518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/08/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The kidneys critically contribute to body homeostasis under the control of the autonomic nerves, which enter the kidney along the renal vasculature. Although the renal sympathetic and sensory nerves have long been confirmed, no significant anatomic evidence exists for renal parasympathetic innervation. METHODS We identified cholinergic nerve varicosities associated with the renal vasculature and pelvis using various anatomic research methods, including a genetically modified mouse model and immunostaining. Single-cell RNA sequencing (scRNA-Seq) was used to analyze the expression of AChRs in the renal artery and its segmental branches. To assess the origins of parasympathetic projecting nerves of the kidney, we performed retrograde tracing using recombinant adeno-associated virus (AAV) and pseudorabies virus (PRV), followed by imaging of whole brains, spinal cords, and ganglia. RESULTS We found that cholinergic axons supply the main renal artery, segmental renal artery, and renal pelvis. On the renal artery, the newly discovered cholinergic nerve fibers are separated not only from the sympathetic nerves but also from the sensory nerves. We also found cholinergic ganglion cells within the renal nerve plexus. Moreover, the scRNA-Seq analysis suggested that acetylcholine receptors (AChRs) are expressed in the renal artery and its segmental branches. In addition, retrograde tracing suggested vagus afferents conduct the renal sensory pathway to the nucleus of the solitary tract (NTS), and vagus efferents project to the kidney. CONCLUSIONS Cholinergic nerves supply renal vasculature and renal pelvis, and a vagal brain-kidney axis is involved in renal innervation.
Collapse
Affiliation(s)
- Xiaofeng Cheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yongsheng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ruixi Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shenghui Qian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haijun Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Horsager J, Okkels N, Van Den Berge N, Jacobsen J, Schact A, Munk OL, Vang K, Bender D, Brooks DJ, Borghammer P. In vivo vesicular acetylcholine transporter density in human peripheral organs: an [ 18F]FEOBV PET/CT study. EJNMMI Res 2022; 12:17. [PMID: 35362761 PMCID: PMC8975951 DOI: 10.1186/s13550-022-00889-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background The autonomic nervous system is frequently affected in some neurodegenerative diseases, including Parkinson’s disease and Dementia with Lewy bodies. In vivo imaging methods to visualize and quantify the peripheral cholinergic nervous system are lacking. By using [18F]FEOBV PET, we here describe the peripheral distribution of the specific cholinergic marker, vesicular acetylcholine transporters (VAChT), in human subjects. We included 15 healthy subjects aged 53–86 years for 70 min dynamic PET protocol of peripheral organs. We performed kinetic modelling of the adrenal gland, pancreas, myocardium, renal cortex, spleen, colon, and muscle using an image-derived input function from the aorta. A metabolite correction model was generated from venous blood samples. Three non-linear compartment models were tested. Additional time-activity curves from 6 to 70 min post injection were generated for prostate, thyroid, submandibular-, parotid-, and lacrimal glands. Results A one-tissue compartment model generated the most robust fits to the data. Total volume-of-distribution rank order was: adrenal gland > pancreas > myocardium > spleen > renal cortex > muscle > colon. We found significant linear correlations between total volumes-of-distribution and standard uptake values in most organs. Conclusion High [18F]FEOBV PET signal was found in structures with known cholinergic activity. We conclude that [18F]FEOBV PET is a valid tool for estimating VAChT density in human peripheral organs. Simple static images may replace kinetic modeling in some organs and significantly shorten scan duration. Clinical Trial Registration Trial registration: NCT, NCT03554551. Registered 31 May 2018. https://clinicaltrials.gov/ct2/show/NCT03554551?term=NCT03554551&draw=2&rank=1. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00889-9.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Anna Schact
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Institute of Translational and Clinical Research, University of Newcastle Upon Tyne, Newcastle upon Tyne, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Jiman AA, Chhabra KH, Lewis AG, Cederna PS, Seeley RJ, Low MJ, Bruns TM. Electrical stimulation of renal nerves for modulating urine glucose excretion in rats. Bioelectron Med 2018; 4:7. [PMID: 32232083 PMCID: PMC7098252 DOI: 10.1186/s42234-018-0008-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of the kidney in glucose homeostasis has gained global interest. Kidneys are innervated by renal nerves, and renal denervation animal models have shown improved glucose regulation. We hypothesized that stimulation of renal nerves at kilohertz frequencies, which can block propagation of action potentials, would increase urine glucose excretion. Conversely, we hypothesized that low frequency stimulation, which has been shown to increase renal nerve activity, would decrease urine glucose excretion. METHODS We performed non-survival experiments on male rats under thiobutabarbital anesthesia. A cuff electrode was placed around the left renal artery, encircling the renal nerves. Ureters were cannulated bilaterally to obtain urine samples from each kidney independently for comparison. Renal nerves were stimulated at kilohertz frequencies (1-50 kHz) or low frequencies (2-5 Hz), with intravenous administration of a glucose bolus shortly into the 25-40-min stimulation period. Urine samples were collected at 5-10-min intervals, and colorimetric assays were used to quantify glucose excretion and concentration between stimulated and non-stimulated kidneys. A Kruskal-Wallis test was performed across all stimulation frequencies (α = 0.05), followed by a post-hoc Wilcoxon rank sum test with Bonferroni correction (α = 0.005). RESULTS For kilohertz frequency trials, the stimulated kidney yielded a higher average total urine glucose excretion at 33 kHz (+ 24.5%; n = 9) than 1 kHz (- 5.9%; n = 6) and 50 kHz (+ 2.3%; n = 14). In low frequency stimulation trials, 5 Hz stimulation led to a lower average total urine glucose excretion (- 40.4%; n = 6) than 2 Hz (- 27.2%; n = 5). The average total urine glucose excretion between 33 kHz and 5 Hz was statistically significant (p < 0.005). Similar outcomes were observed for urine flow rate, which may suggest an associated response. No trends or statistical significance were observed for urine glucose concentrations. CONCLUSION To our knowledge, this is the first study to investigate electrical stimulation of renal nerves to modulate urine glucose excretion. Our experimental results show that stimulation of renal nerves may modulate urine glucose excretion, however, this response may be associated with urine flow rate. Future work is needed to examine the underlying mechanisms and identify approaches for enhancing regulation of glucose excretion.
Collapse
Affiliation(s)
- Ahmad A. Jiman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI USA
| | - Kavaljit H. Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Alfor G. Lewis
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Surgery, Plastic Surgery Section, Michigan Medicine, Ann Arbor, MI USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Tim M. Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
8
|
Maeda S, Fujihira M, Minato Y, Kuwahara-Otani S, Tanaka K, Hayakawa T, Yagi H. Differential Distribution of Renal Nerves in the Sympathetic Ganglia of the Rat. Anat Rec (Hoboken) 2017; 300:2263-2272. [PMID: 28834374 DOI: 10.1002/ar.23680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
The renal nerve plexus comprises efferent and afferent fibers. It controls urine production and bodily fluid homeostasis. Efferent fibers to the kidney include sympathetic nerve fibers from their main ganglia, the prevertebral suprarenal ganglia (SrG), and the paravertebral sympathetic chain ganglia (ChG). In the present study, we examined topological innervation from these ganglia to the renal parenchymal segments of the left kidney of the rat. Fluoro-Gold was injected into the rostral or caudal poles of the left kidney. Approximately 50% of the cells in the SrG of rats injected in the rostral pole were labeled, while 60% of the cells in the ChG T13 of rats injected in the caudal pole were labeled. In addition, we performed dual-probe retrograde tracing of the nerves using two kinds of fluorescent-conjugated cholera toxins (f-CTbs) injected into the rostral and caudal poles of the left kidney. The cells labeled with each f-CTb were distributed differently in the left SrG and the lower ChGs; no dual-labeled cells were found in these ganglia. Anterograde tracing with pCAGGS-tdTomato vector transfected into the left SrG showed that tdTomato-labeled nerve varicosities extended to the cortical arterioles and urinary tubules. Immunohistochemistry revealed that they were positive to tyrosine hydroxylase and synaptophysin, suggesting that they possessed sympathetic nerve endings. Our results show that renal efferent nerves in the SrG may control the rostral part of the kidney and innervate the multiple effectors in the cortex. Anat Rec, 300:2263-2272, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Mayumi Fujihira
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yusuke Minato
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Tanaka
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Tetsu Hayakawa
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
9
|
Jun JG, Maeda S, Kuwahara-Otani S, Tanaka K, Hayakawa T, Seki M. Expression of adrenergic and cholinergic receptors in murine renal intercalated cells. J Vet Med Sci 2014; 76:1493-500. [PMID: 25069412 PMCID: PMC4272982 DOI: 10.1292/jvms.14-0315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons influence renal function and help to regulate fluid homeostasis, blood
pressure and ion excretion. Intercalated cells (ICCs) are distributed throughout the renal
collecting ducts and help regulate acid/base equilibration. Because ICCs are located among
principal cells, it has been difficult to determine the effects that efferent nerve fibers
have on this cell population. In this study, we examined the expression of
neurotransmitter receptors on the murine renal epithelial M-1 cell line. We found that M-1
cells express a2 and b2 adrenergic receptor mRNA and the b2 receptor protein. Further, b2
receptor-positive cells in the murine cortical collecting ducts also express AQP6,
indicating that these cells are ICCs. M-1 cells were found to express m1, m4 and m5
muscarinic receptor mRNAs and the m1 receptor protein. Cells in the collecting ducts also
express the m1 receptor protein, and some m1-positive cells express AQP6.
Acetylcholinesterase was detected in cortical collecting duct cells. Interestingly,
acetylcholinesterase-positive cells neighbored AQP6-positive cells, suggesting that
principal cells may regulate the availability of acetylcholine. In conclusion, our data
suggest that ICCs in murine renal collecting ducts may be regulated by the adrenergic and
cholinergic systems.
Collapse
Affiliation(s)
- Jin-Gon Jun
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogowa, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | |
Collapse
|