1
|
Alkhallawi MFH, Mohammed MH, Hemmatzadeh F, Petrovski K. Exploring Metal Ions as Potential Antimicrobial Agents to Combat Future Drug Resistance in Mycoplasma bovis. Microorganisms 2025; 13:169. [PMID: 39858937 PMCID: PMC11767636 DOI: 10.3390/microorganisms13010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The rise in antimicrobial resistance (AMR) in Mycoplasma bovis underscores the urgent need for alternative treatments. This study evaluated the minimal inhibitory concentrations (MICs) of four metal ions (cobalt, copper, silver, and zinc) and colloidal silver against 15 clinical M. bovis isolates, alongside conventional antimicrobials (florfenicol, tetracycline, tulathromycin, and tylosin). Colloidal silver demonstrated the most effective antimicrobial activity, inhibiting 81.25% of isolates at 1.5 mg/L, while silver inhibited 93.7% of isolates at concentrations above 1.5 mg/L. Copper exhibited notable efficacy, inhibiting 37.5% of isolates at 1.5 mg/L, with a small proportion responding at 0.1 mg/L. Cobalt and zinc displayed variable activity, with MIC values ranging from 0.7 to 12.5 mg/L. In contrast, conventional antimicrobials showed limited effectiveness: tetracycline inhibited 31.25% of isolates at ≥16 mg/L, tylosin inhibited 25% at 16 mg/L, and tulathromycin MICs ranged from 0.5 to 8 mg/L. Time-kill assays revealed a reduction in M. bovis viability after eight hours of exposure to silver and colloidal silver, though higher concentrations (4×-8× MIC) were required for complete eradication. These findings highlight the significant potential of colloidal silver and copper as alternatives for treating M. bovis infections and combating AMR. Further research is essential to explore their standalone and synergistic applications for therapeutic use.
Collapse
Affiliation(s)
- Mauida F. Hasoon Alkhallawi
- Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia; (M.H.M.); (F.H.)
| | | | | | - Kiro Petrovski
- Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia; (M.H.M.); (F.H.)
| |
Collapse
|
2
|
Jafari Jozani R, Khallawi MFHA, Trott D, Petrovski K, Low WY, Hemmatzadeh F. Unravelling Antimicrobial Resistance in Mycoplasma hyopneumoniae: Genetic Mechanisms and Future Directions. Vet Sci 2024; 11:542. [PMID: 39591316 PMCID: PMC11598952 DOI: 10.3390/vetsci11110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Antimicrobial resistance (AMR) in Mycoplasma hyopneumoniae, the causative agent of Enzootic Pneumonia in swine, poses a significant challenge to the swine industry. This review focuses on the genetic foundations of AMR in M. hyopneumoniae, highlighting the complexity of resistance mechanisms, including mutations, horizontal gene transfer, and adaptive evolutionary processes. Techniques such as Whole Genome Sequencing (WGS) and multiple-locus variable number tandem repeats analysis (MLVA) have provided insights into the genetic diversity and resistance mechanisms of M. hyopneumoniae. The study underscores the role of selective pressures from antimicrobial use in driving genomic variations that enhance resistance. Additionally, bioinformatic tools utilizing machine learning algorithms, such as CARD and PATRIC, can predict resistance traits, with PATRIC predicting 7 to 12 AMR genes and CARD predicting 0 to 3 AMR genes in 24 whole genome sequences available on NCBI. The review advocates for a multidisciplinary approach integrating genomic, phenotypic, and bioinformatics data to combat AMR effectively. It also elaborates on the need for refining genotyping methods, enhancing resistance prediction accuracy, and developing standardized antimicrobial susceptibility testing procedures specific to M. hyopneumoniae as a fastidious microorganism. By leveraging contemporary genomic technologies and bioinformatics resources, the scientific community can better manage AMR in M. hyopneumoniae, ultimately safeguarding animal health and agricultural productivity. This comprehensive understanding of AMR mechanisms will be beneficial in the adaptation of more effective treatment and management strategies for Enzootic Pneumonia in swine.
Collapse
Affiliation(s)
- Raziallah Jafari Jozani
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| | - Mauida F. Hasoon Al Khallawi
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| | - Darren Trott
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| | - Kiro Petrovski
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| |
Collapse
|
3
|
Corrales JC, Sánchez A, Hernández X, Amores-Iniesta J, Esnal A, de la Fe C. A Set of Multiresistant Isolates of Mycoplasma bovis Subtype ST-1 with a Variable Susceptibility to Quinolones Are Also Circulating in Spain. Pathogens 2024; 13:329. [PMID: 38668284 PMCID: PMC11053527 DOI: 10.3390/pathogens13040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Mycoplasma bovis (M. bovis) is one of the worldwide most important infectious agents involved in respiratory complex diseases (RCD). In Spain, the endemic presence of subtypes ST-2 and ST-3 with phenotypic differences linked to their susceptibility to fluoroquinolones opened the way to develop control strategies focused on previous diagnosis of the subtype and the use of directed therapies when M. bovis were involved in RCD. Surprisingly, microbiological studies conducted during 2023 evidenced for the first time the presence of Spanish isolates of a new polC-subtype, previously classified as ST-1, recovered from calves with respiratory symptoms and pneumonia in different areas of the country (n = 16). Curiously, the minimum inhibitory concentration (MIC) to a panel of antimicrobials revealed phenotypic differences between these ST-1 isolates when using fluoroquinolones (FLQ). There is no geographical correlation between MIC profiles even for a set of 8 isolates recovered from different animals in the same flock. Sequencing of 4 genes (gyrA, gyrB, parC and parE) encoding quinolone resistance-determining regions (QRDR) evidenced the presence of accumulate mutations in 2 ST-1 isolates with high FLQ MICs, but not in all them (n = 3), thus suggesting that, as previously recorded for ST-2 isolates, other mechanisms should be involved in the acquisition of resistence to these antimicrobials. Additionally, as previously detected in the Spanish ST-2 and ST-3, subtype ST-1 isolates are also resistant to macrolides or lincosamides.
Collapse
Affiliation(s)
- Juan Carlos Corrales
- Ruminant Health Research Group, Department of Animal Health, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain; (J.C.C.); (A.S.); (X.H.); (J.A.-I.)
| | - Antonio Sánchez
- Ruminant Health Research Group, Department of Animal Health, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain; (J.C.C.); (A.S.); (X.H.); (J.A.-I.)
| | - Xóchitl Hernández
- Ruminant Health Research Group, Department of Animal Health, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain; (J.C.C.); (A.S.); (X.H.); (J.A.-I.)
| | - Joaquín Amores-Iniesta
- Ruminant Health Research Group, Department of Animal Health, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain; (J.C.C.); (A.S.); (X.H.); (J.A.-I.)
| | - Antón Esnal
- Analítica Veterinaria, 48100 Mungía, Vasque Country, Spain;
| | - Christian de la Fe
- Ruminant Health Research Group, Department of Animal Health, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain; (J.C.C.); (A.S.); (X.H.); (J.A.-I.)
| |
Collapse
|
4
|
Gütgemann F, Müller A, Churin Y, Kumm F, Braun AS, Yue M, Eisenberg T, Entorf M, Peters T, Kehrenberg C. Toward a Method for Harmonized Susceptibility Testing of Mycoplasma bovis by Broth Microdilution. J Clin Microbiol 2023; 61:e0190522. [PMID: 37439667 PMCID: PMC10446863 DOI: 10.1128/jcm.01905-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/19/2023] [Indexed: 07/14/2023] Open
Abstract
Mycoplasma bovis is a fastidious pathogen of cattle causing massive economic losses in the calf and dairy industries worldwide. Since there is no approved standard method for antimicrobial susceptibility testing (AST) of M. bovis, the Clinical and Laboratory Standards Institute has requested the development of a suitable method. Therefore, this study aimed at developing a method for harmonized broth microdilution AST of M. bovis. For this, 131 M. bovis field isolates and M. bovis strain DSM 22781T were collected and macrorestriction analysis was performed to select 15 epidemiologically unrelated M. bovis strains for method validation steps. To select a suitable broth for AST of M. bovis, growth determinations were performed using five media and growth curves were compiled. Then, susceptibility testing was performed considering the exact (precondition of five identical MICs) and essential (MIC mode, accepting a deviation of ±1 dilution step) MIC agreements to evaluate the reproducibility of MIC values using a panel of 16 antimicrobial agents. Subsequently, the remaining field isolates were tested and the suitability of quality control (QC) strains was assessed. Growth experiments showed that SP4 broth was the only one of the five media that yielded sufficient growth of M. bovis. Therefore, it was selected as the test medium for AST and homogeneous MIC values were obtained (exact and essential agreements of 36 to 100% and 92 to 100%, respectively). For all other isolates tested, easy-to-read MIC endpoints were determined with this medium. High overall MIC50 and/or MIC90 values were observed for aminoglycosides and macrolides, and some isolates showed elevated MICs of fluoroquinolones, gentamicin, and/or tiamulin. Since the MICs of four commonly used QC strains were partially not within their ranges, a 20-fold MIC testing of M. bovis DSM 22781T was performed and met the criteria for a new QC strain. For harmonized AST of M. bovis, SP4 broth seems to be suitable with an incubation time of 72 ± 2 h and further validation of M. bovis DSM 22781T as a future QC strain is recommended.
Collapse
Affiliation(s)
- Franziska Gütgemann
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Yury Churin
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Franziska Kumm
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ann Sophie Braun
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China
- Institute of Preventive Veterinary Science and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Tobias Eisenberg
- Hessian State Laboratory, Department of Veterinary Medicine, Giessen, Germany
| | - Monika Entorf
- Dairy Herd Consulting and Research Company (MBFG), Wunstorf, Germany
| | - Thomas Peters
- Dairy Herd Consulting and Research Company (MBFG), Wunstorf, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Li XS, Qi Y, Xue JZ, Xu GY, Xu YX, Li XY, Muhammad I, Kong LC, Ma HX. Transcriptomic Changes and satP Gene Function Analysis in Pasteurella multocida with Different Levels of Resistance to Enrofloxacin. Vet Sci 2023; 10:vetsci10040257. [PMID: 37104412 PMCID: PMC10143902 DOI: 10.3390/vetsci10040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Pasteurella multocida (Pm) is one of the major pathogens of bovine respiratory disease (BRD), which can develop drug resistance to many of the commonly used antibiotics. Our earlier research group found that with clinical use of enrofloxacin, Pm was more likely to develop drug resistance to enrofloxacin. In order to better understand the resistance mechanism of Pm to enrofloxacin, we isolated PmS and PmR strains with the same PFGE typing in vitro, and artificially induced PmR to obtain the highly resistant phenotype, PmHR. Then transcriptome sequencing of clinically isolated sensitive strains, resistant and highly drug-resistant strains, treated with enrofloxacin at sub-inhibitory concentrations, were performed. The satP gene, of which the expression changed significantly with the increase in drug resistance, was screened. In order to further confirm the function of this gene, we constructed a satP deletion (ΔPm) strain using suicide vector plasmid pRE112, and constructed the C-Pm strain using pBBR1-MCS, and further analyzed the function of the satP gene. Through a continuously induced resistance test, it was found that the resistance rate of ΔPm was obviously lower than that of Pm in vitro. MDK99, agar diffusion and mutation frequency experiments showed significantly lower tolerance of ΔPm than the wild-type strains. The pathogenicity of ΔPm and Pm was measured by an acute pathogenicity test in mice, and it was found that the pathogenicity of ΔPm was reduced by about 400 times. Therefore, this study found that the satP gene was related to the tolerance and pathogenicity of Pm, and may be used as a target of enrofloxacin synergistic effect.
Collapse
|
6
|
Xia X, Yang L, Ling Y, Yu J, Ding H. Emergence and Mechanism of Resistance of Tulathromycin Against Mycoplasma hyopneumoniae in a PK/PD Model and the Fitness Costs of 23S rRNA Mutants. Front Vet Sci 2022; 9:801800. [PMID: 35224081 PMCID: PMC8873822 DOI: 10.3389/fvets.2022.801800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Macrolides are widely used in diseases caused by Mycoplasma spp. The new semi-synthetic macrolide antibiotic tulathromycin is currently in wide use for the treatment of respiratory diseases of livestock. The objective of this study was to evaluate the antibacterial effect of tulathromycin against Mycoplasma hyopneumoniae using an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model to reveal mechanisms of antibiotic resistance and to evaluate the fitness of drug-resistant strains. In this study, high performance liquid chromatography-tandem mass spectrometry was used to determine drug concentrations for the in vitro model after dosing. The peak concentrations were in the range 0.3125–20 μg/mL (1 × MIC-64 × MIC). The ratio of the area under the concentration-time curve (AUC) over 72 h divided by the MIC (AUC72h/MIC) had the highest correlation with the antibacterial effect of tulathromycin against M. hyopneumoniae. Tulathromycin also showed concentration-dependent antimicrobial effects and promoted the emergence of drug-resistant bacteria after being cultured for 168 h and most were mutations in 23S rRNA at site A2058G (E.coli numbering) and only a single isolate was an A2058T (E.coli numbering) mutant. In the presence of reserpine, we determined the MIC of tulathromycin, tilmicosin, tiamulin and tylosin against these drug-resistant bacteria and the strains with efflux pump mechanisms were found among the strains resistant to tilmicosin. Gene expression analysis indicated that the ABC and MATE transporter efflux pump genes RS01935, RS02670, RS01115, RS01970, RS02395 and RS03540 (MATE family efflux transporter) were up-regulated in the three strains (P < 0.05 or P < 0.01). These investigations provide guidance for clinical administration of tulathromycin and elucidate the mechanism and fitness cost of drug resistance in M. hyopneumoniae.
Collapse
|
7
|
Grózner D, Beko K, Kovács ÁB, Mitter A, Hrivnák V, Sawicka A, Tomczyk G, Bányai K, Jánosi S, Kreizinger Z, Gyuranecz M. Identification and detection of mutations potentially associated with decreased susceptibility to macrolides and lincomycin in Mycoplasma anserisalpingitidis isolates. Vet Microbiol 2022; 266:109362. [DOI: 10.1016/j.vetmic.2022.109362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
|
8
|
Genome-Wide Association Study Reveals Genetic Markers for Antimicrobial Resistance in Mycoplasma bovis. Microbiol Spectr 2021; 9:e0026221. [PMID: 34612702 PMCID: PMC8510175 DOI: 10.1128/spectrum.00262-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma bovis causes many health and welfare problems in cattle. Due to the absence of clear insights regarding transmission dynamics and the lack of a registered vaccine in Europe, control of an outbreak depends mainly on antimicrobial therapy. Unfortunately, antimicrobial susceptibility testing (AST) is usually not performed, because it is time-consuming and no standard protocol or clinical breakpoints are available. Fast identification of genetic markers associated with acquired resistance may at least partly resolve former issues. Therefore, the aims of this study were to implement a first genome-wide association study (GWAS) approach to identify genetic markers linked to antimicrobial resistance (AMR) in M. bovis using rapid long-read sequencing and to evaluate different epidemiological cutoff (ECOFF) thresholds. High-quality genomes of 100 M. bovis isolates were generated by Nanopore sequencing, and isolates were categorized as wild-type or non-wild-type isolates based on MIC testing results. Subsequently, a k-mer-based GWAS analysis was performed to link genotypes with phenotypes based on different ECOFF thresholds. This resulted in potential genetic markers for macrolides (gamithromycin and tylosin) (23S rRNA gene and 50S ribosomal unit) and enrofloxacin (GyrA and ParC). Also, for tilmicosin and the tetracyclines, previously described mutations in both 23S rRNA alleles and in one or both 16S rRNA alleles were observed. In addition, two new 16S rRNA mutations were possibly associated with gentamicin resistance. In conclusion, this study shows the potential of quick high-quality Nanopore sequencing and GWAS analysis in the evaluation of phenotypic ECOFF thresholds and the rapid identification of M. bovis strains with acquired resistance. IMPORTANCEMycoplasma bovis is a leading cause of pneumonia but also causes other clinical signs in cattle. Since no effective vaccine is available, current M. bovis outbreak treatment relies primarily on the use of antimicrobials. However, M. bovis is naturally resistant to different antimicrobials, and acquired resistance against macrolides and fluoroquinolones is frequently described. Therefore, AST is important to provide appropriate and rapid antimicrobial treatment in the framework of AMR and to prevent the disease from spreading and/or becoming chronic. Unfortunately, phenotypic AST is time-consuming and, due to the lack of clinical breakpoints, the interpretation of AST in M. bovis is limited to the use of ECOFF values. Therefore, the objective of this study was to identify known and potentially new genetic markers linked to AMR phenotypes of M. bovis isolates, exploiting the power of a GWAS approach. For this, we used high-quality and complete Nanopore-sequenced M. bovis genomes of 100 isolates.
Collapse
|
9
|
Niu J, Wang D, Yan M, Chang Z, Xu Y, Sizhu S, Li Z, Hu S, Bi D. Isolation, identification and biological characteristics of Mycoplasma bovis in yaks. Microb Pathog 2020; 150:104691. [PMID: 33296717 DOI: 10.1016/j.micpath.2020.104691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Mycoplasma bovis (M. bovis) is one of the important pathogens which may cause bovine respiratory disease syndrome (BRDS), and results in huge economic losses for yaks (Bos gaurus) breeding industry. However, there is limited information about M. bovis in yaks. In our study, 145 nasal mucus samples from yaks with pneumonia were collected to clarify. Bacteriological determination was carried out through biochemical identification and Polymerase Chain Reaction (PCR) detection. And ten strains of Mycoplasma bovis (M. bovis) were found from collected samples. Then, the growth curve of isolated strains was determined by the change of optical density (OD630), pH value and Color Change Cnit (CCU). K-B disk method was also used for antimicrobial susceptibility testing. Results of colony morphology and biochemical testing were consistent with the biological characters of M. bovis. The nucleotide sequences of uvrC specific gene and 16S rRNA gene among the 10 strains were highly homologous. The growth curve assay showed that the isolates cultured in PPLO medium were in lag phase for 24 h, entered stable period in 42 h, and entered decline phase after 78 h. The isolates were found resistant to macrolides, aminoglycosides and lincomycin at various degrees, but they were sensitive or moderately sensitive to doxycycline and kanamycin under antimicrobial susceptibility analysis. In conclusion, the results provided certain reference for the follow-up research and guiding for the treatment of M. bovis in yaks.
Collapse
Affiliation(s)
- Jiaqiang Niu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, PR China
| | - Dongjing Wang
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, PR China
| | - Mingshuai Yan
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, PR China
| | - Zhenyu Chang
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, PR China
| | - Yefen Xu
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, PR China
| | - Suolang Sizhu
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, PR China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dingren Bi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
10
|
Investigation of Macrolide Resistance Genotypes in Mycoplasma bovis Isolates from Canadian Feedlot Cattle. Pathogens 2020; 9:pathogens9080622. [PMID: 32751555 PMCID: PMC7459582 DOI: 10.3390/pathogens9080622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Mycoplasma bovis is associated with bovine respiratory disease (BRD) and chronic pneumonia and polyarthritis syndrome (CPPS) in feedlot cattle. No efficacious vaccines for M. bovis exist; hence, macrolides are commonly used to control mycoplasmosis. Whole genome sequences of 126 M. bovis isolates, derived from 96 feedlot cattle over 12 production years, were determined. Antimicrobial susceptibility testing (AST) of five macrolides (gamithromycin, tildipirosin, tilmicosin, tulathromycin, tylosin) was conducted using a microbroth dilution method. The AST phenotypes were compared to the genotypes generated for 23S rRNA and the L4 and L22 ribosomal proteins. Mutations in domains II (nucleotide 748; E. coli numbering) and V (nucleotide 2059 and 2060) of the 23S rRNA (rrl) gene alleles were associated with resistance. All isolates with a single mutation at Δ748 were susceptible to tulathromycin, but resistant to tilmicosin and tildipirosin. Isolates with mutations in both domain II and V (Δ748Δ2059 or Δ748Δ2060) were resistant to all five macrolides. However, >99% of isolates were resistant to tildipirosin and tilmicosin, regardless of the number and positions of the mutations. Isolates with a Δ748 mutation in the 23S rRNA gene and mutations in L4 and L22 were resistant to all macrolides except for tulathromycin.
Collapse
|
11
|
Mycoplasma bovis in Spanish Cattle Herds: Two Groups of Multiresistant Isolates Predominate, with One Remaining Susceptible to Fluoroquinolones. Pathogens 2020; 9:pathogens9070545. [PMID: 32645913 PMCID: PMC7399988 DOI: 10.3390/pathogens9070545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma bovis is an important bovine pathogen causing pneumonia, mastitis, and arthritis and is responsible for major economic losses worldwide. In the absence of an efficient vaccine, control of M. bovis infections mainly relies on antimicrobial treatments, but resistance is reported in an increasing number of countries. To address the situation in Spain, M. bovis was searched in 436 samples collected from beef and dairy cattle (2016–2019) and 28% were positive. Single-locus typing using polC sequences further revealed that two subtypes ST2 and ST3, circulate in Spain both in beef and dairy cattle, regardless of the regions or the clinical signs. Monitoring of ST2 and ST3 isolates minimum inhibitory concentration (MIC) to a panel of antimicrobials revealed one major difference when using fluoroquinolones (FQL): ST2 is more susceptible than ST3. Accordingly, whole-genome sequencing (WGS) further identified mutations in the gyrA and parC regions, encoding quinolone resistance-determining regions (QRDR) only in ST3 isolates. This situation shows the capacity of ST3 to accumulate mutations in QRDR and might reflect the selective pressure imposed by the extensive use of these antimicrobials. MIC values and detection of mutations by WGS also showed that most Spanish isolates are resistant to macrolides, lincosamides, and tetracyclines. Valnemulin was the only one effective, at least in vitro, against both STs.
Collapse
|
12
|
Relationship between Antimicrobial Susceptibility and Multilocus Sequence Type of Mycoplasma bovis Isolates and Development of a Method for Rapid Detection of Point Mutations Involved in Decreased Susceptibility to Macrolides, Lincosamides, Tetracyclines, and Spectinomycin. Appl Environ Microbiol 2019; 85:AEM.00575-19. [PMID: 31053579 DOI: 10.1128/aem.00575-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma bovis isolates belonging to the sequence type 5 (ST5) group, the dominant group in Japan since 1999, were low susceptible to 16-membered macrolides and tetracyclines and were confirmed to have a guanine-to-adenine transition mutation at position 748 in the 23S rRNA gene (rrl) and adenine-to-thymine transversion mutations at positions 965 and 967 in the 16S rRNA gene (rrs) (Escherichia coli numbering). Moreover, isolates of ST93 and ST155, members of the ST5 group, were low susceptible to lincosamides and azithromycin and showed an adenine-to-guanine transition mutation at position 2059 of rrl Isolates of ST93 were additionally low susceptible to spectinomycin and showed a cytosine-to-adenine transversion mutation at position 1192 of rrs Strains of the ST5 group seem to spread to Japan and Europe from North America with imported cows, while strains of ST93 and ST155 originated in Japan. Melting curve analysis using hybridization probes revealed the existence of point mutations involved in decreased susceptibility to macrolides, lincosamides, and spectinomycin, as demonstrated by changes in the melting curve shape and/or decreases in the melting peak temperature, so the susceptibility to these antimicrobials can be assessed on the same day. For decreased susceptibility to fluoroquinolones to exist, nonsynonymous mutations in the DNA gyrase gene (gyrA) and topoisomerase IV gene (parC) had to coexist. The combination of amino acid substitutions of serine at position 83 in gyrA and serine at position 80 in parC resulted in particularly low susceptibility to fluoroquinolones.IMPORTANCE Mycoplasma bovis is the main causal species of bovine mycoplasmal disease and leads to significant economic losses because of its severe symptoms, strong infectivity, and refractoriness. As for mastitis, culling cows with intramammary infections is a general countermeasure to prevent spreading. The conventional antimicrobial susceptibility test for mycoplasma is time-consuming and troublesome, but no quick and easy method for grasping the antimicrobial susceptibility of the causal strain exists at present. Treatment without antimicrobial susceptibility information may be one reason why M. bovis infection is refractory. Detecting a mutation involved in decreased susceptibility to antimicrobial agents of the causal strain makes it possible to easily select suitable antimicrobials for treatment, and this technique will help improve the cure rate and prevent the overuse of ineffective antimicrobial agents. In this study, we developed a technique to quickly and easily assess antimicrobial susceptibility based on the genetic characteristics of M. bovis strains in Japan.
Collapse
|
13
|
Cai HY, McDowall R, Parker L, Kaufman EI, Caswell JL. Changes in antimicrobial susceptibility profiles of Mycoplasma bovis over time. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2019; 83:34-41. [PMID: 30670900 PMCID: PMC6318825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
Mycoplasma bovis is a major cause of pneumonia, arthritis, and mastitis in cattle and can lead to significant economic losses. Antimicrobial resistance is a concern and further limits the already short list of drugs effective against mycoplasmas. The objective of this study was to examine changes in in vitro minimum inhibitory concentrations (MICs) of antimicrobials of aminoglycoside, fluoroquinolone, lincosamide, macrolide, pleuromutilin, phenicol, and tetracycline classes for 210 M. bovis isolates collected from 1978 to 2009. The MIC50 values of the various antimicrobials were also compared. The MIC50 levels for enrofloxacin and danofloxacin remained low (0.25 μg/mL) across all 3 decades. MIC50 levels for tetracyclines, tilmicosin, and tylosin tartrate were low in the 1980s, then increased in the 1990s and remained high. In the 1980s, MIC50 levels were low for clindamycin, spectinomycin, and tulathromycin, increased in the 1990s to 8 μg/mL (clindamycin) and 32 μg/mL (spectinomycin and tulathromycin), then decreased again in the 2000s. Members of the fluoroquinolone class of antimicrobials had the lowest MIC50 levels across all 3 decades, which suggests in vitro susceptibility of M. bovis to this class of antimicrobials. Statistically significant associations were observed between MIC values for chlortetracycline, oxytetracycline, tylosin tartrate, and tilmicosin; between clindamycin, tulathromycin, spectinomycin, and tiamulin; and between tylosin tartrate and clindamycin. Changes in MIC levels of various antimicrobials over time show the importance of monitoring the susceptibility of mycoplasmas to antimicrobials. The number of antimicrobials that showed elevated MIC50 levels, and therefore possibly reduced in vitro effectiveness against M. bovis, supports initiatives that promote prudent use of antimicrobials in agriculture.
Collapse
Affiliation(s)
- Hugh Y Cai
- Animal Health Laboratory, Laboratory Services (Cai, McDowall, Parker) and Department of Pathobiology (Kaufman, Caswell), University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Rebeccah McDowall
- Animal Health Laboratory, Laboratory Services (Cai, McDowall, Parker) and Department of Pathobiology (Kaufman, Caswell), University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Lois Parker
- Animal Health Laboratory, Laboratory Services (Cai, McDowall, Parker) and Department of Pathobiology (Kaufman, Caswell), University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Emily I Kaufman
- Animal Health Laboratory, Laboratory Services (Cai, McDowall, Parker) and Department of Pathobiology (Kaufman, Caswell), University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Jeff L Caswell
- Animal Health Laboratory, Laboratory Services (Cai, McDowall, Parker) and Department of Pathobiology (Kaufman, Caswell), University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| |
Collapse
|
14
|
Hata E, Nagai K, Murakami K. Mutations associated with change of susceptibility to lincosamides and/or macrolides in field and laboratory-derived Mycoplasma californicum strains in Japan, and development of a rapid detection method for these mutations. Vet Microbiol 2018; 229:81-89. [PMID: 30642602 DOI: 10.1016/j.vetmic.2018.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 11/29/2022]
Abstract
Five mutations involved in changing of susceptibility to lincosamides and/or macrolides were investigated in field isolates of Mycoplasma californicum in Japan, and reconfirmed in laboratory-derived mutants. In addition, a quick and easy detection method for these mutations was established. Guanine at position 748 (Escherichia coli numbering) of the 23S rRNA gene (rrl) was shown to be involved with decreased susceptibility to 16-membered macrolides, and adenines at positions 2059 and 2062 of rrl were involved with decreased susceptibility to both lincosamides and macrolides. Both guanine at position 2576, and change from cytosine to thymine at position 2611 of rrl were found to be involved with decreased susceptibility to lincosamides, and the latter mutation also increased the susceptibility to erythromycin. These mutations were easily induced by several to approximately 30 passages in a medium containing the respective antimicrobial, but they did not return after their initial appearance. The melting curve analysis using hybridization probes revealed the existence of these mutations by the change in the melting curve shape and/or decrease in the melting peak temperature. The detection limit in milk samples with a somatic cell count up to 716 × 103 cell/mL was 133 cfu/mL, but an excessive increase in the cell count in milk or storage of the milk sample at chilling or freezing temperature decreased the sensitivity. This method requires only a few hours, so field veterinarians can make a same-day determination of susceptibility to macrolides and lincosamides, which are first-line antibiotics for bovine mycoplasmal mastitis.
Collapse
Affiliation(s)
- Eiji Hata
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan.
| | - Kazuya Nagai
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Kenji Murakami
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
15
|
Gautier-Bouchardon AV. Antimicrobial Resistance in Mycoplasma spp. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0030-2018. [PMID: 30003864 PMCID: PMC11633602 DOI: 10.1128/microbiolspec.arba-0030-2018] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 11/20/2022] Open
Abstract
Mycoplasmas are intrinsically resistant to antimicrobials targeting the cell wall (fosfomycin, glycopeptides, or β-lactam antibiotics) and to sulfonamides, first-generation quinolones, trimethoprim, polymixins, and rifampicin. The antibiotics most frequently used to control mycoplasmal infections in animals are macrolides and tetracyclines. Lincosamides, fluoroquinolones, pleuromutilins, phenicols, and aminoglycosides can also be active. Standardization of methods used for determination of susceptibility levels is difficult since no quality control strains are available and because of species-specific growth requirements. Reduced susceptibility levels or resistances to several families of antimicrobials have been reported in field isolates of pathogenic Mycoplasma species of major veterinary interest: M. gallisepticum and M. synoviae in poultry; M. hyopneumoniae, M. hyorhinis, and M. hyosynoviae in swine; M. bovis in cattle; and M. agalactiae in small ruminants. The highest resistances are observed for macrolides, followed by tetracyclines. Most strains remain susceptible to fluoroquinolones. Pleuromutilins are the most effective antibiotics in vitro. Resistance frequencies vary according to the Mycoplasma species but also according to the countries or groups of animals from which the samples were taken. Point mutations in the target genes of different antimicrobials have been identified in resistant field isolates, in vitro-selected mutants, or strains reisolated after an experimental infection followed by one or several treatments: DNA-gyrase and topoisomerase IV for fluoroquinolones; 23S rRNA for macrolides, lincosamides, pleuromutilins, and amphenicols; 16S rRNAs for tetracyclines and aminoglycosides. Further work should be carried out to determine and harmonize specific breakpoints for animal mycoplasmas so that in vitro information can be used to provide advice on selection of in vivo treatments.
Collapse
Affiliation(s)
- Anne V Gautier-Bouchardon
- Mycoplasmology, Bacteriology, and Antimicrobial Resistance Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), Ploufragan, France
| |
Collapse
|
16
|
Sulyok KM, Bekő K, Kreizinger Z, Wehmann E, Jerzsele Á, Rónai Z, Turcsányi I, Makrai L, Szeredi L, Jánosi S, Nagy SÁ, Gyuranecz M. Development of molecular methods for the rapid detection of antibiotic susceptibility of Mycoplasma bovis. Vet Microbiol 2017; 213:47-57. [PMID: 29292003 DOI: 10.1016/j.vetmic.2017.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Determining the antibiotic susceptibility profile of Mycoplasma bovis isolates in vitro provides the basis for the appropriate choice of antibiotics in the therapy. Traditionally, the antibiotic susceptibility examination of mycoplasmas is technically demanding, time-consuming and rarely performed in diagnostic laboratories. The aim of the present study was to develop rapid molecular assays to determine mutations responsible for elevated minimal inhibitory concentrations (MICs) to fluoroquinolones, tetracyclines, aminocyclitols, macrolides, lincosamides, phenicols and pleuromutilins in M. bovis. The nine mismatch amplification mutation assays (MAMA) and seven high resolution melt (HRM) tests designed in the present study enable the simultaneous detection of these genetic markers. The sensitivity of the assays varied between 102-105 copy numbers/reaction. Cross-reactions with other mycoplasmas occurring in cattle were detected in assays targeting universal regions (e.g. 16S rRNA). Nevertheless, results of the novel method were in accordance with sequence and MICs data of the M. bovis pure cultures. Also, the tests of clinical samples containing high amount of M. bovis DNA were congruent even in the presence of other Mycoplasma spp. The presented method is highly cost-effective and can provide an antibiogram to 12 antibiotics in approximately 3-4 days when previous isolation of M. bovis is applied. In order to assure the proper identification of the genetic markers at issue, the regions examined by the MAMA and HRM tests are overlapping. In conclusion, the developed assays have potential to be used in routine diagnostics for the detection of antibiotic susceptibility in M. bovis.
Collapse
Affiliation(s)
- Kinga M Sulyok
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Katinka Bekő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Zsuzsa Kreizinger
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Enikő Wehmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Ákos Jerzsele
- University of Veterinary Medicine, Budapest, István utca 2, Hungary
| | - Zsuzsanna Rónai
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, 1143, Tábornok utca 2, Hungary
| | - Ibolya Turcsányi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, 1143, Tábornok utca 2, Hungary
| | - László Makrai
- University of Veterinary Medicine, Budapest, István utca 2, Hungary
| | - Levente Szeredi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, 1143, Tábornok utca 2, Hungary
| | - Szilárd Jánosi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, 1143, Tábornok utca 2, Hungary
| | - Sára Ágnes Nagy
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1143, Hungária körút 21, Hungary.
| |
Collapse
|
17
|
Sato T, Higuchi H, Yokota SI, Tamura Y. Mycoplasma bovis isolates from dairy calves in Japan have less susceptibility than a reference strain to all approved macrolides associated with a point mutation (G748A) combined with multiple species-specific nucleotide alterations in 23S rRNA. Microbiol Immunol 2017; 61:215-224. [PMID: 28504455 DOI: 10.1111/1348-0421.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/04/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022]
Abstract
Erythromycin, tylosin and tilmicosin are approved for use in cattle in Japan, the latter two being used to treat Mycoplasma bovis infection. In this study, 58 M. bovis isolates obtained from Japanese dairy calves all exhibited reduced susceptibility to these macrolides, this widespread reduced susceptibility being attributable to a few dominant lineages. All 58 isolates contained the G748A variant in both the rrl3 and rrl4 alleles of 23S rRNA, whereas a reference strain (PG45) did not. G748 localizes in the central loop of domain II (from C744 to A753) of 23S rRNA, which participates in binding to mycinose, a sugar residue present in both tylosin and tilmicosin. A number of in vitro-selected mutants derived from M. bovis PG45 showed reduced susceptibility to tylosin and tilmicosin and contained a nucleotide insertion within the central loop of domain II of rrl3 (U747-G748Ins_CU/GU or A743-U744Ins_UA), suggesting that mutations around G748 confer this reduced susceptibility phenotype. However, other Mycoplasma species containing G748A were susceptible to tylosin and tilmicosin. Sequence comparison with Escherichia coli revealed that M. bovis PG45 and isolates harbored five nucleotide alterations (U744C, G745A, U746C, A752C and A753G) in the central loop of domain II of 23S rRNA, whereas other Mycoplasma species lacked at least two of these five nucleotide alterations. It was therefore concluded that G748 mutations in combination with species-specific nucleotide alterations in the central loop of domain II of 23S rRNA are likely sufficient to reduce susceptibility of M. bovis to tylosin and tilmicosin.
Collapse
Affiliation(s)
- Toyotaka Sato
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudai-Midorimachi, Ebetsu, 069-8501, Japan.,Department of Microbiology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hidetoshi Higuchi
- Laboratory of Animal Health, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudai-Midorimachi, Ebetsu, 069-8501, Japan
| |
Collapse
|
18
|
Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease. G3-GENES GENOMES GENETICS 2017; 7:3059-3071. [PMID: 28739600 PMCID: PMC5592931 DOI: 10.1534/g3.117.1137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease–associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis. While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes.
Collapse
|
19
|
Khalil D, Becker CA, Tardy F. Monitoring the Decrease in Susceptibility to Ribosomal RNAs Targeting Antimicrobials and Its Molecular Basis in Clinical Mycoplasma bovis Isolates over Time. Microb Drug Resist 2017; 23:799-811. [DOI: 10.1089/mdr.2016.0268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dima Khalil
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
| | - Claire A.M. Becker
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
| | - Florence Tardy
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
| |
Collapse
|
20
|
Mutations Associated with Decreased Susceptibility to Seven Antimicrobial Families in Field and Laboratory-Derived Mycoplasma bovis Strains. Antimicrob Agents Chemother 2017; 61:AAC.01983-16. [PMID: 27895010 DOI: 10.1128/aac.01983-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms of resistance to fluoroquinolones, tetracyclines, an aminocyclitol, macrolides, a lincosamide, a phenicol, and pleuromutilins were investigated in Mycoplasma bovis For the identification of mutations responsible for the high MICs of certain antibiotics, whole-genome sequencing of 35 M. bovis field isolates and 36 laboratory-derived antibiotic-resistant mutants was performed. In vitro resistant mutants were selected by serial passages of M. bovis in broth medium containing subinhibitory concentrations of the antibiotics. Mutations associated with high fluoroquinolones MICs were found at positions 244 to 260 and at positions 232 to 250 (according to Escherichia coli numbering) of the quinolone resistance-determining regions of the gyrA and parC genes, respectively. Alterations related to elevated tetracycline MICs were described at positions 962 to 967, 1058, 1195, 1196, and 1199 of genes encoding the 16S rRNA and forming the primary tetracycline binding site. Single transversion at position 1192 of the rrs1 gene resulted in a spectinomycin MIC of 256 μg/ml. Mutations responsible for high macrolide, lincomycin, florfenicol, and pleuromutilin antibiotic MICs were identified in genes encoding 23S rRNA. Understanding antibiotic resistance mechanisms is an important tool for future developments of genetic-based diagnostic assays for the rapid detection of resistant M. bovis strains.
Collapse
|
21
|
Lysnyansky I, Ayling RD. Mycoplasma bovis: Mechanisms of Resistance and Trends in Antimicrobial Susceptibility. Front Microbiol 2016; 7:595. [PMID: 27199926 PMCID: PMC4846652 DOI: 10.3389/fmicb.2016.00595] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma bovis is a cell-wall-less bacterium and belongs to the class Mollicutes. It is the most important etiological agent of bovine mycoplasmoses in North America and Europe, causing respiratory disease, mastitis, otitis media, arthritis, and reproductive disease. Clinical disease associated with M. bovis is often chronic, debilitating, and poorly responsive to antimicrobial therapy, resulting in significant economic loss, the full extent of which is difficult to estimate. Until M. bovis vaccines are universally available, sanitary control measures and antimicrobial treatment are the only approaches that can be used in attempts to control M. bovis infections. However, in vitro studies show that many of the current M. bovis isolates circulating in Europe have high minimum inhibitory concentrations (MIC) for many of the commercially available antimicrobials. In this review we summarize the current MIC trends indicating the development of antimicrobial resistance in M. bovis as well as the known molecular mechanisms by which resistance is acquired.
Collapse
Affiliation(s)
- Inna Lysnyansky
- Mycoplasma Unit, Division of Avian and Aquatic Diseases, Kimron Veterinary Institute Beit Dagan, Israel
| | - Roger D Ayling
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| |
Collapse
|
22
|
Heuvelink A, Reugebrink C, Mars J. Antimicrobial susceptibility of Mycoplasma bovis isolates from veal calves and dairy cattle in the Netherlands. Vet Microbiol 2016; 189:1-7. [PMID: 27259820 DOI: 10.1016/j.vetmic.2016.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 11/28/2022]
Abstract
Control of Mycoplasma bovis infections depends on good husbandry practices and antibiotic treatment. To allow more prudent use of antimicrobial drugs, there is a need for information on the susceptibility profile of this pathogen. The objective of the present study was to analyse the in vitro antimicrobial susceptibility of clinical M. bovis isolates in the Netherlands. The collection comprised 95 bovine isolates, originating from lungs (n=56), mastitis milk (n=27), and synovial fluid (n=12), collected between 2008 and 2014. Minimal inhibitory concentrations (MICs) were assessed by broth microdilution, both by using in-house prepared MIC plates and by using commercially available MIC plates. For each antimicrobial agent, the range of MIC results, the MIC50, and MIC90 values were calculated. M. bovis strains recently isolated in the Netherlands appeared to be characterized by relatively high MIC values for antimicrobial agents that, until now, have been recommended by the Dutch Association of Veterinarians for treating pneumonia caused by Mycoplasma species. Fluoroquinolones appeared to be the most efficacious in inhibiting M. bovis growth, followed by tulathromycin and oxytetracycline. The highest MIC values were obtained for erythromycin, tilmicosin, and tylosin. Future studies should be done on determining M. bovis specific clinical breakpoints, standardization of methods to determine MIC values as well as molecular studies on detection of antimicrobial resistance mechanisms of M. bovis isolates to develop PCR assays for determining resistance.
Collapse
Affiliation(s)
- Annet Heuvelink
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, the Netherlands.
| | | | - Jet Mars
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, the Netherlands
| |
Collapse
|