1
|
Nakamuta N, Nakamuta S, Yamamoto Y, Kato H. Morphological Analysis of the Olfactory System of the Pig-Nosed Turtle, Carettochelys insculpta. Zoolog Sci 2023; 40:463-467. [PMID: 38064373 DOI: 10.2108/zs220100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/07/2023] [Indexed: 12/18/2023]
Abstract
The turtle olfactory organ consists of the upper (UCE) and lower (LCE) chamber epithelium, projecting to the ventral and dorsal parts of the olfactory bulbs, respectively. The UCE is associated with glands, contains ciliated olfactory receptor neurons, and is assumed to detect odorants primarily in air, while the LCE is devoid of glands, contains microvillous olfactory receptor neurons, and is assumed to detect odorants primarily in water. Examining the olfactory system of the pig-nosed turtle, Carettochelys insculpta, this study found that both the upper and lower chambers of the nasal cavity were lined with sensory epithelium devoid of associated glands and contained ciliated olfactory receptor neurons. Moreover, the olfactory bulbs were not divided into dorsal and ventral parts. These results suggest that the olfactory system of the pig-nosed turtle is a single system specialized for detecting odorants in water.
Collapse
Affiliation(s)
- Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Iwate 020-8550, Japan,
| | - Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Hideaki Kato
- Faculty of Education, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
2
|
Kondoh D, Kaneoya Y, Tonomori W, Kitayama C. Histological features and Gα olf expression patterns in the nasal cavity of sea turtles. J Anat 2023; 243:486-503. [PMID: 37042468 PMCID: PMC10439381 DOI: 10.1111/joa.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Sea turtles use olfaction to detect volatile and water-soluble substances. The nasal cavity of green turtles (Chelonia mydas) comprises morphologically defined the anterodorsal, anteroventral, and posterodorsal diverticula, as well as a single posteroventral fossa. Here, we detailed the histological features of the nasal cavity of a mature female green turtle. The posterodorsal diverticulum contained spongy-like venous sinuses and a wave-shaped sensory epithelium that favored ventilation. Secretory structures that were significant in sensory and non-sensory epithelia were probably involved in protection against seawater. These findings suggested that green turtles efficiently intake airborne substances and dissolve water-soluble substances in mucous, while suppressing the effects of salts. In addition, positive staining of Gαs/olf that couples with olfactory, but not vomeronasal, receptors was predominant in all three types of sensory epithelium in the nasal cavity. Both of airborne and water-soluble odorants seemed to be detected in cells expressing Gαolf and olfactory receptors.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Yuka Kaneoya
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Wataru Tonomori
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | | |
Collapse
|
3
|
Triana-Garcia PA, Nevitt GA, Pesavento JB, Teh SJ. Gross morphology, histology, and ultrastructure of the olfactory rosette of a critically endangered indicator species, the Delta Smelt, Hypomesus transpacificus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:597-616. [PMID: 34156533 PMCID: PMC8408092 DOI: 10.1007/s00359-021-01500-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
The Delta Smelt (Hypomesus transpacificus) is a small, semi-anadromous fish native to the San Francisco Bay-Delta Estuary and has been declared as critically endangered. Their olfactory biology, in particular, is poorly understood and a basic description of their sensory anatomy is needed to advance our understanding of the sensory ecology of species to inform conservation efforts to manage and protect them. We provide a description of the gross morphology, histological, immunohistochemical, and ultrastructural features of the olfactory rosette in this fish and discuss some of the functional implications in relation to olfactory ability. We show that Delta Smelt have a multilamellar olfactory rosette with allometric growth. Calretinin immunohistochemistry revealed a diffuse distribution of olfactory receptor neurons within the epithelium. Ciliated, microvillous and crypt neurons were clearly identified using morphological and immunohistochemical features. The olfactory neurons were supported by robust ciliated and secretory sustentacular cells. Although the sense of smell has been overlooked in Delta Smelt, we conclude that the olfactory epithelium has many characteristics of macrosmatic fish. With this study, we provide a foundation for future research into the sensory ecology of this imperiled fish.
Collapse
Affiliation(s)
- Pedro Alejandro Triana-Garcia
- Integrative Pathobiology Graduate Group and Aquatic Health Program, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, VM3B, 3203, 1089 Veterinary Medicine Dr, Davis, CA, 95616, USA. .,Grupo de Investigación en Sanidad de Organismos Acuáticos, Instituto de Acuicultura de Los Llanos, Universidad de Los Llanos, Villavicencio, Meta, Colombia.
| | - Gabrielle A Nevitt
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Joseph B Pesavento
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Swee J Teh
- Integrative Pathobiology Graduate Group and Aquatic Health Program, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, VM3B, 3203, 1089 Veterinary Medicine Dr, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Ibrahim D, Nakamuta N. Comparative histochemical analysis of glycoconjugates in the nasal vestibule of camel and sheep. Microsc Res Tech 2018; 81:681-689. [PMID: 29582511 DOI: 10.1002/jemt.23024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/06/2022]
Abstract
While Corriedale sheep survive in a wide range of climates, which prevents them to specialize for one climatic condition only, dromedary camels strictly adapted to desert areas. This demands more adaptive mechanisms to hot, dry conditions in camels than in sheep. Being the entrance of the nasal cavity, nasal vestibule is subjected to various environmental stressors. A protective way is the lining epithelium which is cornified in camel, but not in sheep. Mucus nasal secretions also play a key role in the protection of underlyings. Additionally, arterio-venous anastomosis is present in the lamina propria of the nasal vestibule of camel. In the present paper, sugar residues in the nasal vestibule of camel were analyzed and compared with those of sheep using 14 types of lectins to explore the distribution of glycoconjugates that may help the function of camel nasal vestibule in desert environment. In camel, none of the lectins could label the basal cells of the vestibular epithelium, although the basal cells reacted with six lectins in sheep. In camel, LEL and RCA-120 markedly labeled the luminal surface. WGA, DBA, SBA, and VVA produced marked intensities on the luminal surface in sheep. The mucous glands reacted with six lectins: WGA, s-WGA, VVA, PNA, PHA-E, and PHA-L in camel, while all lectins used except s-WGA and PHA-E reacted in the sheep. In summary, great differences are observed in the glycoconjugate expression between camel and sheep. This suggests that these glycoconjugate are related to camel's tolerance for environmental stressors.
Collapse
Affiliation(s)
- Dalia Ibrahim
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
5
|
Abdali SS, Kurasawa K, Nakamuta S, Yamamoto Y, Nakamuta N. Number of olfactory receptor neurons in the Chinese soft-shelled turtle. J Vet Med Sci 2017; 79:1569-1572. [PMID: 28781329 PMCID: PMC5627330 DOI: 10.1292/jvms.17-0326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The olfactory organ of turtle consists of the upper chamber epithelium (UCE) and the lower chamber epithelium (LCE), detecting air-borne odorants and water-borne odorants, respectively. In this study, we investigated the number
of olfactory receptor neurons (ORNs) in the UCE and LCE of soft-shelled turtle in order to find their possible differences among terrestrial, semi-aquatic and highly-aquatic turtles. The number of ORNs in the soft-shelled turtle
was higher in the LCE than in the UCE, suggesting its close relationship to the environment the turtle lives. In addition, relative abundance of the ORNs in the LCE to the UCE varied in accordance with the size of individuals,
although its functional significance remains elusive.
Collapse
Affiliation(s)
- Sayed Sharif Abdali
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kouki Kurasawa
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Nobuaki Nakamuta
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|