1
|
Sukkar D, Laval-Gilly P, Kanso A, Azoury S, Bonnefoy A, Falla-Angel J. A potential trade-off between offense and defense in honeybee innate immunity: Reduced phagocytosis in honeybee hemocytes correlates with a protective response after exposure to imidacloprid and amitraz. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105772. [PMID: 38458665 DOI: 10.1016/j.pestbp.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
Phagocytosis "offense" is a crucial process to protect the organism from diseases and the effects of foreign particles. Insects rely on the innate immune system and thus any hindrance to phagocytosis may greatly affect their resistance to diseases and response to pathogens. The European honeybee, a valuable species due to its economic and environmental contribution, is being challenged by colony collapse disorder leading to its decline. Exposure to multiple factors including pesticides like imidacloprid and amitraz may negatively alter their immune response and ultimately make them more susceptible to diseases. In this study, we compare the effect of different concentrations and mixtures of imidacloprid and amitraz with different concentrations of the immune stimulant, zymosan A. Results show that imidacloprid and amitraz have a synergistic negative effect on phagocytosis. The lowered phagocytosis induces significantly higher hemocyte viability suggesting a negatively correlated protective mechanism "defense" from pesticide-associated damage but may not be protective from pathogens.
Collapse
Affiliation(s)
- Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France; Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon.
| | | | - Ali Kanso
- Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon
| | - Sabine Azoury
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon
| | - Antoine Bonnefoy
- Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France
| | | |
Collapse
|
2
|
Watanabe T, Terada T, Ezaki R, Matsuzaki M, Furusawa S, Horiuchi H. Chicken Interleukin-5 is Expressed in Splenic Lymphocytes and Affects Antigen-Specific Antibody Production. J Poult Sci 2024; 61:2024002. [PMID: 38239925 PMCID: PMC10789502 DOI: 10.2141/jpsa.2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Vaccination is important for reducing disease incidence in the poultry industry. To enhance immunity and vaccine efficacy, chicken cytokines associated with antibody production must be identified. In this study, we focused on interleukin-5 (IL-5), involved in antibody production in mice, measuring its expression and effects on antibody production. Concanavalin A-stimulated splenocytes were used for RT-PCR to clone IL5 cDNAs. Recombinant IL-5 was prepared from the clone and administered to chickens with antigen via the ocular-topical route twice every alternate week. IL-5 enhanced antigen-specific IgY and inhibited antigen-specific serum IgA production in serum. Our findings suggest that IL-5 plays an important role in chicken antibody production, with possible unique functions.
Collapse
Affiliation(s)
- Tenkai Watanabe
- Laboratory of Immunobiology, Graduate School of Integrated
Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528,
Japan
| | - Takumi Terada
- Laboratory of Immunobiology, Graduate School of Integrated
Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528,
Japan
| | - Ryo Ezaki
- Laboratory of Immunobiology, Graduate School of Integrated
Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528,
Japan
| | - Mei Matsuzaki
- Laboratory of Immunobiology, Graduate School of Integrated
Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528,
Japan
| | - Syuichi Furusawa
- Laboratory of Immunobiology, Graduate School of Integrated
Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528,
Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Integrated
Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528,
Japan
- Genome Editing Innovation Center, Hiroshima University,
3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
3
|
Tokuhara D, Hikita N. Cord Blood-Based Approach to Assess Candidate Vaccine Adjuvants Designed for Neonates and Infants. Vaccines (Basel) 2021; 9:vaccines9020095. [PMID: 33514054 PMCID: PMC7911524 DOI: 10.3390/vaccines9020095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Neonates and infants are particularly susceptible to infections, for which outcomes tend to be severe. Vaccination is a key strategy for preventing infectious diseases, but the protective immunity achieved through vaccination typically is weaker in infants than in healthy adults. One possible explanation for the poor acquisition of vaccine-induced immunity in infants is that their innate immune response, represented by toll-like receptors, is immature. The current system for developing pediatric vaccines relies on the confirmation of their safety and effectiveness in studies involving the use of mature animals or adult humans. However, creating vaccines for neonates and infants requires an understanding of their uniquely immature innate immunity. Here we review current knowledge regarding the innate immune system of neonates and infants and challenges in developing vaccine adjuvants for those children through analyses of cord blood.
Collapse
|
4
|
Costa LM, Muálem de Moraes Alves M, Brito LM, de Araujo Abi-Chacra E, Barbosa-Filho JM, Chavez Gutierrez SJ, Barreto HM, Aécio de Amorim Carvalho F. In vitro antileishmanial and immunomodulatory activities of the synthetic analogue riparin E. Chem Biol Interact 2021; 336:109389. [PMID: 33484715 DOI: 10.1016/j.cbi.2021.109389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Leishmaniases are infectious diseases caused by protozoa of the genus Leishmania, that may have different clinical manifestations. First line drugs used in the treatment of leishmaniosis are high costly, and are very aggressive requiring medical monitoring. Thus new therapeutic alternatives are needed and, in this context, natural products have been considered as a source of new antileishmania agents. Riparins are alkamides found in the unripe fruits of Aniba riparia. Several biological activities are described for this group of compounds, such as antimicrobial and antiparasitic potential. The objective of this work was to evaluate the anti-leishmania activity riparin E (Rip-E) in vitro, against promastigotes and internalized amastigotes of Leishmania amazonensis. Rip-E was able to inhibit promastigote cell growth (IC50 4.7 μg/ml) and to reduce the percentage of macrophages infected with amastigotes, reducing its infectivity (survival index) (IC50 1.3 μg/ml). The cytotoxicity against BALB/c murine macrophages was also assessed (CC50 50.6 μg/ml) and the selectivity index was 38.9. Rip-E also demonstrated immunomodulatory activity, evidenced by the increase of the phagocytic capacity and lysosomal activity. However, Rip-E did not affect directly the production of nitric oxide. These results suggest that Rip-E has antileishmania potential, by both its direct inhibitory effect and its ability to activate macrophages.
Collapse
Affiliation(s)
- Luciana Muratori Costa
- Laboratory for Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Lucas Moreira Brito
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Erika de Araujo Abi-Chacra
- Laboratory for Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piauí, Teresina, PI, Brazil
| | - José Maria Barbosa-Filho
- Pharmaceutical Technology Laboratory, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Stanley Juan Chavez Gutierrez
- Laboratory Chemistry of Bioactive Natural and Synthetic Products, Department of Pharmacy, Federal University of Piauí, Teresina, PI, Brazil
| | - Humberto Medeiros Barreto
- Laboratory for Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piauí, Teresina, PI, Brazil.
| | | |
Collapse
|
5
|
Li W, Wang H, Xu XG, Yu Y. Simultaneous Nanoscale Imaging of Chemical and Architectural Heterogeneity on Yeast Cell Wall Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6169-6177. [PMID: 32419466 PMCID: PMC7882198 DOI: 10.1021/acs.langmuir.0c00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Particles extracted from yeast cell walls are naturally occurring immunomodulators with significant therapeutic applications. Their biological function has been thought to be a consequence of the overall chemical composition. In contrast, here we achieve direct nanoscale visualization of the compositional and structural heterogeneity of yeast cell wall particles and demonstrate that such nanoscale heterogeneity directly influences the receptor function of immune cells. By combining peak force infrared (PFIR) microscopy with super-resolution fluorescence microscopy, we achieve simultaneous chemical, topographical, and mechanical mapping of cell wall particles extracted from the yeast Saccharomyces cerevisiae with ≈6 nm resolution. We show that polysaccharides (β-glucan and chitin) and proteins are organized in specific nonuniform structures, and their heterogeneous spatial organization leads to heterogeneous recruitment of receptors on immune cell membranes. Our findings indicate that the biological function of yeast cell wall particles depends on not only their overall composition but also the nanoscale distribution of the different cell wall components.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Miao J, Ye S, Lan J, Ye P, Wen Q, Mei L, Liu X, Lin J, Zhou X, Du S, Liu X, Li H. Nuclear HMGB1 promotes the phagocytic ability of macrophages. Exp Cell Res 2020; 393:112037. [PMID: 32360192 DOI: 10.1016/j.yexcr.2020.112037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Phagocytosis is a basic immune response to the invasion of pathogens. High mobility group protein B1 (HMGB1) is a DNA chaperone that is associated with phagocytosis. However, its influence on phagocytosis is debated. In the present study, HMGB1-mutant, HMGB1-overexpressing and HMGB1-silenced RAW264.7 cells were constructed. In addition, HMGB1 conditional knockout mice were constructed to determine the influence of HMGB1 on phagocytosis. Lipopolysaccharide (LPS) was used to stimulate the translocation of HMGB1 from the nucleus to the cytoplasm. Zymosan particles were used to test the phagocytic function of the macrophages. Our results showed that the accumulation of HMGB1 in the nucleus enhances the phagocytic function of the macrophages. By interacting with P53, nuclear HMGB1 may remain in the nucleus and decrease the negative influence of P53 on the phosphorylation of focal adhesion kinase (FAK). The increase in phosphorylated FAK promotes the formation of pseudopods and enhances the phagocytic ability of macrophages.
Collapse
Affiliation(s)
- Jifei Miao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Sen Ye
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Jiao Lan
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Peng Ye
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Quan Wen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510006, Guangdong, PR China
| | - Liyan Mei
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Xia Liu
- School of Basic Medical Sciences, Guizhou University of Chinese Medicine, Guiyang, 550025, Guizhou, PR China
| | - Junli Lin
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Xiaojing Zhou
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Shaohui Du
- Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 518000, Shenzhen, PR China
| | - Xiaoyi Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Hui Li
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| |
Collapse
|
7
|
Abraham A, Ostroff G, Levitz SM, Oyston PCF. A novel vaccine platform using glucan particles for induction of protective responses against Francisella tularensis and other pathogens. Clin Exp Immunol 2019; 198:143-152. [PMID: 31400225 PMCID: PMC6797901 DOI: 10.1111/cei.13356] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Vaccines are considered the bedrock of preventive medicine. However, for many pathogens, it has been challenging to develop vaccines that stimulate protective, long-lasting immunity. We have developed a novel approach using β-1,3-D-glucans (BGs), natural polysaccharides abundantly present in fungal cell walls, as a biomaterial platform for vaccine delivery. BGs simultaneously provide for receptor-targeted antigen delivery to specialized antigen-presenting cells together with adjuvant properties to stimulate antigen-specific and trained non-specific immune responses. This review focuses on various approaches of using BG particles (GPs) to develop bacterial and fungal vaccine candidates. A special case history for the development of an effective GP tularaemia vaccine candidate is highlighted.
Collapse
Affiliation(s)
- A. Abraham
- University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - G. Ostroff
- University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - S. M. Levitz
- University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - P. C. F. Oyston
- CBR Division, Defence Science and Technology Laboratory, Porton DownSalisburyUK
| |
Collapse
|