1
|
Lyte JM, Seyoum MM, Ayala D, Kers JG, Caputi V, Johnson T, Zhang L, Rehberger J, Zhang G, Dridi S, Hale B, De Oliveira JE, Grum D, Smith AH, Kogut M, Ricke SC, Ballou A, Potter B, Proszkowiec-Weglarz M. Do we need a standardized 16S rRNA gene amplicon sequencing analysis protocol for poultry microbiota research? Poult Sci 2025; 104:105242. [PMID: 40334389 DOI: 10.1016/j.psj.2025.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Bacteria are the major component of poultry gastrointestinal tract (GIT) microbiota and play an important role in host health, nutrition, physiology regulation, intestinal development, and growth. Bacterial community profiling based on the 16S ribosomal RNA (rRNA) gene amplicon sequencing approach has become the most popular method to determine the taxonomic composition and diversity of the poultry microbiota. The 16S rRNA gene profiling involves numerous steps, including sample collection and storage, DNA isolation, 16S rRNA gene primer selection, Polymerase Chain Reaction (PCR), library preparation, sequencing, raw sequencing reads processing, taxonomic classification, α- and β-diversity calculations, and statistical analysis. However, there is currently no standardized protocol for 16S rRNA gene analysis profiling and data deposition for poultry microbiota studies. Variations in DNA storage and isolation, primer design, and library preparation are known to introduce biases, affecting community structure and microbial population analysis leading to over- or under-representation of individual bacteria within communities. Additionally, different sequencing platforms, bioinformatics pipeline, and taxonomic database selection can affect classification and determination of the microbial taxa. Moreover, detailed experimental design and DNA processing and sequencing methods are often inadequately reported in poultry 16S rRNA gene sequencing studies. Consequently, poultry microbiota results are often difficult to reproduce and compare across studies. This manuscript reviews current practices in profiling poultry microbiota using 16S rRNA gene amplicon sequencing and proposes the development of guidelines for protocol for 16S rRNA gene sequencing that spans from sample collection through data deposition to achieve more reliable data comparisons across studies and allow for comparisons and/or interpretations of poultry studies conducted worldwide.
Collapse
Affiliation(s)
- Joshua M Lyte
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Poultry Production and Product Safety Research, Fayetteville 72701, AR, United States
| | - Mitiku M Seyoum
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Diana Ayala
- Purina Animal Nutrition Center, Land O'Lakes, Gray Summit 63039, MO, United States
| | - Jannigje G Kers
- Faculty of Veterinary Medicine, Utrecht University, and Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Valentina Caputi
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Poultry Production and Product Safety Research, Fayetteville 72701, AR, United States
| | - Timothy Johnson
- University of Minnesota, Saint Paul 55108, MN, United States
| | - Li Zhang
- Mississippi State University, Mississippi State 39762, MS, United States
| | - Joshua Rehberger
- Arm and Hammer Animal Nutrition, Waukesha 53186, WI, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater 74078, OK, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Brett Hale
- AgriGro, Doniphan 6393, MO, United States
| | | | - Daniel Grum
- Purina Animal Nutrition Center, Land O'Lakes, Gray Summit 63039, MO, United States
| | - Alexandra H Smith
- Mississippi State University, Mississippi State 39762, MS, United States
| | - Michael Kogut
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station 77845, TX, United States
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, 53706, WI, United States
| | - Anne Ballou
- Iluma Alliance, Durham 27703, NC, United States
| | - Bill Potter
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Monika Proszkowiec-Weglarz
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agriculture Research Center, Animal Biosciences and Biotechnology Laboratory, Beltsville 20705, MD, United States.
| |
Collapse
|
2
|
Liu T, Shao Y, Pang X, Liu Y, Mo X, Chen Z, Lu X. Intestinal microbiota and high-risk antibiotic resistance genes in wild birds with varied ecological traits: Insights from opportunistic direct sampling in Tianjin, China. ENVIRONMENTAL RESEARCH 2024; 263:120040. [PMID: 39305975 DOI: 10.1016/j.envres.2024.120040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Within One Health framework, the dissemination of antibiotic resistance genes (ARGs) and pathogenic bacteria by wild birds has attracted increasing attention. In this study, gut samples of wild birds opportunistically collected in Tianjin, China, situated along the East Asian-Australasian Flyway, were used to ascertain the realistic distribution of bacteria and ARGs in their intestinal tracts. These birds have different dietary habits (herbivore, carnivore, and omnivore) and residency statuses (resident and migratory birds). Using 16S rRNA gene sequencing and qPCR, we analyzed microbial communities and the abundance of high-risk ARGs and mobile genetic elements (MGEs). Birds with distinct ecological traits exhibited significant variations in gut bacterial composition, yet similar microbial diversity. Shigella sp. emerged as the core intestinal pathogen, with a mean relative abundance 2.57 to 1466 times higher than that of other pathogenic bacteria, and its concentration correlated with the host's trophic level as indicated by the δ15N values. The distribution of ARGs and MGEs also varied with bird ecological traits. All 10 targeted high-risk ARGs were detected in carnivores or passage migrants, while migratory birds carried significantly greater abundance of intI1 than residents (p < 0.05). The potential of migratory birds to harbor and disseminate pathogenic bacteria and ARGs cannot be ignored. Network analysis revealed blaTEM-1 presence in multiple core microorganisms, positively associated with Clostridioides difficile, emphasizing its risk potential. Positive dfrA12-intI1 correlation across trophic levels suggests potential for intI1-mediated transmission. Our study underscores the high potential risk posed by wild birds in carrying ARGs and pathogenic microorganisms, emphasizing the importance of further research and surveillance in this field.
Collapse
Affiliation(s)
- Tong Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yetong Shao
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoke Pang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yufei Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300387, China.
| | - Zeyou Chen
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Haraguchi A, Nagasawa J, Kuramochi K, Tsuchida S, Kobayashi A, Hatabu T, Sasai K, Ikadai H, Ushida K, Matsubayashi M. Anticoccidial activity of the secondary metabolites in alpine plants frequently ingested by wild Japanese rock ptarmigans. Int J Parasitol Parasites Wildl 2024; 25:100967. [PMID: 39220322 PMCID: PMC11362645 DOI: 10.1016/j.ijppaw.2024.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024]
Abstract
The Japanese rock ptarmigan (Lagopus muta japonica) is an herbivorous species of partridges that inhabits only alpine zones. Alpine plants are their main source of food. These alpine plants contain toxic compounds to deter herbivores from consuming them. A previous analysis of the alpine plants frequently consumed by Japanese rock ptarmigans revealed the presence of a unique mixture of secondary metabolites and a novel compound. Additionally, wild Japanese rock ptarmigans are often infected by two species of Eimeria parasites. When these parasites were experimentally administered to Svalbard rock ptarmigans (Lagopus muta hyperborean), which do not feed on alpine plants, the birds exhibited symptoms, such as diarrhea and depression, and in some cases, they died. Although little is known about the pathogenesis of these parasites in wild Japanese rock ptarmigans, it was hypothesized that compounds found in alpine plants, their main food source, may reduce the pathogenicity of Eimeria parasites. In the present study, we evaluated the anticoccidial activity of the compounds derived from alpine plants in vitro using Eimeria tenella, which infects chickens belonging to the same pheasant family, as an experimental model. Twenty-seven natural components were extracted from eight alpine plants. The natural components were added to E. tenella sporozoites and incubated for 24 h to evaluate their direct effect. Additionally, Madin-Darby bovine kidney cells were incubated with sporozoites and natural components for 24 h to evaluate the inhibitory effect of the components on sporozoite cell invasion. Six compounds from four alpine plants decreased sporozoite viability by up to 88.3%, and two compounds inhibited sporozoite invasion into the cells. Although further studies are needed to evaluate the effects of these components against Eimeria infections in vivo, our findings suggest that these alpine plants may reduce the degree of infection by decreasing the number of sporozoites in the intestinal tract.
Collapse
Affiliation(s)
- Asako Haraguchi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Jyunki Nagasawa
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Sayaka Tsuchida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Atsushi Kobayashi
- Shin-etsu Nature Conservation Office, Ministry of the Environment, Ministry of Environment, Nagano, 380-0846, Japan
| | - Toshimitsu Hatabu
- Laboratory of Animal Physiology, Department of Animal Science, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kazumi Sasai
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kazunari Ushida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
4
|
Gul S, Shi Y, Hu J, Song S. The Influence of Microbiota on Wild Birds' Parental Coprophagy Behavior: Current Advances and Future Research Directions. Microorganisms 2024; 12:2468. [PMID: 39770671 PMCID: PMC11677090 DOI: 10.3390/microorganisms12122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive review provides an in-depth exploration of the intriguing phenomenon of parental coprophagy in wild birds and its profound implications on the influence of adult avian parents' health. This review investigates the composition and dynamics of avian feces' microbiota, casting light on the various dietary, environmental, and genetic factors that influence its diversity. Furthermore, it emphasizes parental coprophagy, a behavior observed in numerous bird species, particularly among herbivorous and passerine birds. The review investigates multiple hypotheses proposed to explain the occurrence of coprophagy. It delves into its function as a potential mechanism for transmitting microorganisms, particularly feces bacteria, from nestlings to their parents. This microbial transfer may affect the health and well-being of adult avian parents. In addition, the review highlights the current research deficits and debates surrounding coprophagy. These gaps include crucial aspects such as the onset of coprophagy, its long-term effects on both parents and offspring, the nutritional implications of consuming nestling feces, the potential risks of pathogen transmission, and the ecological and evolutionary factors that drive this behavior. As the review synthesizes existing knowledge and identifies areas requiring additional research, it emphasizes the significance of future studies that comprehensively address these gaps. By doing so, we can understand coprophagy's ecological and evolutionary significance in wild birds, advancing our knowledge on avian biology. This information can improve conservation efforts to protect migratory bird populations and their complex ecosystems.
Collapse
Affiliation(s)
- Saba Gul
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (S.G.); (Y.S.); (J.H.)
| | - Yurou Shi
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (S.G.); (Y.S.); (J.H.)
| | - Jie Hu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (S.G.); (Y.S.); (J.H.)
- Institute of Environmental Sciences, Leiden University, 2333CC Leiden, The Netherlands
| | - Sen Song
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (S.G.); (Y.S.); (J.H.)
| |
Collapse
|
5
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
6
|
Bornbusch SL, Power ML, Schulkin J, Drea CM, Maslanka MT, Muletz-Wolz CR. Integrating microbiome science and evolutionary medicine into animal health and conservation. Biol Rev Camb Philos Soc 2024; 99:458-477. [PMID: 37956701 DOI: 10.1111/brv.13030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Microbiome science has provided groundbreaking insights into human and animal health. Similarly, evolutionary medicine - the incorporation of eco-evolutionary concepts into primarily human medical theory and practice - is increasingly recognised for its novel perspectives on modern diseases. Studies of host-microbe relationships have been expanded beyond humans to include a wide range of animal taxa, adding new facets to our understanding of animal ecology, evolution, behaviour, and health. In this review, we propose that a broader application of evolutionary medicine, combined with microbiome science, can provide valuable and innovative perspectives on animal care and conservation. First, we draw on classic ecological principles, such as alternative stable states, to propose an eco-evolutionary framework for understanding variation in animal microbiomes and their role in animal health and wellbeing. With a focus on mammalian gut microbiomes, we apply this framework to populations of animals under human care, with particular relevance to the many animal species that suffer diseases linked to gut microbial dysfunction (e.g. gut distress and infection, autoimmune disorders, obesity). We discuss diet and microbial landscapes (i.e. the microbes in the animal's external environment), as two factors that are (i) proposed to represent evolutionary mismatches for captive animals, (ii) linked to gut microbiome structure and function, and (iii) potentially best understood from an evolutionary medicine perspective. Keeping within our evolutionary framework, we highlight the potential benefits - and pitfalls - of modern microbial therapies, such as pre- and probiotics, faecal microbiota transplants, and microbial rewilding. We discuss the limited, yet growing, empirical evidence for the use of microbial therapies to modulate animal gut microbiomes beneficially. Interspersed throughout, we propose 12 actionable steps, grounded in evolutionary medicine, that can be applied to practical animal care and management. We encourage that these actionable steps be paired with integration of eco-evolutionary perspectives into our definitions of appropriate animal care standards. The evolutionary perspectives proposed herein may be best appreciated when applied to the broad diversity of species under human care, rather than when solely focused on humans. We urge animal care professionals, veterinarians, nutritionists, scientists, and others to collaborate on these efforts, allowing for simultaneous care of animal patients and the generation of valuable empirical data.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Michael L Power
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Jay Schulkin
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, 1959 NE Pacific St., Box 356460, Seattle, WA, 98195, USA
| | - Christine M Drea
- Department of Evolutionary Anthropology, Duke University, 104 Biological Sciences, Campus Box 90383, Durham, NC, 27708, USA
| | - Michael T Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| |
Collapse
|
7
|
Matsubayashi M, Kinoshita M, Tsuchida S, Kobayashi A, Tamura N, Shibahara T, Kido Y, Kaneko A, Sasai K, Ushida K. Experimental evaluation of pathogenicity and acquired immunity of Eimeria species, E. uekii and E. raichoi, infecting Japanese rock ptarmigans in a subspecies of the birds. Int J Parasitol Parasites Wildl 2023; 22:167-174. [PMID: 37876909 PMCID: PMC10590809 DOI: 10.1016/j.ijppaw.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023]
Abstract
Japanese rock ptarmigans (Lagopus muta japonica) are birds that inhabit only alpine regions of central Honshu Island, Japan, known as the Japanese Alps. The number of these birds has recently declined, and in situ and ex situ national conservation programs for Japanese rock ptarmigans have been initiated. The infections of Eimeria spp. as protozoan parasites of the phylum Apicomplexa, E. uekii and E. raichoi, were frequently reported in the birds. However, the virulence of these Eimeria parasites has not been determined. Here, we analyzed the pathogenicity of these Eimeria parasites using experimental infections of a subspecies model of Japanese rock ptarmigans, Svalbard rock ptarmigans (Lagopus mutus hyperboreus), and evaluated acquired protective immunity against challenge in birds tolerant of low-dose inoculation with Eimeria parasites. Following inoculation with two Eimeria parasites derived from Japanese rock ptarmigans (dose range of 4 × 104 to 4 × 102 for E. uekii and 1.7 × 104 to 4 × 101 for E. raichoi), oocysts were detected at 6-8 days post-inoculation (PI), and the maximum number of oocysts per gram of feces was observed 7-10 days PI and then gradually decreased. The mortality rate and reduction in weight gain of chicks increased following high-dose inoculation of oocysts with abnormal feces (soft and diarrhea). Developmental zoites were detected histopathologically in epithelial tissues and sometimes the lamina propria from the duodenum to the colon. Chicks that survived low-dose inoculation did not show clear clinical symptoms after challenge inoculation. Our results suggest that the pathological characteristics of Eimeria parasites infecting Japanese rock ptarmigans include abnormal feces and reduction in weight gain, resulting in mortality in cases of heavy infection due to high-dose inoculation. These findings provide helpful data for Japanese rock ptarmigan conservation efforts.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, 598-8531, Japan
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60115, Indonesia
| | - Moemi Kinoshita
- Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, 598-8531, Japan
| | - Sayaka Tsuchida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Atsushi Kobayashi
- Shin-etsu Nature Conservation Office, Ministry of the Environment, Ministry of Environment, Nagano, 380-0846, Japan
| | | | - Tomoyuki Shibahara
- Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, 598-8531, Japan
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, 305-0856, Japan
| | - Yasutoshi Kido
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, 545 -8585, Japan
| | - Akira Kaneko
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, 545 -8585, Japan
| | - Kazumi Sasai
- Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, 598-8531, Japan
| | - Kazunari Ushida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| |
Collapse
|
8
|
Videvall E, Bensch HM, Engelbrecht A, Cloete S, Cornwallis CK. Coprophagy rapidly matures juvenile gut microbiota in a precocial bird. Evol Lett 2023; 7:240-251. [PMID: 37475750 PMCID: PMC10355177 DOI: 10.1093/evlett/qrad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 07/22/2023] Open
Abstract
Coprophagy is a behavior where animals consume feces, and has been observed across a wide range of species, including birds and mammals. The phenomenon is particularly prevalent in juveniles, but the reasons for this remain unclear. One hypothesis is that coprophagy enables offspring to acquire beneficial gut microbes that aid development. However, despite the potential importance of this behavior, studies investigating the effects in juveniles are rare. Here we experimentally test this idea by examining how ingestion of adult feces by ostrich chicks affects their gut microbiota development, growth, feeding behavior, pathogen abundance, and mortality. We conducted extensive longitudinal experiments for 8 weeks, repeated over 2 years. It involved 240 chicks, of which 128 were provided daily access to fresh fecal material from adults and 112 were simultaneously given a control treatment. Repeated measures, behavioral observations, and DNA metabarcoding of the microbial gut community, both prior to and over the course of the experiment, allowed us to evaluate multiple aspects of the behavior. The results show that coprophagy causes (a) marked shifts to the juvenile gut microbiota, including a major increase in diversity and rapid maturation of the microbial composition, (b) higher growth rates (fecal-supplemented chicks became 9.4% heavier at 8 weeks old), (c) changes to overall feeding behavior but no differences in feed intake, (d) lower abundance of a common gut pathogen (Clostridium colinum), and (e) lower mortality associated with gut disease. Together, our results suggest that the behavior of coprophagy in juveniles is highly beneficial and may have evolved to accelerate the development of gut microbiota.
Collapse
Affiliation(s)
- Elin Videvall
- Corresponding author: Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Hanna M Bensch
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology and Environmental Science, Linneaus University, Kalmar, Sweden
| | - Anel Engelbrecht
- Directorate Animal Sciences, Western Cape Department of Agriculture, Oudtshoorn, South Africa
| | - Schalk Cloete
- Directorate Animal Sciences, Western Cape Department of Agriculture, Oudtshoorn, South Africa
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
9
|
Kouete MT, Bletz MC, LaBumbard BC, Woodhams DC, Blackburn DC. Parental care contributes to vertical transmission of microbes in a skin-feeding and direct-developing caecilian. Anim Microbiome 2023; 5:28. [PMID: 37189209 PMCID: PMC10184399 DOI: 10.1186/s42523-023-00243-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Our current understanding of vertebrate skin and gut microbiomes, and their vertical transmission, remains incomplete as major lineages and varied forms of parental care remain unexplored. The diverse and elaborate forms of parental care exhibited by amphibians constitute an ideal system to study microbe transmission, yet investigations of vertical transmission among frogs and salamanders have been inconclusive. In this study, we assess bacteria transmission in Herpele squalostoma, an oviparous direct-developing caecilian in which females obligately attend juveniles that feed on their mother's skin (dermatophagy). RESULTS We used 16S rRNA amplicon-sequencing of the skin and gut of wild caught H. squalostoma individuals (males, females, including those attending juveniles) as well as environmental samples. Sourcetracker analyses revealed that juveniles obtain an important portion of their skin and gut bacteria communities from their mother. The contribution of a mother's skin to the skin and gut of her respective juveniles was much larger than that of any other bacteria source. In contrast to males and females not attending juveniles, only the skins of juveniles and their mothers were colonized by bacteria taxa Verrucomicrobiaceae, Nocardioidaceae, and Erysipelotrichaceae. In addition to providing indirect evidence for microbiome transmission linked to parental care among amphibians, our study also points to noticeable differences between the skin and gut communities of H. squalostoma and that of many frogs and salamanders, which warrants further investigation. CONCLUSION Our study is the first to find strong support for vertical bacteria transmission attributed to parental care in a direct-developing amphibian species. This suggests that obligate parental care may promote microbiome transmission in caecilians.
Collapse
Affiliation(s)
- Marcel T Kouete
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, 32611, USA.
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Molly C Bletz
- Department of Biology, University of Massachusetts, Boston, MA, 02125, USA
| | | | - Douglas C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, 02125, USA
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Whittaker DJ, Atyam A, Burroughs NA, Greenberg JM, Hagey TJ, Novotny MV, Soini HA, Theis KR, Van Laar TA, Slade JWG. Effects of short-term experimental manipulation of captive social environment on uropygial gland microbiome and preen oil volatile composition. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1027399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IntroductionAvian preen oil, secreted by the uropygial gland, is an important source of volatile compounds that convey information about the sender’s identity and quality, making preen oil useful for the recognition and assessment of potential mates and rivals. Although intrinsic factors such as hormone levels, genetic background, and diet can affect preen oil volatile compound composition, many of these compounds are not the products of the animal’s own metabolic processes, but rather those of odor-producing symbiotic microbes. Social behavior affects the composition of uropygial microbial communities, as physical contact results in microbe sharing. We experimentally manipulated social interactions in captive dark-eyed juncos (Junco hyemalis) to assess the relative influence of social interactions, subspecies, and sex on uropygial gland microbial composition and the resulting preen oil odor profiles.MethodsWe captured 24 birds at Mountain Lake Biological Station in Virginia, USA, including birds from two seasonally sympatric subspecies – one resident, one migratory. We housed them in an outdoor aviary in three phases of social configurations: first in same-sex, same-subspecies flocks, then in male-female pairs, and finally in the original flocks. Using samples taken every four days of the experiment, we characterized their uropygial gland microbiome through 16S rRNA gene sequencing and their preen oil volatile compounds via GC-MS.ResultsWe predicted that if social environment was the primary driver of uropygial gland microbiome composition, and if microbiome composition in turn affected preen oil volatile profiles, then birds housed together would become more similar over time. Our results did not support this hypothesis, instead showing that sex and subspecies were stronger predictors of microbiome composition. We observed changes in volatile compounds after the birds had been housed in pairs, which disappeared after they were moved back into flocks, suggesting that hormonal changes related to breeding condition were the most important factor in these patterns.DiscussionAlthough early life social environment of nestlings and long-term social relationships have been shown to be important in shaping uropygial gland microbial communities, our study suggests that shorter-term changes in social environment do not have a strong effect on uropygial microbiomes and the resulting preen oil volatile compounds.
Collapse
|
11
|
Song G, Wang Y, Wang Y, Jiang Y, Sun S, Cai H, Sun G, Li M, Bionaz M, Xu H. Coprophagy Prevention Decreases the Reproductive Performance and Granulosa Cell Apoptosis via Regulation of CTSB Gene in Rabbits. Front Physiol 2022; 13:926795. [PMID: 35923240 PMCID: PMC9341522 DOI: 10.3389/fphys.2022.926795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Coprophagy is an instinctive behavior in rabbit with important effects on growth and reproductive performance. The underlying mechanism of this effect in rabbit is unknown. Here, we used Elizabeth circle as a coprophagy preventing model in female rabbits and assess feed intake, growth, and reproductive performance. We found that preventing coprophagy did not affect feed intake but decreased body weight and weight of several organs and tissues and resulted in complete reproductive failure during the late pregnancy period, accompanied by reduced levels of plasma progesterone. RNA-seq analysis of rabbit ovarian tissues revealed that preventing coprophagy affected significantly 241 genes (DEGs), with the large majority being downregulated. Bioinformatic analyses revealed that those DEGs are mostly involved in apoptosis, immune response, and metabolic pathways. Among DEGs, the lysosomal cysteine protease cathepsin B (CTSB) was significantly downregulated in the coprophagy prevention group. Further studies using siRNA and adenovirus overexpression systems revealed that CTSB promotes the proliferation of rabbit granulosa cells (GCS) and prevents apoptosis. Measurement of transcripts coding for proteins related to apoptosis revealed a minor transcriptomic effect of CTSB, indicating that its effect is likely post-transcriptional. Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. In conclusion, our study demonstrated the detrimental effect on reproduction by preventing coprophagy with a main role for this response played by CTSB on the granulosa cells of the ovary.
Collapse
Affiliation(s)
- Guohua Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yadong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yaling Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yixuan Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaijie Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Huifen Xu, ; Massimo Bionaz, ; Ming Li,
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- *Correspondence: Huifen Xu, ; Massimo Bionaz, ; Ming Li,
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Huifen Xu, ; Massimo Bionaz, ; Ming Li,
| |
Collapse
|
12
|
Mouele AM, Brogan S, Stephan C. Allo‐ and autocoprophagy events in wild western lowland gorillas (
Gorilla gorilla gorilla
). Afr J Ecol 2022. [DOI: 10.1111/aje.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Sean Brogan
- Wildlife Conservation Society – Congo Program Brazzaville Congo
- Goualougo Triangle Ape Project Brazzaville Congo
| | - Claudia Stephan
- Nouabalé ‐Ndoki Foundation Bomassa Congo
- Wildlife Conservation Society – Congo Program Brazzaville Congo
| |
Collapse
|
13
|
Increased microbial diversity and decreased prevalence of common pathogens in the gut microbiomes of wild turkeys compared to domestic turkeys. Appl Environ Microbiol 2022; 88:e0142321. [PMID: 35044852 PMCID: PMC8904053 DOI: 10.1128/aem.01423-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Turkeys (Meleagris gallopavo) provide a globally important source of protein and constitute the second most important source of poultry meat in the world. Bacterial diseases are common in commercial poultry production causing significant production losses for farmers. Due to the increasingly recognized problems associated with large-scale/indiscriminant antibiotic use in agricultural settings, poultry producers need alternative methods to control common bacterial pathogens. In this study we compared the cecal microbiota of wild and domestic turkeys, hypothesizing that environmental pressures faced by wild birds may select for a disease-resistant microbial community. Sequence analysis of 16S rRNA genes amplified from cecal samples indicate that free-roaming wild turkeys carry a rich and variable microbiota compared to domestic turkeys raised on large-scale poultry farms. Wild turkeys also had very low levels of Staphylococcus, Salmonella and E. coli when compared to domestic turkeys. E. coli strains isolated from wild or domestic turkey cecal samples also belong to distinct phylogenetic backgrounds and differ in their propensity to carry virulence genes. E. coli strains isolated from factory-raised turkeys were far more likely to carry genes for capsule (kpsII, kpsIII) or siderophore (iroN, fyuA) synthesis than those isolated from wild turkeys. These results suggest that the microbiota of wild turkeys may provide colonization resistance against common poultry pathogens. Importance Due to the increasingly recognized problems associated with antibiotic use in agricultural settings, poultry producers need alternative methods to control common bacterial pathogens. In this study we compare the microbiota of wild and domestic turkeys. Results suggest that free ranging wild turkeys carry a distinct microbiome when compared to farm raised turkeys. The microbiome of wild birds contains very low levels of poultry pathogens compared to farm raised birds. The microbiomes of wild turkeys may be used to guide development of new ways to control disease in large scale poultry production.
Collapse
|
14
|
Dubost JM, Kongchack P, Deharo E, Sysay P, Her C, Vichith L, Sébastien D, Krief S. Zootherapeutic uses of animals excreta: the case of elephant dung and urine use in Sayaboury province, Laos. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2021; 17:62. [PMID: 34711254 PMCID: PMC8552211 DOI: 10.1186/s13002-021-00484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite a widespread aversion towards faeces and urine, animal excreta are used in traditional medicine in many countries since centuries, but records are scattered and few therapeutic uses have been accurately documented while in the current context of emerging zoonoses such records may be of major interest. METHODOLOGY In this study, we investigated the therapeutic uses that mahouts in Xayaboury province, Lao PDR make of elephant urine and faeces as well as of the brood chamber that beetles (Heliocopris dominus) fashion from elephant dung. Semi-structured interviews were conducted with mahouts on elephant diet, health problems and responses to disease, andwhether they use elephant products. Data were supplemented by interviews with traditional healers. RESULTS Seven respondents reported the use of elephant urine in ethnoveterinary care for elephants and in human medicine in case of diabetes and otitis. 25 respondents reported therapeutic use of elephant faeces (EF) and elephant dung beetle brood chambers. The major indications are gastrointestinal and skin problems. Macerations or decoctions are drunk or used externally as a lotion. The mahouts attribute the therapeutic effectiveness of EFs to their content which includes the remains of many species from the elephant diet which they consider to be medicinal. DISCUSSION The indications of these uses are consistent with pharmacological and clinical studies highlighting the properties of different animals' urine and faeces and their curative potential tested in vivo. The acknowledgement by the mahouts of medicinal properties of elephant faecal bolus contrasts with the rare justifications of animal material use recorded in zootherapeutic studies, which falls within the symbolic domain. However, numerous studies highlight the preponderant role of the microbiota in physiological processes, raising the hypothesis of a curative action of EF, by rebalancing the user's microbiota. CONCLUSION The therapeutic uses of EF preparations despite their possible curative properties are a potential source of zoonotic transmission from elephants to humans. In the current context of globalisation of trade which favours the emergence of zoonoses and in relation with the issue of One Health, it becomes crucial to further document the zootherapeutic practices to prevent emerging diseases. As elephants and local related ethnoethological knowledge are threatened, documenting them is urgent to contribute to their preservation.
Collapse
Affiliation(s)
- Jean-Marc Dubost
- Museum National d'Histoire Naturelle-UMR 7206, Paris, France.
- UMR 152 Pharmadev, IRD, UPS, 35 chemin des maraîchers, Université Paul Sabatier, 31062, Toulouse, France.
| | | | - Eric Deharo
- UMR 152 Pharmadev, IRD, UPS, 35 chemin des maraîchers, Université Paul Sabatier, 31062, Toulouse, France
| | - Palamy Sysay
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Health Sciences, Vientiane, Lao PDR
| | - Chithdavone Her
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Health Sciences, Vientiane, Lao PDR
| | - Lamxay Vichith
- Department of Botany, Faculty of Natural Sciences, National University of Laos, Vientiane, Lao PDR
| | - Duffillot Sébastien
- Elephant Conservation Center, Nam Tien Reservoir, Xayabury District, Lao PDR
| | - Sabrina Krief
- Museum National d'Histoire Naturelle-UMR 7206, Paris, France
| |
Collapse
|
15
|
Matsubayashi M, Kobayashi A, Kaneko M, Kinoshita M, Tsuchida S, Shibahara T, Hasegawa M, Nakamura H, Sasai K, Ushida K. Distribution of Eimeria uekii and Eimeria raichoi in cage protection environments for the conservation of Japanese rock ptarmigans ( Lagopus muta japonica) in the Japanese Alps. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:225-230. [PMID: 34159052 PMCID: PMC8196045 DOI: 10.1016/j.ijppaw.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Japanese rock ptarmigans, Lagopus muta japonica, are classified as an endangered species in Japan and are found only in the Japanese Alps. The number of birds has decreased in the last half century and cage protection projects have been undertaken as in situ conservation strategies (one of the projects for the recovery plan of Japanese rock ptarmigan) in the mountains. During the period with cage protections, some chicks died and two Eimeria spp., E. uekii and E. raichoi, were identified in the chicks. Here, we examined the soil within the cages and in the surrounding environment to assess potential sources of infection between July to August 2020. We found high numbers of oocysts in the cages, especially at the back sides where the ptarmigan family frequently congregated, but soils in other areas outside the cages were less contaminated or not contaminated at all. The time required for more than 50% of the oocysts to sporulate at 15, 20 and 25 °C for E. uekii was 20, 11, and 5 h, respectively, and 72, 48 and 18 h, respectively, for E. raichoi. Our results cast some doubt that coprophagia by chicks is the source of infection because chicks consumed fresh cecal feces (approximately within 1 h) as far as we know, and instead, the protected chicks might be directly or indirectly infected by oocysts in soils or the environment. Cage protection is effective for protecting chicks of Japanese rock ptarmigans. Soils at the back sides in the cages were highly contaminated with Eimeria spp. E. uekii can rapidly be sporulated at 15 °C in timber regions. Protected chicks might be infected by oocysts in soils or the environment.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.,Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.,Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Osaka 545-8585, Japan.,Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia
| | - Atsushi Kobayashi
- Shin-etsu Nature Conservation Office, Environmental Ministry Japan, Nagano 380-0846, Japan
| | - Minemitsu Kaneko
- Japan Wildlife Research Center, Sumida-ku, Tokyo 130-8606, Japan
| | - Moemi Kinoshita
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Sayaka Tsuchida
- Academy of Emerging Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Tomoyuki Shibahara
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.,Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Masami Hasegawa
- Department of Biology, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Hiroshi Nakamura
- General Foundation Hiroshi Nakamura International Institute for Ornithology, Nakagosho, Nagano 380-0934, Japan
| | - Kazumi Sasai
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.,Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Kazunari Ushida
- Academy of Emerging Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
16
|
Tsuchida S, Hattori T, Sawada A, Ogata K, Watanabe J, Ushida K. Fecal metabolite analysis of Japanese macaques in Yakushima by LC-MS/MS and LC-QTOF-MS. J Vet Med Sci 2021; 83:1012-1015. [PMID: 33952783 PMCID: PMC8267200 DOI: 10.1292/jvms.21-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed a comprehensive fecal metabolite analysis using LC-MS/MS and LC-QTOF-MS
approaches as a preliminary study. Feces of Japanese macaques on Yakushima Island were
collected from five monkeys at two separate locations. Using the former methodology, 59
substances such as free amino acids, nucleotides, nucleosides and nucleic acid bases, and
organic acids in the citrate cycle were quantitatively detected and successfully
differentiated in two different monkey groups by the concentrations of nucleic acid
metabolites and free amino acids. In the latter, around 12,000 substances were detected
both by positive and negative mode in each sample. Differences in signal intensities were
observed between two monkey groups in the concentrations of plant secondary metabolites
such as cyanogenic glycosides, flavonoids, and phenolics.
Collapse
Affiliation(s)
- Sayaka Tsuchida
- Chubu University Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan.,Present address: Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | | | - Akiko Sawada
- Chubu University Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan.,Present address: Kyoto University Primate Research Institute, Kanrin 41-2, Inuyama, Aichi 484-8506, Japan
| | | | | | - Kazunari Ushida
- Chubu University Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan.,Present address: Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
17
|
Bo TB, Kohl KD. Stabilization and optimization of host-microbe-environment interactions as a potential reason for the behavior of natal philopatry. Anim Microbiome 2021; 3:26. [PMID: 33785073 PMCID: PMC8011129 DOI: 10.1186/s42523-021-00087-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Many animals engage in a behavior known as natal philopatry, where after sexual maturity they return to their own birthplaces for subsequent reproduction. There are many proposed ultimate factors that may underlie the evolution of natal philopatry, such as genetic optimization, suitable living conditions, and friendly neighbors, which can improve the survival rates of offspring. However, here we propose that a key factor that has been overlooked could be the colonization of gut microbiota during early life and the effects these microorganisms have on host performance and fitness. In addition to the bacteria transmitted from the mother to offspring, microbes from the surrounding environment also account for a large proportion of the developing gut microbiome. While it was long believed that microbial species all have global distributions, we now know that there are substantial geographic differences and dispersal limitations to environmental microbes. The establishment of gut microbiota during early life has enormous impacts on animal development, including energy metabolism, training of the immune system, and cognitive development. Moreover, these microbial effects scale to influence animal performance and fitness, raising the possibility for natural selection to act on the integrated combination of gut microbial communities and host genetics (i.e. the holobiont). Therefore, in this paper, we propose a hypothesis: that optimization of host-microbe-environment interactions represents a potentially important yet overlooked reason for natal philopatry. Microbiota obtained by natal philopatry could help animals adapt to the environment and improve the survival rates of their young. We propose future directions to test these ideas, and the implications that this hypothesis has for our understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Ting-Bei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Disentangling the Relative Roles of Vertical Transmission, Subsequent Colonizations, and Diet on Cockroach Microbiome Assembly. mSphere 2021; 6:6/1/e01023-20. [PMID: 33408228 PMCID: PMC7845597 DOI: 10.1128/msphere.01023-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A multitude of factors affect the assemblies of complex microbial communities associated with animal hosts, with implications for community flexibility, resilience, and long-term stability; however, their relative effects have rarely been deduced. Here, we use a tractable lab model to quantify the relative and combined effects of parental transmission (egg case microbiome present/reduced), gut inocula (cockroach versus termite gut provisioned), and varying diets (matched or unmatched with gut inoculum source) on gut microbiota structure of hatchlings of the omnivorous cockroach Shelfordella lateralis using 16S rRNA gene (rDNA) amplicon sequencing. We show that the presence of a preexisting bacterial community via vertical transmission of microbes on egg cases reduces subsequent microbial invasion, suggesting priority effects that allow initial colonizers to take a strong hold and which stabilize the microbiome. However, subsequent inoculation sources more strongly affect ultimate community composition and their ecological networks, with distinct host-taxon-of-origin effects on which bacteria establish. While this is so, communities respond flexibly to specific diets in ways that consequently impact predicted community functions. In conclusion, our findings suggest that inoculations drive communities toward different stable states depending on colonization and extinction events, through ecological host-microbe relations and interactions with other gut bacteria, while diet in parallel shapes the functional capabilities of these microbiomes. These effects may lead to consistent microbial communities that maximize the extended phenotype that the microbiota provides the host, particularly if microbes spend most of their lives in host-associated environments.IMPORTANCE When host fitness is dependent on gut microbiota, microbial community flexibility and reproducibility enhance host fitness by allowing fine-tuned environmental tracking and sufficient stability for host traits to evolve. Our findings lend support to the importance of vertically transmitted early-life microbiota as stabilizers, through interactions with potential colonizers, which may contribute to ensuring that the microbiota aligns within host fitness-enhancing parameters. Subsequent colonizations are driven by microbial composition of the sources available, and we confirm that host-taxon-of-origin affects stable subsequent communities, while communities at the same time retain sufficient flexibility to shift in response to available diets. Microbiome structure is thus the result of the relative impact and combined effects of inocula and fluctuations driven by environment-specific microbial sources and digestive needs. These affect short-term community structure on an ecological time scale but could ultimately shape host species specificities in microbiomes across evolutionary time, if environmental conditions prevail.
Collapse
|
19
|
Kobayashi A, Tsuchida S, Hattori T, Ogata K, Ueda A, Yamada T, Murata K, Nakamura H, Ushida K. Metabolomic LC-MS/MS analyses and meta 16S rRNA gene analyses on cecal feces of Japanese rock ptarmigans reveal fundamental differences between semi-wild and captive raised individuals. J Vet Med Sci 2020; 82:1165-1172. [PMID: 32581149 PMCID: PMC7468055 DOI: 10.1292/jvms.20-0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ex situ conservation of Japanese rock ptarmigans began in 2015 with the aim of reintroducing artificially raised birds into their original habitat. However, the current raising method in captivity seems insufficient in terms of the survivability of artificially raised birds in natural conditions. Feeding management is one potential reason for such insufficiency. In this study, we performed a comprehensive analysis of the hydrophilic metabolites by LC-MS/MS for the cecal feces of Japanese rock ptarmigans under in situ and ex situ conservation to reveal their gut chemical environment. We also analyzed the developmental processes of cecal microbiomes both in situ semi-wild and ex situ captive individuals. Metabolites of nucleic acid were rich in the in situ individuals, and free amino acids were rich in the ex situ individuals. The differences in the microbiome composition between in situ and ex situ individuals were also pronounced; major genera of in situ individuals were not detected or few in ex situ individuals. The alpha diversity of the cecal microbiome of semi-wild chicks at 1 week of age was almost the same as that of their hens, while it was very low in captive individuals. Sub-therapeutic use of oxytetracycline, a diet rich in protein and energy, and isolation from adult birds are considered to be causes for these great differences in gut chemical and microbiological environment between in situ and ex situ individuals.
Collapse
Affiliation(s)
| | - Sayaka Tsuchida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.,Chubu University, Academy of Emerging Sciences, Kasugai 487-8501, Japan
| | | | | | - Atsushi Ueda
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | | | - Koichi Murata
- Faculty of Bioresource Sciences, Nihon University, Kanagawa 252-0800, Japan
| | - Hiroshi Nakamura
- General Foundation Hiroshi Nakamura International Institute for Ornithology, Nagano 380-0934, Japan
| | - Kazunari Ushida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.,Chubu University, Academy of Emerging Sciences, Kasugai 487-8501, Japan
| |
Collapse
|
20
|
Matsubayashi M, Kinoshita M, Kobayashi A, Tsuchida S, Shibahara T, Hasegawa M, Nakamura H, Sasai K, Ushida K. Parasitic development in intestines and oocyst shedding patterns for infection by Eimeria uekii and Eimeria raichoi in Japanese rock ptarmigans, Lagopus muta japonica, protected by cages in the Southern Japanese Alps. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:19-24. [PMID: 32368488 PMCID: PMC7186262 DOI: 10.1016/j.ijppaw.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/02/2023]
Abstract
The population of Japanese rock ptarmigan (Lagopus muta japonica), an endangered species with a habitat above the timberline of the southern Japanese Alps, has declined. As one of the recent conservation strategies for this species, cage protection for broods (hens and chicks) has been introduced in their habitats. Two species of Eimeria have frequently been detected in these birds, but little is known about the parasitic circulation in the region, including among birds and in the environment. Here, we conducted histopathology examinations of dead chicks collected under cage protection in 2018, and examined the feces of the hens and chicks of three broods and environmental soils for parasites in 2019 in order to assess the potential sources of infection and pathogenicity. Developmental zoites were found in the epithelial mucosa and/or the submucosa from the duodenum to the colon of all dead chicks. Fecal examination revealed oocysts of E. uekii and/or E. raichoi in all hens and chicks. Oocysts of Eimeria spp. per gram of feces in chicks increased within 2 weeks after hatching and then gradually deceased. Following infection of the chicks, oocysts could accumulate within the cage areas, and oocyst density exceeded more than 1000 oocysts per gram of cage soils. Based on having sporulated morphologies, oocysts could be infective and therefore, be direct or indirect potential sources of infection. However, based on our findings that not all chicks were clinically affected by the infections, other factors such as microbial flora in the chicks established by coprophagy or from the habitat environment, including climate, might be associated with the pathogenicity of Eimeria spp., although further studies are needed to assess these correlations. Cage protection is effective on conservation of Japanese rock ptarmigans. Hens caring chicks were highly infected with Eimeria spp. and shedded the oocysts. Potential sources of the infection could be contaminated soils but not coprophagy behaviors of chicks. Pathogenicity of Eimeria might be also associated with factors like establishment of gut microbiota or habitat conditions.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
- Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, 545-8585, Japan
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60115, Indonesia
| | - Moemi Kinoshita
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Atsushi Kobayashi
- Department of Biology, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Sayaka Tsuchida
- Academy of Emerging Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Tomoyuki Shibahara
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masami Hasegawa
- Department of Biology, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Hiroshi Nakamura
- General Foundation Hiroshi Nakamura International Institute for Ornithology, Nakagosho, Nagano, 380-0934, Japan
| | - Kazumi Sasai
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
- Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Kazunari Ushida
- Academy of Emerging Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan
- Corresponding author. Academy of Emerging Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|